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Abstract
To explore the Radix Paeoniae Rubra-Flos Carthami herb pair’s (RPR-FC) potential mechanism in treating ischemic stroke (IS) by
network pharmacology and molecular docking technology.
The Traditional Chinese Medicine Systems Pharmacology Database was used to screen the active components of the RPR-FC,

and Cytoscape 3.8 software was used to construct a network map of its active components and targets of action. The GeneCards
and OMIM databases were used to identify disease targets of IS, and the common targets were chosen as research targets and
imported into the STRING database to construct a protein–protein interaction network map of these targets. R language software
was used to analyze the enrichment of GO terms and KEGG pathways, and explore the mechanisms of these targets. Molecular
docking technology was used to verify that the RPR-FC components had a good bonding activity with their potential targets.
A total of 44 active components, which corresponded to 197 targets, were identified in the RPR-FC. There were 139 common

targets between the herb pair and IS. GO functional enrichment analysis revealed 2253 biological process entries, 72 cellular
components entries, and 183molecular functions entries. KEGG pathway enrichment analysis was mainly related to the NF-kappa B
signaling pathway, the TNF signaling pathway, apoptosis, the MAPK signaling pathway, the PI3K-Akt signaling pathway, the VEGF
signaling pathway, etc. The molecular docking results showed the components that docked well with key targets were quercetin,
luteolin, kaempferol, and baicalein.
The active components (quercetin, luteolin, kaempferol, and baicalein) of the RPR-FC and their targets act on proteins such as

MAPK1, AKT1, VEGFA, and CASP3, which are closely related to IS.1 These targets are closely related to the NF-kappa B signaling
pathway, the MAPK signaling pathway, the PI3K-Akt signaling pathway, the VEGF signaling pathway, and other signaling pathways.
These pathways are involved in the recovery of nerve function, angiogenesis, and neuronal apoptosis and the regulation of
inflammatory factors, which may have a therapeutic effect on IS.

Abbreviations: IS = ischemic stroke, NSCs = neural stem cells, PPI = protein–protein interaction, RPR-FC = Radix Paeoniae
Rubra-Flos Carthami herb pair, TCMSP = Traditional Chinese Medicine Systems Pharmacology.
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1. Introduction

Despite new developments in treatment strategies, stroke is still
one of the main causes of death and disability worldwide.[1] The
incidence, disability, and mortality rates of ischemic stroke (IS) in
the population are increasing, placing a heavy burden on families
and society. Although choices for stroke treatment are still
limited, the development of drug therapies and mechanical
thrombolytic recanalization has led to improvements in IS
patients’ recovery. However, due to the limitation of the
thrombolytic time window, there is a great demand for
developing drugs for acute ischemic stroke.[2]

After IS occurs, the immunoregulatory response plays a huge
role in regulating immune inflammation, oxidative stress, cell
damage, apoptosis, and protecting nerve function.[3] Recently,
immunomodulatory therapy for IS has become a hot spot in
neurology research. The immunomodulatory effects of traditional
Chinese medicines on IS have been recently studied in basic and
clinical trials.[4] Studies have shown that Qi deficiency and blood
stasis syndrome is common type of IS.[5,6] Therefore, strategies that
promote blood circulation and remove blood stasis are common
methods for treating IS.[2] The proper and reasonable use of drugs
that activate blood and remove stasis is important for promoting
blood supply to the brain, saving the ischemic penumbra,
protecting nerve cells, and regulating the immune response.[7]

Basic and clinical research on the efficacy of blood circulation
promotion and blood stasis removal for IS treatment has been
carried out.[8] Radix Paeoniae Rubra-Flos Carthami herb pair’s
(RPR-FC) is commonly used for the treatment of IS.[9] It is included
in many classical traditional Chinese medicine prescriptions. The
combination of the 2 herbs can enhance blood circulation and
remove blood stasis.[9] The specific research process is as Figure 1.
Traditional Chinese Medicine Systems Pharmacology (TCMSP)
databasewas used to screen the active components of RPR-FC and
predict its action targets. The disease targets of ischemic stroke
were searchedbyGenecardsandOMIMdatabase, intersectedwith
the action targets of Radix PaeoniaeRubra and the Flos Carthami,
screened out the common targets as the research targets, and
constructed the protein–protein interaction (PPI) network diagram
of the research targets. Enrichment analysis of GO and KEGG
pathways. Molecular docking technology was used to verify that
RPR-FC has good binding activity with potential targets.

2. Materials and methods

2.1. Active components and targets

We searched the TCMSP database for the keywords “Radix
Paeoniae Rubra” and “Carthami Flos” and used bioavailability
(F) ≥30% and drug-likeness (DL) ≥0.18 as criteria.[10]

F refers to the percentage of oral doses of a drug that reaches the
blood circulatory system, and DL refers to the similarity of the
components of a prescription toknowndrugs. Basedon this search,
the RPR-FC’s effective components and the corresponding targets
of the compound were identified from the TCMSP database.
2.2. Construction of “Component-Target” network
diagram

The UniProt database (http://www.uniprot.org/uniprot/) was
used to determine the gene names and UniProt numbers of all the
targets and convert them into target abbreviations.[11] The active
components of the RPR-FC and their corresponding targets were
2

imported intoCytoscape 3.8 software to construct a“Component-
Target” network diagram. In the network diagram, the nodes
represent chemical components and targets. The edges represent
interactions.Thedegrees indicate thenumberof edges connected to
a node, and the degree values are positively correlated with
function. The “NetworkAnalyzer”was used to analyze and derive
the degree values, betweenness, and other topology attributes.
2.3. Screening of IS disease targets

Disease targets were identified from the GeneCards database
(https://www.genecards.org) and OMIM database (http://omim.
org/) using “ischemic stroke” as a keyword.[12,13] Duplicate
targets were removed with UniProt. Using the Venny platform
(http://bioinfogp.cnb.csic.es/Tools/Venny/), the targets of the
active components of the RPR-FC were compared with the IS
targets, and the targets of the RPR-FC for the treatment of IS were
identified.[14]
2.4. Construction of the PPI network and core network

The common targets of the RPR-FC and IS were imported into
the STRING database (https://string-db.org/).[15] The species was
limited to “human,” interactions were determined, and node1,
node2, and combined score information were retained in the file.
The above data were imported into Cytoscape 3.8 software, a PPI
network diagram of the target was constructed, and the core
network was screened.[16]
2.5. Enrichment analysis

R language (ClusterProfiler package) was used to carry out GO
enrichment analysis and KEGG enrichment analysis at the
biological process, molecular, and cell levels.[17] Graphs and
bubble graphs were generated from the data.

2.6. Molecular docking study

The 3D structures of the active components of the RPR-FC were
downloaded from the TCMSP database, and the 3D structures of
the candidate IS targets were downloaded from the PDB database.
The targets’ structure was modified by removing ligands, water,
and hydrogen by importing them into PyMOL2.4 software. Using
AutoDock 4.0 software, the candidate pharmacodynamic com-
ponents and candidate targets were used for docking studies after
preprocessing.[18] In this study, the active components of the RPR-
FC to effectively bind potential therapeutic targets were verified by
molecular docking studies, and the docking results were analyzed
to verify the reliability of this research.
3. Results

3.1. Screening of main active components and targets

Using the TCMSP database for screening, 29 active components
of Paeoniae Rubra, and 15 active components of Flos Carthami
were identified (Table 1). A total of 498 effective targets, 159 of
which were targets of Radix Paeoniae Rubra and 339 of which
were targets of Flos Carthami, were identified by analyzing the
herb components’ corresponding targets. The abovementioned
effective components and targets were compared and combined.
After UniProt correction and comprehensive collation, 197
effective targets of the RPR-FC were identified.

http://www.uniprot.org/uniprot
https://www.genecards.org/
http://omim.org/
http://omim.org/
http://bioinfogp.cnb.csic.es/Tools/Venny
https://string-db.org/


Figure 1. Research process.
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3.2. “Component-Target” network analysis
The candidate components and the corresponding targets of the
RPR-FC were imported into Cytoscape 3.8 software to construct
a “Component-Target” network diagram. The scattered nodes
were removed, and a total of 158 nodes and 283 edges remained.
The circle on the left side of the figure represents the active
3

components of RPR-FC. The red circles indicate the active
components of Radix Paeoniae Rubra, and the purple circles
indicate the active components of Flos Carthami. The circle
containing 2 colors indicates the common active components of
the RPR-FC. The blue nodes on the right represent drug targets.
The larger the node is, the more components are connected to the
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Table 1

Active components of the Radix Paeoniae Rubra-Flos Carthami herb pair.

Herbs molId molName F DL

Radix Paeoniae Rubra MOL007004 albiflorin 30.25 0.77
MOL006990 (1S,2S,4R)-trans-2-hydroxy-1,8-cineole-B-D-glucopyranoside 30.25 0.27
MOL007003 benzoyl paeoniflorin 31.14 0.54
MOL007025 isobenzoylpaeoniflorin 31.14 0.54
MOL007014 8-debenzoylpaeonidanin 31.74 0.45
MOL002883 ethyl oleate (NF) 32.4 0.19
MOL002714 baicalein 33.52 0.21
MOL006994 1-o-beta-D-glucopyranosyl-8-o-benzoylpaeonisuffrone_qtb 36.01 0.3
MOL000359 sitosterol 36.91 0.75
MOL000358 beta-sitosterol 36.91 0.75
MOL006999 stigmast-7-en-3-ol 37.42 0.75
MOL005043 campest-5-en-3beta-ol 37.58 0.71
MOL002776 baicalin 40.12 0.75
MOL004355 spinasterol 42.98 0.76
MOL001002 ellagic acid 43.06 0.43
MOL000449 stigmasterol 43.83 0.76
MOL007005 albiflorin_qt 48.7 0.33
MOL001921 lactiflorin 49.12 0.8
MOL001924 paeoniflorin 53.87 0.79
MOL000492 (+)-catechin 54.83 0.24
MOL007012 4-o-methyl-paeoniflorin_qt 56.7 0.43
MOL007008 4-ethyl-paeoniflorin_qt 56.87 0.44
MOL006992 (2R,3R)-4-methoxyl-distylin 59.98 0.3
MOL007018 9-ethyl-neo-paeoniaflorin A_qt 64.42 0.3
MOL007022 evofolin 64.74 0.22
MOL006996 1-o-beta-d-glucopyranosylpaeonisuffrone_qt 65.08 0.35
MOL007016 paeoniflorigenone 65.33 0.37
MOL001925 paeoniflorin_qt 68.18 0.4
MOL001918 paeoniflorgenone 87.59 0.37

Carthami Flos MOL002757 7,8-dimethyl-1H-pyrimido[5,6-g]quinoxaline-2,4-dione 45.75 0.19
MOL002717 qt_carthamone 51.03 0.2
MOL002714 baicalein 33.52 0.21
MOL000422 kaempferol 41.88 0.24
MOL002719 6-hydroxynaringenin 33.23 0.24
MOL000006 6-hydroxynaringenin 36.16 0.25
MOL002712 6-hydroxykaempferol 62.13 0.27
MOL000098 quercetin 46.43 0.28
MOL002721 quercetagetin 45.01 0.31
MOL002698 lupeol-palmitate 33.98 0.32
MOL002710 pyrethrin II 48.36 0.35
MOL002710 [(E)-4-(3,5-dimethoxy-4-oxo-1-cyclohexa-2,5-dienylidene)

but-2-enylidene]-2,6-dimethoxycyclohexa-2,5-dien-1-one
48.47 0.36

MOL002707 [(E)-4-(3,5-dimethoxy-4-oxo-1-cyclohexa-2,5-dienylidene)
but-2-enylidene]-2,6-dimethoxycyclohexa-2,5-dien-1-one

43.18 0.5

MOL002707 phytoene 39.56 0.5
MOL002680 flavoxanthin 60.41 0.56
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gene. Each edge represents an interaction between the component
and the target (Fig. 2).

3.3. Prediction of therapeutic targets and construction of
the PPI core network

Using “Ischemic stroke” as the keyword, a total of 2744 IS-
related targets were identified from the GeneCards database and
OMIM database. The 197 drug targets and the 2744 disease
targets were mapped with Venny 2.1.0, and 139 common “Drug-
Disease” targets were obtained (Fig. 3). The 139 common targets
were imported into the STRING platform for PPI network
analysis and Cytoscape 3.8 for visualization processing. The
resulting PPI network had 150 edges (Fig. 4). The above targets
4

were screened based on betweenness, closeness, eigenvector, local
average connectivity, network and degree, and 20 nodes with the
highest parameters considered the network’s key genes were
identified. These nodes were JUN, MAPK1, TP53, MAPK8,
AKT1, VEGFA, MMP9, EGF, CXCL8, FOS, PTGS2, IL1B,
ICAM1, STAT1, RELA, CCL2, CCND1, MYC, EGFR, and
CASP3 (Fig. 5).

3.4. GO enrichment and KEGG analysis

R language (cluster profiler package) was used to analyze the
enrichment ofGO terms andKEGGpathways (P< .05). Therewere
2252 biological processentries, 183molecular functions entries, and
72 cellular components entries identified by GO enrichment



Figure 2. “Component-Target” network diagram.
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analysis. GO analysis revealed that the above targets play a
biological role through the lipopolysaccharide reaction, oxidative
stress response, etc. The proportion of cellular components terms in
the intercellular space was large. Ubiquitin-like protein ligase
binding (ubiquitin) was the most enriched molecular functions
terms. The top 10 terms, according to corrected P values are
displayed in the graphic in Figure 6 (A and B).
A total of 160 KEGG pathways (P< .05), including fluid shear

stress and atherosclerosis, the AGE-RAGE signaling pathway in
diabetic compositions, the TNF signaling pathway, and the IL-17
signaling pathway were identified. The top 30 pathways are
shown in the graphic in Figure 6 (C and D). We screened
pathways and found that the RPR-FC may be involved in fluid
shear stress and the atherosclerosis signaling pathway, theMAPK
signaling pathway, the NF-kappa B signaling pathway, the
Figure 3. “Component-Target” network diagram. The green circle represents dru
represents potential therapeutic targets.

5

phosphoinositide 3-kinase (PI3K)-Akt signaling pathway, the
VEGF signaling pathway, the TNF signaling pathway, and other
signaling pathways to exert immunoregulatory and neuro-
protective effects after IS. A literature search on the above
pathways showed that acute cerebral ischemic events and
thrombosis are related to carotid atherosclerotic plaque
rupture/erosion. Higher wall shear stress values are related to
the presence of calcification. Fluid shear stress and atherosclerosis
regulate the wall and play an important role in high stress.[19] The
TNF signaling pathway mainly regulates the inflammatory
response after cerebral infarction. Clinical studies have shown
that inflammatory cytokines are effective in the pharmacological
regulation of cerebral infarction. Experimental evidence has
shown that tumor necrosis is the main target for new stroke
treatments.[20] The MAPK signaling pathway regulates gene
g targets, the pink circles represent disease targets, and the overlapping area

http://www.md-journal.com


Figure 4. Construction of a PPI network diagram. The circles are labeled with the targets’ abbreviations, and the straight lines represent associations between the
targets. The darker the color, the higher the correlation. PPI=protein–protein interaction.
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expression and basic cellular processes, such as cell proliferation,
differentiation, migration, metabolism, and apoptosis, in eukary-
otic cells. It is considered a therapeutic target for many diseases.
To date, increasing evidence has shown that the MAPK signaling
pathway is involved in the pathogenesis and development of
IS.[21] IL-17 regulates stem cells and the generation of cortical
neural stem cells (NSCs) in adults after stroke. Knockout of IL-17
helps to regulate the PI3K-Akt pathway, promotes the prolifera-
tion of NSCs, and promotes nerve growth after IS.[22] This study
found that the RPR-FC has neuroprotective effects, promoting
nerve repair, vascular remodeling, inhibition of neuronal
apoptosis, and regulation of inflammatory factor expression
after IS.
3.5. Consolidation and construction of the “Component-
Target-Pathway” network

KEGG enrichment analysis was performed to construct a
signaling pathway map, and the related literature was reviewed.
6

The 5 signaling pathways most related to IS are displayed in the
graphic in Figure 7 (A-E). Six potential components and 5
signaling pathways corresponding to the 20 key targets of the
RPR-FC were combined into a “Component-Target-Pathway”
network diagram, as shown in Figure 8. This diagram reflects the
multi-component, multi-target, and multi-pathway character-
istics of the RPR-FC in the comprehensive treatment of IS.

3.6. Molecular docking

The PDB database (http://www.rcsb.org) was used to download
the 3-dimensional structures of the proteins, PyMOL 2.4
software was used to optimize the protein receptors, and
AutoDock 4.0 was used for component docking. In the
“Component-Target-Pathway” network diagram, the 4 compo-
nents with the highest degrees, namely, luteolin, quercetin,
kaempferol, and baicalein, were selected as candidate therapeutic
docking components. The targets with the highest degrees,
namely, MAPK1, AKT1, VEGFA, and CASP3, were selected as

http://www.rcsb.org/


Figure 5. Screening of the PPI core network. The blue squares are the
selected core targets. PPI=protein–protein interaction.
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candidate docking targets. Molecular docking analysis of these
targets was performed, and the docking scores were calculated. A
scoreless than the original ligand score indicated that the
component has good docking activity with the target and
verified the docking result of the chemical component. The
relevant information of the molecular docking model is shown in
Table 2. The relevant results of the target and the original ligand
docking are shown in Figure 9 (A-D). The results show that the
components of the RPR-FC have good docking activity with
potential therapeutic targets.

4. Discussion

Modern pharmacological studies have shown that the effects of
some active components of Chinese herbal medicines against IS
are related to anti-inflammatory, anti-oxidative stress, and nerve
cell protection functions. For example, Chuanxiong can regulate
IS-related targets, biological processes, and signaling pathways.
Animal experiments have shown that Chuanxiong can improve
the neurobehavioural scores of IS rats and has a protective effect
on neurons (P< .05).[23]Salvia miltiorrhiza can alleviate IS by
promoting the survival of mesenchymal stem cells. In rats
subjected to middle cerebral artery occlusion, treatment with S.
miltiorrhiza can lead to recovery of the infarct area and positive
changes in rat behavior.[24] The RPR-FC is a common
combination used for the treatment of cerebrovascular diseases
and is a component in traditional Chinese medicine prescriptions
such as Xuefu Zhuyu Decoction and Buyang Huanwu Decoc-
tion.[25] Radix Paeoniae Rubra is sour and soft in nature.[26] It
has the functions of nourishing yin, promoting blood stasis,
relieving pain, and cooling blood. Its main chemical components
include paeoniflorin, paeoniflorin, paeonol, and S. miltiorrhiza.
These components regulate NF-kappa B and other signaling
pathways.[27] For example, Paeoniae Radix Rubra can signifi-
cantly reduce the volume of the cerebral infarct caused by
ischemic injury and alleviate neuronal damage caused by
transient cerebral ischemia by inhibiting glial hyperplasia and
7

improving antioxidant activity.[28] Radix Paeoniae Rubra is
pungent, warm, and non-toxic and activates blood circulation,
removed blood stasis, and relieves pain. Its main components are
safflower yellow pigment, quercetin, kaempferol, and other
components, which can regulate the NF-kappa B signaling
pathway, the TNF signaling pathway, and other signal pathways
to exert anti-inflammatory effects and prevent and treat
cardiovascular and cerebrovascular diseases.[29] For example,
hydroxysafflor yellow A confers neuroprotection against focal
cerebral ischemia by modulating the crosstalk between the JAK2/
STAT3 and SOCS3 signaling pathways.[30] The RPR-FC is a
commonly used drug pair for the treatment of IS. The 2 herbs are
able to enhance blood circulation and remove blood stasis. Both
Radix Paeoniae Rubra and Flos Carthami extract have anti-
inflammatory and neuroprotective effects against IS, but there is
no literature on the mechanism of these 2 traditional Chinese
medicines in the treatment of IS.[31] Therefore, this study used
network pharmacology combined with molecular docking
analysis to study the mechanism of the RPR-FC in the treatment
of IS to provide a scientific basis for the use of treatment strategies
that promote blood circulation and remove blood stasis for
immunoregulation in IS.
In this study, 10 key targets with high degree values, that is,

JUN, MAPK1, TP53, MAPK8, AKT1, VEGFA, MMP9, EGF,
CXCL8, FOS, PTGS2, IL1B, STAT1, RELA, CCL2, CCND1,
MYC, EGFR, and CASP3, were identified after screening the PPI
network. It can be speculated that the RPR-FC’s effective
components may exert their effects through these targets. JUN is
the transcription factor of AP-1, which can lead to steroid
production and increase gene expression after the CAMP
signaling pathway is stimulated. Studies have shown that CAMP
is closely related to axonal regeneration after stroke.[32] As a
member of the gene-encoding MAP kinase family, MAPK1
integrates a variety of biochemical signals and participates in a
variety of cellular processes, such as proliferation, differentiation,
transcriptional regulation, and development.[33] The protein
encoded by the TP53 gene responds to a variety of cellular
stresses to regulate the expression of target genes, thereby
inducing cell cycle arrest, apoptosis, senescence, DNA repair, or
metabolic changes. Studies have shown that the methylation level
of the TP53 promoter is related to neck arterial intima-media
thickness and that the degree of carotid atherosclerosis and the
circulating level of homocysteine in the peripheral blood are
related, which indicates that TP53 is related to the pathophysiol-
ogy of IS.[34] AKT1 is a serine-threonine protein kinase. After
being phosphorylated by PI3K, AKT/PI3K acts as a key
component of many signaling pathways and is regulated by
signaling pathways, such as the HIF-a signaling pathway and the
TNF signaling pathway. VEGFA is vascular endothelial growth
factor A. VEGFA can promote the proliferation and division of
vascular endothelial cells after cerebral ischemia. VEGFA
signaling clearly regulates angiogenesis after IS and reduces the
degree of cerebral ischemia.[35] CASP3 and signal transducer and
activator of transcription 3 target VEGFA to regulate angiogen-
esis after cerebral ischemia and can also control the survival and
regeneration of nerve cells.[36] TNF-a is a proinflammatory
cytokine that can aggravate the inflammatory response of
neutrophils. PTGS2 is a prostaglandin peroxidase that can be
induced by inflammatory mediators, cytokines, and other in vivo
and in vitro factors. Specific downregulation of PTGS2
expression can inhibit the NF-kappa B signaling pathway, thus
inhibiting the apoptosis of EPCs and promoting the proliferation,

http://www.md-journal.com


Figure 6. Enrichment analysis of potential therapeutic targets. (A) Bar chart of the GO enrichment analysis results. (B) Dot chart of the GO enrichment analysis
results. (C) Bar chart of the KEGG pathway analysis results. (D) Dot chart of the KEGG pathway analysis results. In the bar chart, the abscissa represents the number
of targets, and the ordinate shows the names of the enriched terms. The redder the color is, the smaller the adjusted P value is. The bluer the color is, the larger the
adjusted P value is. In the dot chart, the abscissa represents the ratio of targets, and the ordinate shows the names of the enriched terms. The larger the circle is, the
greater the enrichment is, and vice versa. The redder the circle is, the smaller the adjusted P value is. The bluer the circle is, the larger the adjusted P value is.
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Figure 7. KEGG pathway diagram. (A) MAPK signaling pathway. (B) NF-kappa B signaling pathway. (C) PI3K-Akt signaling pathway. (D) VEGF signaling pathway.
(E) TNF signaling pathway. The red nodes indicate relevant enriched targets.
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migration, and angiogenesis of EPCs, and has a protective effect
against IS in mice.[37]

KEGG pathway analysis and a large number of studies have
indicated that the MAPK signaling pathway, NF-kappa B
9

signaling pathway, PI3K-Akt signaling pathway, and VEGF
signaling pathway may be the 4 key signaling pathways through
which the RPR-FC can treat IS. Among these pathways, the
MAPK signaling pathway responds to a variety of stimuli and

http://www.md-journal.com


Figure 7. (Continued)
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transmits signals from the cell membrane to the nucleus. This
pathway controls a wide range of cellular processes, including
growth, inflammation, and stress response. Increasing evidence
has shown that MAPK is an important regulator of ischemic and
hemorrhagic cerebrovascular diseases, increasing its potential as
a drug target for stroke.[38] The NF-kappa B protein family is a
pleiotropic transcription factor that can specifically bind to the
10
KB site of a variety of promoters, thereby promoting their
transcription and expression. It is affected by oxidative stress,
bacterial lipopolysaccharide, and cytokines. After activation of
various stimuli, NF-kappa B can regulate the production of
inflammatory cytokines, cell surface receptors, transcription
factors, adhesion molecules, etc. The NF-kappa B pathway can
affect the cell cycle of brain cells by regulating the apoptosis rate



Figure 7. (Continued).
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of cells and plays a regulatory role in IS.[39] The tyrosine kinase
PI3K-Akt signaling pathway may be an important signal
transduction pathway for the survival of cerebral ischemic
neurons.[40] It is regulated by most neurotransmitters in
cerebellar neurons, sympathetic neurons, sensory neurons, and
cortical motor neurons. PI3K plays a role in cell survival plays.
Cell experiments have shown that luteolin can treat IS by
improving cell viability and reducing cell apoptosis by activating
the PI3K/Akt signaling pathway.[41] The VEGF family is known
to regulate angiogenesis. In the brain, VEGF is an important
regulator of angiogenesis, neuroprotection, and neurogenesis.
VEGF can directly contribute to the proliferation and angiogene-
sis of vascular endothelial cells in ischemic and hypoxic tissues or
organs.[42] Sun found that when the level of VEGF increases, the
numbers of NSCs, neurons, and astrocytes increase but that when
the level of VEGF decreases, and the numbers of these 3 types of
cells also decrease.[43] The effect of promoting the proliferation
and differentiation of endogenous NSCs after cerebral infarction
has become a popular topic of research, and VEGF has been
shown to play an important role in the proliferation and
differentiation of NSCs.[44]

The active components of the RPR-FC that bind best to the
key targets are quercetin, luteolin, kaempferol, and baicalein.
Quercetin is a flavonoid compound extracted from food that
plays an anti-atherosclerotic role, by exerting anti-inflammato-
ry, antioxidant, and endothelial-dependent vasodilatory effects
and lowering blood lipids.[45] Studies have shown that quercetin
11
can regulate the AMPK signaling pathway, PI3K/Akt/IKKa/NF-
kappaB signaling pathway, and other signaling pathways,
which are closely related to IS.[46,47] Luteolin can inhibit
neuronal cell degeneration and alleviate motor and sensory
dysfunction. In vitro experiments have shown that luteolin can
alleviate the decline in neuronal cell viability caused by
microglial activation, protect against endothelial cell damage
induced by oxidative stress, and protect against atherosclerotic
diseases.[48,49] Kaempferol is the most important flavonoid in
Carthamus tinctorius. Studies on NF-kappa B, TNF-a, IL-6,
oxidative stress, and cardiovascular injury have confirmed that
kaempferol protects the vascular endothelium and have
revealed that its specific mechanism may be related to the
Nrf2/HO-1 signaling pathway.[50] Kaempferol can reduce the
injury volume after ischemia–reperfusion (I/R) injury for 90
minutes and has a protective effect on mitochondria in the area
of brain injury.[51] Recent studies have shown that kaempferol
may prevent ischemic brain injury and neuroinflammation by
inhibiting the activation of STAT3 and NF-kappa B, thereby
exerting a protective effect against ischemic brain injury.[52]

Baicalein is a widely distributed natural flavonoid that has many
beneficial pharmacological effects, such as anti-inflammatory
and antioxidant effects. Animal experiments have shown that
baicalein can significantly reduce Nrf2 and AMPK levels,
suggesting that baicalein may play a neuroprotective role by
downregulating the expression of NF-kappa B and LOX-1 and
inhibiting the AMPK/Nrf2 pathway.[53]
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Figure 8. “Component-Target-Pathway” diagram. The green squares are the active component of the Radix Paeoniae Rubra-Flos Carthami herb pair, the blue
circles are the targets, and the yellow diamonds are the enriched pathways.
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5. Conclusions

At present, the RPR-FC is widely used for the treatment of IS, but
pharmacological research reports are scarce. The active compo-
nents of the drug pair such as quercetin, luteolin, kaempferol, and
baicalein may act on MAPK1, TP53, TP53, TP53, and MAPK
through IS-related pathways, including the MAPK signaling
pathway, NF-kappa B signaling pathway, PI3K-Akt signaling
Table 2

Docking score.

Name of compound Target name Number of original gametes

Luteolin MAPK1 �8.4
Quercetin AKT1 �8.8
Kaempferol VEGFA �8.5
Baicalein CASP3 �7.5

12
pathway, and VEGF signaling pathway. MAPK8, AKT1,
VEGFA, MMP9, EGF, and other targets exert anti-inflammato-
ry, immunomodulatory, anti-thrombotic, and vascular endothe-
lium protective effects to treat IS. In view of the limitations of
network pharmacology, it is necessary to further experimentally
verify the potential active components, targets, and related
pathways of the RPR-FC in the future.
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Figure 9. Docking of the target and the original ligand. (A)Luteolin-MAPK1. (B) Quercetin-AKT1. (C) Kaempferol-VEGF. (D) Baicalein-CASP3.
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Figure 9. (Continued).
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