
Research Article
A Diverse Stochastic Search Algorithm for
Combination Therapeutics

Mehmet Umut Caglar1,2 and Ranadip Pal2

1 Department of Physics, Texas Tech University, P.O. Box 41051, Lubbock, TX 79409, USA
2Department of Electrical and Computer Engineering, Texas Tech University, P.O. Box 43102, Lubbock, TX 79409, USA

Correspondence should be addressed to Ranadip Pal; ranadip.pal@ttu.edu

Received 17 November 2013; Revised 20 January 2014; Accepted 6 February 2014; Published 12 March 2014

Academic Editor: Hua Xu

Copyright © 2014 M. U. Caglar and R. Pal. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Background. Design of drug combination cocktails to maximize sensitivity for individual patients presents a challenge in terms
of minimizing the number of experiments to attain the desired objective. The enormous number of possible drug combinations
constrains exhaustive experimentation approaches, and personal variations in genetic diseases restrict the use of prior knowledge
in optimization. Results. We present a stochastic search algorithm that consisted of a parallel experimentation phase followed by a
combination of focused and diversified sequential search. We evaluated our approach on seven synthetic examples; four of them
were evaluated twice with different parameters, and two biological examples of bacterial and lung cancer cell inhibition response
to combination drugs. The performance of our approach as compared to recently proposed adaptive reference update approach
was superior for all the examples considered, achieving an average of 45% reduction in the number of experimental iterations.
Conclusions. As the results illustrate, the proposed diverse stochastic search algorithm can produce optimized combinations in
relatively smaller number of iterative steps.This approach can be combined with available knowledge on the genetic makeup of the
patient to design optimal selection of drug cocktails.

1. Introduction

Biological networks are complex and stochastic by nature.
They are also robust and incorporate redundancy in their
functionality.Thus, from the perspective of intervention, tar-
geting individual proteins or pathways may not be sufficient
for achieving a desirable outcome. For instance, solid tumors
often fail to respond to monotherapy due to redundant
pathways being able to carry on proliferation [1, 2]. Thus,
combination therapy is often considered where multiple
proteins and pathways are targeted to reduce tumor growth
and avoid resistance to therapy [3, 4]. The primary concern
with this approach is the enormous increase in the possible
candidate concentrations that needs to be experimentally
tested. One possible solution can be detailed modeling of
the cellular system and design of the combination therapy
based on analytical optimization and simulation. However,
the kind of detailed model that captures the synergy or
antagonism of drugs at different levels can require enormous

amount of experimentation to infer the model parameters.
Furthermore, this kind of approach may only work for
molecularly targeted drugs where the specific drug targets
are known, but modeling chemotherapeutic drug synergies
can often be difficult. Existing approaches to drug sensitivity
prediction based on genomic signatures often suffer from
low accuracy [5–7]. Thus for generation of optimal drug
cocktails, systematic empirical approaches tested on in-vitro
patient tumor cultures are often considered. Some existing
approaches include (i) systematic screening of combinations
[8–10] which requires numerous test combinations, (ii)
medicinal algorithmic combinatorial screen (MACS) based
on laboratory drug screen for multiple drug combinations
guided by sequential search using a fitness function [11], and
(iii) deterministic and stochastic optimized search algorithms
[12–15]. The systematic search approach should be focused
on locating the global maximum instead of getting stuck in
a local maximum. Furthermore, the optimization algorithm
needs to be effective in search spaces, without existing prior
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knowledge, and easily adaptable to higher dimensional sys-
tems. Since the knowledge of the drug sensitivity distribution
is unknown, the algorithm should be effective over a number
of unrelated search spaces. A common problem related to the
stochastic search algorithms in the literature is the normaliza-
tion issue mentioned in [15]. Some of the search algorithms
like Gur Game require proper normalization of the search
space without having any prior information about it [13]. In
order to overcome this problem, proposed algorithms should
be adaptive to nonnormalized search spaces.

In this paper, we propose a diversified stochastic search
algorithm (termed DSS) that does not require prior nor-
malization of the search space and can find optimum drug
concentrations efficiently. At this point, it is important to
emphasize that the primary objective of the algorithm is to
minimize the number of experimental steps and not the CPU
time. The critical problem is the cost of the experiments that
are necessary to find the most efficient combination, since
the cost of biological experiments is significantly higher than
the cost of computation in terms of time and money. As the
number of biological experiments necessary to find the global
maximum is equal to the number of steps, the objective is
to minimize the experimental steps in order to reduce the
cost of the overall process. With our proposed algorithm,
we significantly decrease the number of steps necessary to
find the maximum.The proposed iterative algorithm is based
on estimating the sensitivity surface and incorporating the
response of previous experimental iterations. By generating
an estimate of the sensitivity distribution based on currently
available response data, we are able to make larger moves in
the search space as compared to smaller steps for gradient
based approaches. The proposed algorithm is composed of
two parts: (a) the first part consists of generating a rudimen-
tary knowledge of the search space, (b) and in the secondpart,
we utilize the crude knowledge of the sensitivity distribution
to run a focused search to locate the exactmaximums or run a
diverse search to gather further information on the sensitivity
distribution.

For comparing the accuracy of our proposed approach,
we compare the performance of our algorithm to the recently
proposed adaptive reference update (ARU) [15] algorithm
which has been shown to outperform earlier stochastic search
approaches for drug cocktail generation [13, 14]. We consider
seven diverse example functions that represent possible drug
interaction surfaces and also test our algorithm on two exper-
imentally generated synergistic drug combinations. Even
though our algorithm is not constrained to discretized drug
levels, we have considered discretized drug concentration
levels for our examples to be able to compare our results
with previous studies. The results illustrate that the proposed
algorithm is more efficient than the ARU algorithm for
all the considered drug response surfaces. We also present
a theoretical analysis of the proposed search algorithm to
explain the algorithm performance.

The paper is organized as follows: the Results section con-
tains the detailed performance analysis for the 9 examples,
and 4 of them were analyzed for 2 different parameter sets;
the Discussion section includes the theoretical analysis of the
algorithm along with conclusions; and the search algorithm

along with the surface estimation algorithm are presented in
theMethods section.

2. Results

In this section, we present the performance of our proposed
algorithm for nine different examples. The numbers of drugs
considered in the examples are 2, 3, 4, and 5 with 21, 11, 11,
and 11 discretized concentration levels, respectively, resulting
in search space sizes of 21

2, 11
3, 11
4, and 11

5 for the
synthetic examples and search grid sizes of 9

2 and 10
2 for

the experimentally generated examples with two drugs and
number of discretization levels of 9 and 10. As mentioned
earlier, our results are compared with the latest stochastic
search algorithm for drug cocktail generation (termed ARU
algorithm) [15] which was shown to outperform earlier
approaches [13, 14]. Similar to comparisons in [15], two
parameters are primarily considered (a) Cost: average num-
ber of steps required to reach within 95% of the maximum
sensitivity and (b) Success Rate: percentage of times that the
search algorithm reaches 95% of the maximum sensitivity
within a fixed number of steps. The details of the exam-
ple functions, search parameters, and performance of our
approach and ARU approach are shown in supplementary
Tables 1–9 (see Supplementary Material available online at
http://dx.doi.org/10.1155/2014/873436). Each table contains
the problem dimensions, intervals, grid points, algorithmic
parameters, and the performance comparison in terms of
success percentage and average number of iterations (termed
score) for our proposed approach and ARU. Two of the pre-
sented examples are based on experimentally generated data.
(i) Supplementary Table 8 reports the results for bacterial (S.
aureus) inhibition response for the drugs Trimethoprim and
Sulfamethoxazole that has a synergistic effect as shown in
[10]. The data surface is shown in supplementary Table 10.
(ii) Supplementary Table 9 considers lung cancer inhibition
response using the drugs Pentamidine and Chlorpromazine
[16]. Both of these compounds have moderate antiprolifera-
tive activities on their own in-vitro in A549 lung carcinoma
cells. But neither pentamidine (an antiprotozoal agent) nor
chlorpromazine (an antipsychotic agent) is used clinically as
a cancer drug. On the other hand, because of the synergy
between them, they can prevent the growth of A549 lung
carcinoma cells; in addition to that, in proper concentrations,
combination is more effective than some of the commonly
used cancer drugs. The data surface is shown in supplemen-
tary Table 11. The performance of our approach as compared
to ARU algorithm for the nine examples is summarized in
Table 1.The results indicate that we achieve 100% success rate
for all nine examples (thirteen different evaluations), whereas
ARUhas slightly lower success rate in 2 of these examples.The
primary benefit of our approach is the lower average number
of iterations to reach within 95% of the maximum sensitivity.
For all the examples considered, we require significantly
lower average number of iterations to reach within 95%
of the maximum. Note that the standard deviation of the
number of iterations required to reach within 95% of the
maximum is relatively small as compared to the difference
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Table 1: Summary of the results for seven synthetic and two experiment based examples. The table illustrates that the cost for our proposed
algorithm is significantly lower than theARUalgorithm [15]which has been shown to be efficient than other existing algorithms. Furthermore,
the success rate for our algorithm is also better than the ARU algorithm.

Number of points with
≥ 0.95 × Maxefficacy

Search
grid size

ARU
[15] cost

ARU [15]
Success Rate DSS cost DSS STD DSS worst

case
DSS Success

Rate
Initial LHC

points
Synthetic examples

2 DeJong 2 21
2 46.2 99% 16.0 7.99 48 100% 5

3a 4 11
3 74 100% 24.7 11.73 72 100% 10

3b 1 11
3 79.4 100% 52.9 32.20 149 100% 10

4a 1 11
4 136.8 100% 65.3 14.11 106 100% 40

4a 1 11
4 136.8 100% 50.7 21.81 159 100% 10

4b 12 11
4 91.6 100% 52.7 8.80 85 100% 40

4b 12 11
4 91.6 100% 28.3 9.17 57 100% 10

5a 4 11
5 80.6 100% 79.3 23.25 157 100% 40

5a 4 11
5 80.6 100% 61.8 27.58 176 100% 10

5b 8 11
5 216.8 100% 159.5 90.51 402 100% 40

5b 8 11
5 216.8 100% 194.2 150.15 647 100% 10

Experiment based examples
Bacterial
inhibition [10] 34 9

2 4.8 100% 1.85 0.78 3 100% 3

Lung cancer [16] 7 10
2 12.4 98% 5.97 4.74 23 100% 3

in average iterations between ARU and DSS. For instance,
the first example in 2 dimensions requires an average of 16

iterations for our proposed approach as compared to 46.2

iterations for ARU approach. The standard deviation (𝜎) in
100 runs of DSS algorithm is 7.99 and thus the difference in
the mean runs between DSS and ARU is more than 3.7𝜎. The
ARU algorithm has earlier been shown to outperform other
existing algorithms such as Gurgame and its variants. Please
refer to Tables 1 and 2 of [15] for the detailed comparison
results of ARU with Gurgame. This strongly illustrates that
the proposed algorithm is able to generate high sensitivity
drug combinations in lower number of average iterations
than existing approaches.

To further illustrate the significance of the proposed
approach, let us consider one of the experimental example
results. The experimental data on lung cancer contains the
sensitivity for 102 = 100 drug concentration combinations
where each drug is assumed to have one of 10 discrete con-
centrations. This data has been utilized to study the efficacy
of the proposed algorithm. For instance, an exhaustive search
approach will experimentally test the sensitivity of each of
these 100 concentrations and select the one with the highest
sensitivity and thus it will require 100 experimental steps.
On the other hand, the stochastic search algorithms such as
ARU and proposed DSS will start with random drug con-
centration combinations and try to sequentially select drug
concentrations that will provide an improved knowledge of
the sensitivity surface over these two drugs. As Table 1 shows,
ARU will require an average of 12.4 sequential steps to reach
a drug combination that has sensitivity within 95% of the
maximum sensitivity, whereas the proposed DSS will require
an average of 5.97 sequential steps to reach within 95% of
the maximum sensitivity. Thus, DSS will reach within 95% of
the maximum sensitivity on an average of 5.97 experimental

steps, whereas ARU will require 12.4 experimental steps
and exhaustive search will require 100 experimental steps.
Note that since ARU and DSS are stochastic approaches,
the number of sequential steps required can vary with each
experimental run and the numbers 12.4 and 5.97 represent
the mean of multiple experimental runs. The experimental
data has been used here to provide the sensitivities for specific
drug concentrations requested by the algorithms.

For analyzing the behavior of our algorithm during the
iteration process, we analyzed the minimal distance of the
optimal point(s) from theDSS selected points. Let us consider
𝑛 drugs and 0 to 𝑇 discretization levels for each drug. Figure 1
represents the minimum 𝐿

1
distance of the points selected

for experimentation to any of the optimal point(s) for the
synthetic Example 6 (the simulation details are included in
supplementary Table 6) with two different parameter sets
(the number of initial points is 40 and 10, resp.) for 100
repeated experiments. Note that 𝑛 = 4 and 𝑇 = 10 for
the example and thus the maximum possible 𝐿

1
distance is

40. The number of optimal points for this example is 1. The
red vertical line represents the value of 𝑚 which is 40 and
10, respectively, for two different solutions of this example.
The black vertical line represents the average number of
iterations required to reach an optimal point for the specific
response function. The cyan vertical dotted line represents
the worst situation out of 100 different runs. The average
minimum distance of the experimental points to the optimal
point is shown in green in Figure 2. The solid blue line
represents the analytically calculated expected minimum 𝐿

1

distance. The theoretical analysis of the minimum distance
is included in Section 3. Note that there is a change in
the shape of the blue curve after the end of Step 1 (iter-
ation 40 for Figure 2(a) and iteration 10 for Figure 2(b)).
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Figure 1: Minimum distance to optimal points for function f4a.We simulate the f4a function (see Supplementary Table 6) 100 times with two
different LHC numbers. First figure represents the simulation with LHC equal to 40 and second figure represents the simulation LHC equal
to 10.The analyzed function has 1 optimal point. The blue line represents the minimum norm 1 distance between the optimal points and DSS
selected points. The red vertical line represents the end of Step 1, that is, Latin Hypercube Numbers, which is equal to 40th iteration in first
simulation set and 10th iteration in the second simulation set; and the black vertical dotted line represents the average value of iterations (cost
of proposed algorithm) required to find one of the points with ≥ 0.95 × Maxefficacy (equal to 79.25). The cyan vertical dotted line represents
the worst situation out of 100 different runs.
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Figure 2: Simulation average and theoretical expected minimum distance to optimal points for function f4a (Supplementary Table 6). The
blue line represents the theoretical values for 𝐿

1
distance and the dashed blue lines represent the error margins (𝜇 ± 𝜎) for the analytically

calculated values for Step 1 of the iteration. First figure represents the simulation with LHC equal to 40 and second figure represents the
simulation LHC equal to 10. The red vertical line represents the end of Step 1, that is, Latin Hypercube Numbers, which is equal to 40th
iteration; and the black vertical line represents the average value of iterations (cost of proposed algorithm) required to find one of the points
with ≥ 0.95 × Maxefficacy. The perpendicular cyan line represents the worst situation out of 100 different runs.

The dotted blue curve denotes the analytically calculated 𝜇 ±

𝜎 where 𝜇 and 𝜎 denote the mean and standard deviation
for the minimum distance. Figures 1 and 2 illustrate that
the minimum distance of the selected points to the optimal
points decreases with successive iteration and closelymatches
the analytical predictions.

3. Discussion

In this section, we provide a generalized analysis of the
proposed search algorithm followed by conclusions and
future research directions.

3.1. Theoretical Analysis. In this subsection, we will attempt
to theoretically analyze the distance of the point with the

global sensitivity maximum from the points that are tested
by the proposed algorithm. We will consider that each drug
is discretized from 0 to 𝑇 levels and that we are considering
𝑛 drugs. Thus, any drug cocktail can be represented by a
𝑛 length vector 𝑉 = {𝑉(1), 𝑉(2), . . . , 𝑉(𝑛)}, where 𝑉(𝑖) ∈

{0, 1, 2, . . . , 𝑇} for 𝑖 ∈ {0, 1, . . . , 𝑛}. Thus, the search space
of drug cocktails (denoted by Ω) is of size (𝑇 + 1)

𝑛 and
represents points in an 𝑛-dimensional hypercube of length
𝑇. Let 𝑉max denote the drug cocktail with the maximum
sensitivity among the (𝑇 + 1)

𝑛 points. The mapping from the
drug cocktail to sensitivity will be denoted by the function
𝑓 : Ω → [0 1]; that is, the maximum sensitivity will be
given by 𝑓(𝑉max). We will assume that if the distance of the
test point (𝑉) from the point with the globalmaximum (𝑉max)
is small, the sensitivity will be close to the global maximum;
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Figure 3: Distribution of random variable 𝑅
1
(denoting 𝐿

1
distance

from optimal point) for 𝑇 = 10 and different values of 𝑛.

that is, a small |𝑉max − 𝑉| will imply a small |𝑓(𝑉max) − 𝑓(𝑉)|.
We will primarily analyze the 𝐿

1
norm of |𝑉max − 𝑉|.

Note that |𝑉max − 𝑉|
1

= ∑
𝑛

𝑖=1
|𝑉max(𝑖) − 𝑉(𝑖)|. The first 𝑚

points in our algorithm are chosen randomly in the search
space and thus we will consider that 𝑉(𝑖) has a uniform
distribution between 0 and 𝑇. 𝑉max can also be situated in
any portion of the search space and thus we will consider
𝑉max to have a uniform distribution between 0 and 𝑇. Thus,
the probability mass function of the random variable 𝑍 =

𝑉(𝑖) − 𝑉max(𝑖) will be given by

𝑓
𝑍

(𝑧) =

{

{

{

𝑇 + 1 − |𝑧|

(𝑇 + 1)
2

𝑧 = {−𝑇, −𝑇 + 1, . . . , 𝑇 − 1, 𝑇}

0 otherwise.

(1)

Subsequently, the PMF of the random variable 𝑊 = |𝑍|

will be given by

𝑓
𝑊

(𝑤) =

{{{{{

{{{{{

{

2 (𝑇 + 1 − 𝑤)

(𝑇 + 1)
2

𝑤 = {0, . . . , 𝑇 − 1, 𝑇}

1

𝑇 + 1
𝑤 = 0

0 otherwise.

(2)

The random variable 𝑅
1
denoting the 𝐿

1
norm |𝑉max −

𝑉|
1

= ∑
𝑛

𝑖=1
|𝑉max(𝑖) − 𝑉(𝑖)| will be a sum of 𝑛 random

variables with PMF given by (2).The distribution for the sum
of any two random variables consists of the convolution of
the individual distributions of the randomvariables.Thus, the
probability distribution of 𝑅

1
can be calculated by convolving

𝑓
𝑊

𝑛 times. The distribution of 𝑅
1
for 𝑇 = 10 and 𝑛 =

{1, . . . , 15} is shown in Figure 3.
At the beginning of our algorithm, we are selecting 𝑚

points in random. Thus, the nearest neighbor distance from
the optimal point will be given by the random variable𝑅

2
that

denotes the minimum of 𝑚 random variables 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚

selected independently based on the distribution of 𝑅
1
. Thus,

Table 2: Expectation and variance of the minimum distances from
the optimal point for various values of 𝑛, 𝑇, and 𝑚.

n T m Mean Variance
5 5 20 4.15 1.77
5 5 40 3.42 1.29
5 5 60 3.04 1.09
10 5 20 11.35 4.29
10 5 40 10.20 3.32
10 5 60 9.59 2.90
15 5 20 19.16 6.88
15 5 40 17.69 5.43
15 5 60 16.92 4.79
5 10 20 8.15 5.25
5 10 40 6.86 3.71
5 10 60 6.21 3.06
10 10 20 21.75 13.35
10 10 40 19.70 10.21
10 10 60 18.62 8.83
15 10 20 36.45 21.76
15 10 40 33.83 17.02
15 10 60 32.45 14.94
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Figure 4:Distribution of randomvariable𝑅
2
(denoting theminimal

𝐿
1
distance from the optimal point for 𝑚 = 40) for 𝑇 = 10 and

different values of 𝑛.

the cumulative distribution function (CDF) of 𝑅
2
is given by

[17]

𝑃 (𝑅
2

≤ 𝑥) = 1 − 𝑃 (𝑋
1

> 𝑥, . . . , 𝑋
𝑚

> 𝑥)

= 1 − 𝑃 (𝑋
1

> 𝑥) ∗ ⋅ ⋅ ⋅ ∗ 𝑃 (𝑋
𝑚

> 𝑥)

= 1 − (1 − CDF
𝑅
1

(𝑥))
𝑚

.

(3)

The PMF of 𝑅
2
given by PMF

𝑅
2

(𝑥) = CDF
𝑅
2

(𝑥) −

CDF
𝑅
2

(𝑥 − 1) for 𝑖 = 1, 2, . . . 𝑛𝑇 and PMF
𝑅
2

(0) = CDF
𝑅
2

(0) is
shown in Figure 4.

For example, the expected minimum distance from the
optimal point for 𝑚 = 40, 𝑇 = 10 is 6.86 for 𝑛 = 5. The
mean 𝜇(𝑛, 𝑇, 𝑚) and variance 𝜎(𝑛, 𝑇, 𝑚)

2 of the minimum
distance from the optimal point for different values of 𝑛, 𝑇,
and 𝑚 are shown in Table 2. Note that if there are 𝑘 optimal
points in diverse locations, themean 𝜇

𝑘
(𝑛, 𝑇, 𝑚) and variance
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𝜎
𝑘
(𝑛, 𝑇, 𝑚)

2 of the minimum distance of the selected points
from any of the optimal points are given by 𝜇

𝑘
(𝑛, 𝑇, 𝑚) =

𝜇(𝑛, 𝑇, 𝑘 ∗ 𝑚) and 𝜎
𝑘
(𝑛, 𝑇, 𝑚)

2
= 𝜎(𝑛, 𝑇, 𝑘 ∗ 𝑚)

2. This
is because when there are 𝑘 optimal points, the minimum
distance will consist of the minimum of 𝑚 × 𝑘 distances
(𝑚 distances from each optimal point). If there are multiple
optimal points in one hill with small distances between each
other, they will be considered as one single optimal point for
the minimum distance analysis.

As Table 2 shows, the 𝐿
1
distance will increase with

increasing 𝑛 and 𝑇 and following Step 1 of the algorithm, our
point with highest experimental sensitivity may not be close
to the optimal point but rather may belong to another hill
with a local optima. However, based on the nearest neighbor
𝐿
1
distances, we would expect to have at least one point close

to the optimal point in the top 𝑘 optimal points. Thus, if
we keep selecting 𝜌 points for further experimentation from
around the top 𝑘 experimental points sequentially, we expect
that on an average 𝜌

1
= 𝜌/𝑘 points will be selected around the

optimal point.
Consider that the 𝐿

1
distance from the optimal point was

given by the random variable 𝑅
2
and if a point is selected

randomly between the experimental point and the randomly
selected point, the subsequent nearest neighbor distance from
the optimal point will be given by the random variable 𝑅

3
=

𝑅
2

∗ 𝐺
1
, where 𝐺

1
is a uniform random variable between 0

and 1. The distance in each dimension will be reduced by a
number selected based on a uniform random variable, and
consequently, we will approximate the 𝐿

1
distance (sum of 𝑛

such distances) to be reduced by a number selected based on
a uniform random variable. Thus, after 𝜌

1
points have been

selected sequentially around the optimal point, the distance
to the optimal point will be given by the random variable
𝑅
𝜌
1

= 𝑅
2

∗ 𝐺
1

∗ 𝐺
2

∗ ⋅ ⋅ ⋅ ∗ 𝐺
𝜌
1

. The probability distribution
function of the multiplication of 𝜌

1
random variables with

uniform distribution between [0, 1] is given by [18]

𝑓
𝐺
1
∗⋅⋅⋅∗𝐺

𝜌1

(𝑥) =
(ln (1/𝑥))

𝑛−1

(𝑛 − 1)!
. (4)

Thus, if the expected distance from the optimal point after
the initial selection of 𝑚 points is 𝐷 and we select 𝜌

1
points

sequentially between the optimal point and its current nearest
neighbor, the expected nearest neighbor distance from the
optimal point will be 𝐷/2

𝜌
1 .

As an example, if 𝑛 = 10, 𝑇 = 10, and 𝑚 = 40, we have
𝐷 = 19.7 from Table 2. The expected 𝐿

1
distance from the

optimal point at the end of 40 + 20 = 60 iterative steps
will be 19.7/2

6
= 0.3078 assuming a single hill and a 0.3

probability for the focused search (path 𝑎 of Step 2 of the
algorithm). Based on the focused search probability, at the
end of 60 iterations, we expect to have (60 − 40) ∗ 0.3 = 6

points selected around the optimal point.

3.2. Conclusions. In this paper, we proposed a diverse
stochastic search (DSS) algorithm that consisted of a parallel
and sequential phase that outperformed existing efficient
algorithms for drug cocktail generations on nine different
examples (thirteen different evaluations). Our results show

that the DSS algorithm is more efficient than the previous
algorithms in terms of decreasing the number of experiments
required to generate the optimum drug combination (i.e.,
cost of the algorithm) which in turn reduces the total cost
of the drug combination search process in terms of time
and money. Note that the primary costs in each sequential
biological experimental step are in personnel effort to prepare
the drug combination and the time involved to generate the
combination drug response and thus the goal is to reduce
the number of sequential steps. One of the limitations of the
current approach is the computational complexity when the
number of drugs (𝑛) is large. The proposed method is suit-
able for selection of optimal drug concentrations when the
number of candidate drugs has been reduced from hundreds
to around ten. A number of approaches can be applied to
achieve the selection of candidate drugs. For instance, an
application of a drug screen to measure cell viability of the
tumor culture can be utilized to narrow down the drugs to be
included in a combination drug cocktail [19, 20]. Note that
algorithms [19, 20] are convenient for selecting the small set
of drugs for combination therapy but not for deciding on
the optimal drug concentrations of the selected drugs. For
possible clinical application, available genetic information
can be utilized to narrow down the possible drugs to be tested
and the proposed DSS algorithm can be applied to tumor
cell cultures to generate the optimal concentrations of the
drugs. In this paper, we also presented a theoretical analysis of
the search based on minimum distance between the optimal
point and the DSS selected points. Future research directions
will consider incorporating the cost of drug application in the
optimization process and the effect of data extractionnoise on
the search algorithm. The cost will be a measure of toxicity
or side effects of the drug combination. One approach to
incorporate the cost can consist of changing the sensitivity
surface by negating the cost from the sensitivity. The cost
can be simplified to be proportional to the linear addition
of the individual drug concentrations. Another approach for
incorporating the cost entails restricting the search space by
limiting the search to areas that have cost lower than a toxicity
threshold.

4. Methods

In this section, we present the search algorithm along with
the surface mapping algorithm based on currently available
information. Finally, we discuss the reasoning behind the
selection of the algorithm related parameters.

4.1. The Search Algorithm. The primary objective of the
search algorithm is to locate the global maximum in mini-
mum number of iteration steps. Numerous approaches can
be considered for this purpose and our proposed method
is based on a combination of stochastic and deterministic
approaches. We expect that the efficiency in terms of average
number of iteration steps can be increased by large jumps
over the search space rather than using traditional step-by-
step gradient descent approach. Our algorithm consists of
two parts: an initial parallel part and a subsequent iterative
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segment. The objective of the initial part is to generate a
rudimentary idea of the search space. The objective of the
iteration part is twofold: (a) it tries to find the exactmaximum
using the currently available knowledge and (b) it searches
the space further to add new knowledge, that is, it attempts
to find new hills that the previous iterations could not locate.

Step-by-step schema of the search algorithm is described
as follows.

Step 1. Generation of Latin Hypercube Numbers (LHNs)

(1) In this step, 𝑚 points in the given grid are selected
for drug response experiments. We first generate 𝑚

points in the continuous search space based on LHN
generation approachwith the criterion ofmaximizing
the minimum distance between these points. This
approach assists in distributing the points homoge-
neously in the search space such that the maximum
possible distance between a given target point and
the nearest point whose coordinates are represented
by LHN will be minimum. Consequently, we map
these points to the nearest grid points and term
these mapped points as approximate Latin hypercube
points. We considered this continuous-discrete grid
mapping to compare our results with the previous
studies that utilized a grid structure for the search
space.

(2) In this step, experiments are conducted to determine
the efficiency of the𝑚 drug combinations determined
by the approximate Latin hypercube points.

Step 2. Iterative Segment

(1) Normalize the experimental drug efficacy results to
numbers between 0 and 1.Then the (𝑛 − 1)th power of
the normalized drug efficacies are considered where
𝑛 denotes the number of drugs. The power step
emphasizes the hills of the distribution and the value
𝑛 − 1 is termed as Power used for the inputs.

(2) Estimate the drug efficacies of the unknown grid
points using the sensitivity surface estimation algo-
rithm.The details of the surface estimation algorithm
are explained in subsequent sections. At the end of
this procedure, we have estimates for the efficacies
of each and every point on the search grid. The grid
points are classified into two groups: known points
from experimental data and estimated points based
on interpolation and extrapolation.

(3) Decide the objective of the iteration step based on a
probabilistic approach. For our case, the algorithm
follows path a to find the exact maximum based on
previous knowledge with a 0.3 probability and follows
path b with a 0.7 probability to explore the search
space with a diversified approach.

(4) Path a (Focused Search)

(a) The main idea of the focused search is to
experimentally search the estimatedmaximums

generated following the surface estimationmap-
ping. The algorithm also tries to avoid focusing
on an individual local maximum by exploring
geographically apart multiple estimated local
maximums. To achieve this purpose, we employ
a tracking algorithm to label the local maxi-
mums and avoid prolonged emphasis on indi-
vidual maximum points. The individual steps
of the Focused Search part are described as
follows.

(b) Sort the grid sensitivities (both experimental
and estimated sensitivities) fromhigher to lower
sensitivity values.

(c) Check if the location corresponding to the
highest sensitivity is an experimental point or
an estimated point. If it is an estimated point,
generate the experimental sensitivity for this
grid location.

(d) If the highest sensitivity point is an experimental
point, check the second highest point. If the
second highest point is an estimated point,
generate the experimental value for this grid
location.

(e) If the second highest point is also an experimen-
tal point, generate the gradient from the second
highest point based on the mapped surface. If
the upward path from the second highest point
leads up to the highest point, label both the
points as 1, which implies that they belong to the
same hill. Otherwise, label the highest point as
1 and label the second highest point as 2, which
indicates that they belong to different hills.

(f) Repeat this procedure till an estimated point
is located. Meanwhile, keep labeling the exper-
imental points with respect to the hill they
belong to and the order of the point on the hill
(ex: 3rd highest point in hill 2, etc.).

(g) If a hill’s highest 𝜉 points are experimental
points, then label the hill as discovered, which
indicates that we have enough information on
this hill and collecting information on other
hills might be more beneficial.

(h) If the search continues till 1% of grid points
without finding a suitable candidate for exper-
imentation, halt the search. Locate all the con-
sidered points that are inside a sphere of volume
1/500 of the whole search space with center
being the highest sensitivity point. Assign a
value of “0” for the sensitivities of all points
inside this sphere. (Maintain the record of their
actual values in another place). Then go to the
beginning of Step 2.

(5) Path b (Diverse Search)

(a) The aim of the diverse search is to explore the
space to locate new possible candidate hills that
were not discovered in the previous searches.
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(b) Assume that the surface generated by the exper-
imental and estimated points is a probability
distribution function (PDF).

(c) Generate points by sampling this distribution.
For the generation process, we use the Gibbs
sampling algorithm.The number of points gen-
erated by the Gibbs algorithm is termed as
Number of points to generate the Gibbs sampling.
Since the points are generated from sampling
the PDF, the points are denser around the hills
and less dense at locations where the efficacy
estimate is close to 0.

(d) Randomly select one of the generated points as
the candidate point and generate its sensitivity
experimentally.

4.2. Sensitivity Surface Estimation Algorithm. The sensitivity
surface estimation algorithm used for our approach is estab-
lished on the 𝑛 dimensional application of the penalized least
square regression analysis based on discrete cosine transform
(LS-DTC) proposed by Garcia [21, 22]. The code is generated
to compute missing values in data sets. The estimation algo-
rithm contains a parameter 𝑠, termed as smoothing parameter
that determines the smoothness of the output. For our case,
the smoothness parameter is adjusted to a small value so
that the result of surface estimation goes through the actual
experimental points. The core of the algorithm is based on
minimizing the equation 𝐹(𝑦) = 𝑤𝑅𝑆𝑆 + 𝑠 ∗ 𝑃(𝑦), where
wRSS corresponds to weighted residual sum of squares and
𝑃 is the penalty function related to the smoothness of the
output. wRSS can be written explicitly as ‖𝑊

1/2
⋅ (𝑦 − 𝑦)‖

2

,
where 𝑦 represents the actual data with missing values and 𝑦

provides the estimate of the data without any missing values.
𝑊 is a diagonal matrix, whose entries represent the reliability
of the points and can take values between 0 and 1. For our
case, the missing values represent unknown points and are
assigned a value of 0 and the experimental points are reliable
points which are assigned a value of 1. The solution to 𝑦

that minimizes 𝐹(𝑦) can be generated based on an iterative
process starting from an arbitrary initial point 𝑦

0
.

4.3. Choice of Parameters. The implementation of the pro-
posed algorithm includes several parameters that can affect
the performance of the search process. In this subsection,
we present the guiding principles behind the selection of the
parameters based on the dimensionality and the total number
of grid points in the search space.

4.3.1. Latin Hypercube Numbers (LHNs). Denote the number
of points that will be tested in Step 1 of the algorithm.
These points are supposed to provide an initial estimate
of the search space. Based on simulations and theoretical
analysis, we observe that increasing the number of LHNs
provides limited benefit in terms of reaching the maximum
sensitivity combination after a certain point. On the other
hand, keeping this number too low will cause the program
to start the second step with limited knowledge and to search
low sensitivity locations. Thus, there is an optimum number

of Latin hypercube numbers to maximize the benefit of the
algorithm. Although this optimum number depends on the
search space; our simulations for 4 surfaces with two different
LHNs (10 and 40) illustrate that the proposed algorithm
provides better results than ARU algorithm for a fairly large
interval of LHNs.

4.3.2. Latin Hypercube Iterations. The Latin hypercube num-
bers are distributed homogeneously through an iterative
algorithm. The iterations maximize the minimum distance
between the points. It is desirable to have a higher number
of iterations, but after a point, the benefits of increasing
the iterations become negligible. For our simulations, we
selected a threshold point following which the increase in the
maximumminimum distance is negligible.

4.3.3. Number of Iterations to Generate the Sensitivity Surface
Estimate. This parameter is related to sensitivity surface esti-
mation algorithmanddescribes the number of iterations used
to find a smooth surface passing through the given points in
high dimensional space. A higher value for this parameter
will provide a smoothed surface (that still passes through the
experimental points) butwill carry a high computational time
cost. Furthermore, the benefits of increasing the iterations
become negligible after a threshold and the output surface
becomes more stable. For our examples, we have fixed this
number to 100.

4.3.4. Probability of Focused Search. Denote the probability
that the search algorithm follows 𝑝𝑎𝑡ℎ 𝑎. 𝑃𝑎𝑡ℎ 𝑎 attempts
to discover the exact local maximum of a hill, and 𝑝𝑎𝑡ℎ 𝑏

attempts to learn new hills. For all our simulations, this
parameter has been assigned a value of 0.3.

4.3.5. Power Used by Inputs. This parameter attempts to
emphasize the hills. After normalizing the experimental
points, we take the (𝑛 − 1)th power of the values so that
the high peaks are emphasized as compared to dips or grid
points with average values in the estimated surface. Thus, the
probability of point selection around hills is increased during
the Gibbs sampling process.

4.3.6. Number of Points Generated by the Gibbs Sampling.
This parameter describes the number of points generated
by the Gibbs sampling in 𝑝𝑎𝑡ℎ 𝑏 of Step 2 of the algorithm.
More points provide a better representation of the estimated
surface. After a level, the number of points is sufficient
to represent the probability distribution and the benefits
of increasing the iterations become negligible. We achieve
better sampling by increasing this parameter. This parameter
is required to be large for problems in higher dimensions
or problems containing a huge number of grid points. For
our examples, if the number of grid points is below 7500,
this parameter has been assigned a value equal to twice the
number of grid points. Otherwise, we have fixed the number
of the Gibbs sampling points to 15,000.

4.3.7. Clustering Related Parameters. The clustering concept
is introduced to avoid the search being stuck in one dominant
hill.



BioMed Research International 9

4.3.8. Cluster Threshold 𝜉. This denotes the maximum num-
ber of experimental points in an individual hill. Further
exploration of the hill is paused once this value is reached.
For our examples, if the number of drugs (dimensions) 𝑛 is
less than 5, 𝜉 is assigned a value of 2𝑛 − 1. Otherwise, the
parameter is fixed at 7.

4.3.9. Cluster Break. This parameter denotes the maximum
number of high efficacy point estimates in a single hill. If this
condition is reached, we assign a value of 0 sensitivity for
points around the known top of the hill. This parameter is
considered to be around 1% of the total grid points.

4.3.10. Cluster Distance. This parameter represents the radius
of the sphere around the hill top for which any grid point
within the sphere is assigned a value of 0. The Cluster
Distance is selected such that the volume of the sphere is
0.2% of the total volume. The parameter considers that the
algorithm has no knowledge of the hills that are narrower
than the 0.2% of the total search space.
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