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Abstract: Fluorite is rich in mineral resources and its gorgeous colors and excellent luminescence
characteristics have attracted the attention of many scholars. In this paper, the composition, structure,
luminescent properties, and the potential application value of three fluorites with different colors
and are systematically analyzed. The results show that REE and radioactive elements have effects on
the structure, color, and luminescence of fluorite. Radioactive elements Th and U will aggravate the
formation of crystal defects in fluorite. The green color is related to Ce3+ and Sm2+. Colloidal calcium
and F− center are responsible for the blue-purple color of fluorite. There are many luminescent
centers, such as Eu, Pr, Dy, Tb, Er, and Sm, in fluorite. The blue fluorescence is mainly caused by
4f 7-4f 65d1 of Eu2+. In addition, it is found that fluorite has certain temperature sensing properties in
the temperature range of 303–343 K.

Keywords: fluorite; REE; luminescent properties; temperature sensing

1. Introduction

Fluorite, also known as fluorspar, is named for its fluorescence under ultraviolet
and cathode-ray irradiation. Its chemical formula is CaF2. Rare-earth elements (REEs),
transition metal elements (Cr, Mn, Fe, Zn), and alkaline elements (Na, K) can often occupy
Ca sites in the crystal structure of fluorite. Pure fluorite is colorless, but due to the existence
of impurities and defects, fluorite presents different colors, such as purple, blue, green,
yellow, and pink. A large number of scholars have had rich discussions on the chromogenic
mechanism of fluorite. There are three main viewpoints, that is, the coloration of impurity
elements [1–5], crystal defects [6–9], and organic matter [10,11]. REE3+, U4+, Th4+, and other
elements widely exist in fluorite. Fluorite is an important reservoir of REE. From the
perspective of crystal chemistry, the sites of Ca (1.06 Å) in the fluorite structure can be
occupied by REE in the form of isomorphism. Under thermal and radiation conditions,
the valence change, electron migration, and charge transfer of REE will lead to changes in
the color of fluorite. For example, Sm2+, Dy3+, and Tm2+ are the reasons why fluorite is
green. Red fluorite usually contains Gd3+, while yellow fluorite often contains Yb3+ [1–4].
On the other hand, fluorite has a variety of defects, including some defects that can lead
to color. Fluorite and surrounding rocks often contain radioactive elements such as U
and Th. Fluorite is easily irradiated by radioactive elements to form colloidal calcium.
When colloidal calcium stays in lattice defects, fluorite produces a typical characteristic
absorption band in the range of 560–580 nm. Under the influence of radiation, fluorite
is also easy to form an F− center [5–7]. In the UV-visible spectra, the absorption peaks
of the F− center are located at 375, 525, and 560 nm. The wide absorption band centered
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near 560 nm may be caused by the F− center and colloidal calcium. With the enrichment
of detection methods and in-depth research, the color of fluorite may be caused by many
reasons [8–10]. In addition, organic matter sometimes exists in fluorite in the form of
inclusions. Studies have shown that some dark fluorite will be mixed with organic matter.
For example, asphaltene can exist in the form of solid inclusions in fluorite and make the
color of fluorites darker. Fluorite in Huayuan lead-zinc mine in Hunan, China, is black
because it contains solid hydrocarbons [4,11].

The existence of REE will not only change the color of fluorite but also lead to the
fluorescence and phosphorescence of fluorite [12–15]. Studies have shown that in addition
to the common blue fluorescence, some fluorites also show fluorescence of other colors,
such as yellow, yellow-green, green, and red [16–20]. The discussion on the luminescence
mechanism of fluorite has continued to be in-depth [21–25].

Under the excitation of ultraviolet light, most fluorite shows blue fluorescence with
a strong emission peak near 425 nm caused by the 4f 7-4f 65d1 transition of Eu2+ [26–29].
When the Eu2+ content is low, the luminescence center is taken by other rare-earth ions.
Fluorites with yellow fluorescence have typical emission peaks at 483, 573, 653, and 750 nm.
These peaks may be caused by the 4F9/2-6HJ transition in the 4f 9 electronic configuration
of Dy3+ (J = 15/2, 13/2, 11/2, and 9/2, respectively) [30–33]. Yellow-green fluorescence
may be caused by Yb2+. At 364 and 264 nm, there are transitions from the ground state,
1S0, to the excited states, 4f 13 (2F7/2), 5d (Eg) and 4f 13 (2F5/2), 5d (Eg), in Yb2+. Samples that
emit green fluorescence usually show emission peaks at 522, 539–549, and 666 nm, and the
three emission peaks are respectively caused by 2H11/2-4I15/2, 4S3/2-4I15/2, and 4F9/2-4I15/2
transitions of Er3+. The red fluorescence of fluorite is caused by Er3+ and Sm3+ [34–37].

In addition to its beautiful appearance and charming luminous color, fluorite is also
rich in mineral resources. Based on this, it is of great significance to deeply explore the
production value of fluorite. However, so far, the research on the luminescent proper-
ties of natural fluorite and its potential applications in the field of luminescence has not
been systematic. Therefore, this paper selects three samples of fluorite with different
colors to discuss the composition, structure, and luminescence mechanisms of natural
fluorite. The application of fluorite in the field of temperature sensing is further discussed.
This manuscript is helpful to understand the optical properties of fluorite and broaden the
application of fluorite.

2. Materials and Methods

Figure 1 shows three fluorite samples collected in Chenzhou City, Hunan Province,
China. The colors of the three samples are purple (Sample 1), blue (Sample 2), and light
green (Sample 3).
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Electron probe tests were performed using an EPMA-1600 electron probe microana-
lyzer manufactured by Shimadzu Corporation, Japan. The test conditions were: acceler-
ation voltage was 15 kV, the current was 10 nA, electron beam spot diameter was 5 µm,
carbon spray on the sample surface, SPI standard sample, and ZAF calibration method for
data processing.

Trace element detection was performed using Analytik Jena Plasma Quant MS laser
ablation, inductively coupled plasma, mass spectrometry (LA-ICP-MS), Germany. The laser
ablation system was the RESOlution 193 nm excimer laser. High-purity helium was used as
the carrier gas in the experiment. The single point analysis time was 85 s, including 20 s for
blank background collection, 45 s for continuous ablation collection, and 40 s for cleaning
the sampling system. The sample acquisition data spot size was 100 µs.

The powder X-ray diffraction (XRD) instrument was the Dmax12kw powder diffractometer.
Experimental conditions were: copper target, Kα Radiation source (λ = 0.15418 nm), the tube
voltage was 40 kV, the tube current was 100 mA, the divergence gap and scattering gap on
the goniometer was 1◦, the scanning speed was 4◦/min, and the sampling step was 0.02◦

(2 θ). The test range was 5–80◦.
The infrared spectra test used the Tensor 27 Fourier infrared spectrometer, adopting

the transmission method, and the experimental test conditions were as follows: test voltage
was 220 V, the resolution was 4 cm−1, the scanning range was 4000–400 cm−1, and the
scanning speed was 10 kHz.

The HR-Evolution Raman microscope produced by Horiba, Japan, was used.
Experimental test conditions were: excitation light source was 532 nm, the grating was
600 (500 nm), the test range was 2000–100 cm−1, and the integration time was 3 s.

A UV-Vis spectrophotometer of the model UV-3600 produced by the Shimadzu factory
in Japan was used. The experimental test method was the reflection method, the test
range was 200–900 nm, the light source conversion wavelength was 300 nm, the grating
conversion wavelength was 850 nm, and the sampling interval was 0.5 s.

The Hitachi F-4700 instrument was used to measure the optical absorption spectra,
fluorescence emission (PL), and excitation (PLE) spectra of the samples. At the same
time, a fluorescence spectrometer (FS 5, Edinburgh) was used to measure the attenuation
curve of the samples, and a computer-controlled heating accessory was connected to the
spectrometer to record the PL spectrum at 303–543 K.

3. Results and Discussion
3.1. EPMA

The Supplementary Table S1 shows the EPMA test results of fluorite. The results
show that the fluorite samples were mainly composed of Ca and F elements. Trace ele-
ments in the samples included transition metal elements (Cr, Mn, Fe, Zn), alkaline earth
elements (Na, K), and REE (Ce, Y). In the three samples, the average mass fractions of
Ca were 51.318, 49.735, and 52.565 wt.%, which are close to the theoretical mass fraction
of Ca, at 51.33 wt.%. The average mass fractions of F were, respectively, 48.571, 46.722,
and 46.451 wt.%, which are lower than the theoretical value of 48.67 wt.%. This devi-
ation is because the impurity ions in the fluorite lattice replaced F− and Ca2+, such as
REE3+ + F−→Ca2+, 2Ca2+→REE3+ + Na+, etc.

3.2. LA-ICP-MS

The Supplementary Table S2 and Figure 2 shows the LA-ICP-MS analysis results.
Fluorite contains rich trace elements such as Na, Mn, Fe, Cr, Si, Y, La, Ce, Pr, etc. The con-
tent of rare-earth ions plays an important role in the color and luminescence of fluorites.
Figure 2a shows the total amount of REE, Figure 2b shows the content of Y in the samples,
Figure 2c shows the content of each REE in sample 1 (colorless and purple parts) and
sample 3, and Figure 2d shows the content of each REE (except Y) in sample 2. The results
showed that the content of REE in the deep-colored sample (sample 2) was higher than
that in other samples. The distribution of rare-earth contents in the colorless part and the
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purple part of sample 1 is also different. Therefore, it can be seen that dark fluorite is often
enriched in REE.

Materials 2022, 15, x FOR PEER REVIEW 4 of 14 
 

 

higher than that in other samples. The distribution of rare-earth contents in the colorless 
part and the purple part of sample 1 is also different. Therefore, it can be seen that dark 
fluorite is often enriched in REE. 

 
Figure 2. (a) The total content of REE in the samples. (b) The content of Y in the samples. (c) The 
content of each rare-earth element (except Y) in the sample 1 (colorless and purple parts) and sample 
3. (d) The content of each rare-earth element (except Y) in the sample 2. 

3.3. XRD 
Figure 3 shows the XRD patterns of the three samples. The standard data of fluorite 

(JCPDS No. 35-0816) are shown as a reference. We normalized the diffraction peak inten-
sity of fluorite samples by using Origin 2018 software. The results show that all the XRD 
patterns of the three samples matched perfectly with that of the reference JCPDS file [4,20]. 
However, according to the Bragg diffraction formula (Formula (1)), the diffraction peak 
of the sample shifted slightly to the larger angle side, compared to the standard card:  𝑑 𝜆𝑠𝑖𝑛𝜃  (1)

It can be seen that the right shift of the diffraction peak is related to the decrease the 
of cell parameters. The unit cell parameters of the three samples were calculated by JADE 
software (Table 1), which shows that the cell parameters and cell volume of the three sam-
ples were slightly lower than that of the standard card (a = 5.4631 Å, V =163.0 Å3). This is 
because, during the growth of fluorite, a large number of small-radius impurity elements 
(transition metal elements such as iron and manganese and REEs) replace the original 
calcium element. 
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3.3. XRD

Figure 3 shows the XRD patterns of the three samples. The standard data of fluorite
(JCPDS No. 35-0816) are shown as a reference. We normalized the diffraction peak intensity
of fluorite samples by using Origin 2018 software. The results show that all the XRD
patterns of the three samples matched perfectly with that of the reference JCPDS file [4,20].
However, according to the Bragg diffraction formula (Formula (1)), the diffraction peak of
the sample shifted slightly to the larger angle side, compared to the standard card:

dhkl =
λ

sinθhkl
(1)

It can be seen that the right shift of the diffraction peak is related to the decrease
the of cell parameters. The unit cell parameters of the three samples were calculated by
JADE software (Table 1), which shows that the cell parameters and cell volume of the three
samples were slightly lower than that of the standard card (a = 5.4631 Å, V =163.0 Å3).
This is because, during the growth of fluorite, a large number of small-radius impurity
elements (transition metal elements such as iron and manganese and REEs) replace the
original calcium element.
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Table 1. The cell parameters, cell volume, and fitting degree of the three samples.

Sample a, b, c (Å) Cell Volume (Å3) Fitting Profiles (R)

1 5.45278 162.13 7.52
2 5.46082 162.93 8.52
3 5.45843 162.63 11.49

PDF#35-0816 5.46305 163.0

3.4. Infrared Spectra

Figure 4 shows the infrared spectra of the three fluorite samples. The characteristic
absorption peak of CaF2 near 1110 cm−1 exists in all the infrared spectra of the three samples,
which is consistent with the characteristic peak of fluorite at 1080 cm−1 recorded in mineral
spectroscopy [37]. The three samples all show a wide absorption band near 3440 cm−1

caused by OH stretching vibration, indicating the existence of constitutional water in
fluorite. The same phenomenon also exists in fluorite from India and Mexico [38–41].
The absorption peaks around 2930 and 2850 cm−1 are caused by organic groups that
may be due to the adsorption of oleic acid ester on the surface of fluorite [42]. The two
absorption peaks at 2360 and 2330 cm−1 are caused by the asymmetric stretching vibration
of CO2 [4,21]. The generation of 2360 and 2330 cm−1 may be related to the inclusion
of CO2 in the fluorite or the CO2 in the air [43,44]. The absorption peaks at 1610, 1450,
and 1260 cm−1 are caused by CO3

2− stretching vibration, and the free CO3
2− may be

related to the CaCO3 contained in fluorite [45–47].
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Figure 4. FTIR spectra of the three fluorite samples.

3.5. Raman Spectra

Figure 5a shows the Raman spectra of the three samples. The colorless part of sample 1
and the light part of sample 2 only showed a peak at 320 cm−1, which is consistent with
the fluorite peak in the RRUFF database (ID: R050046). This peak originates from the fact
that fluorite has only one T2g Raman active vibrational peak [48–51]. In the deep-color
part of these samples, peaks appeared at 140, 283, 434, 507, and 646 cm−1, which may be
related to irradiation [50–52]. Before irradiation, only a single T2g Raman active band was
observed at 320 cm−1, and with the increase of irradiation fluence, the peak intensity of
140, 283, and 434 cm−1 in the samples also increased. Figure 5b shows the radioactivity
determined by the LA-ICP-MS. The deep-color part also accumulated more Th and U
elements. Therefore, it is speculated that the impurity peaks in the Raman spectra are
related to the fluorite crystal defects caused by impurity ions (REE3+) or the radioactive
elements Th and U.
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3.6. UV-Vis Spectra

The presence of REE and other impurity elements will not only affect the crystal
structure of fluorite but also make fluorite show different colors [1–5]. Figure 6 shows the
UV-visible spectra of the three different colored samples. The purple and blue samples
have a wide absorption band centered near 570 and 578 nm, respectively. The complexity
of the spectra indicates that there are defects in the fluorite structure that may lead to
the color of fluorite. With the deepening of research, the formation of each color seems
to be due to more than one reason [6–9]. All samples have absorption peaks at 224, 284,
348, and 459 nm, but these absorption peaks may not affect the color of fluorite. These
four absorption peaks are more likely to be the absorption peaks of a certain impurity ion
crystal field or a certain charge transfer peak. The 224 nm absorption band is caused by
the electrons trapped in the Ca2+ interstitial and the 348 nm absorption band is caused
by the holes trapped in the Ca2+ vacancy. However, the Y element will strengthen the
absorption peaks at 224, 348, and 400 nm [10,11]. The absorption peak at 460 nm may be
related to the YO2 color center composed of Y3+ and O2

3− [11]. The wide absorption bands
centered at 570 and 578 nm indicate the presence of colloidal calcium and F− center, and
the absorption peaks at 309, 645, and 675 nm may be related to Ce3+ and Sm2+ [1–6]. In the
visible range, the three samples’ colors are mainly related to the purple and yellow parts of
the absorption spectra. Therefore, it is speculated that the absorption peak at 570 nm is the
reason for the blue-purple hue of fluorite samples, while the absorption peaks at 656 and
675 nm may be related to the yellow-green hue.
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3.7. Photoluminescence Spectroscopy

Figure 7a,b show the photoluminescence emission spectra of the samples (λex = 254,
365 nm), Figure 7c shows the photoluminescence excitation spectrum of sample 1 (λem = 452 nm),
and Figure 7d is the photoluminescence emission spectra of sample 1 (λex = 238, 249,
368 nm). When λex was 238 nm, the three main emission peaks at 425, 452, and 469 nm had
the highest intensity. Therefore, λex = 238 nm was used as the excitation wavelength of the
heating experiment.
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Figure 7. (a,b) The photoluminescence emission spectra of the samples (λex = 254, 365 nm).
(c) The excitation spectrum of sample 1 (λem = 452 nm). (d) The emission spectrum of sample
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The strong emission peaks of the three samples were 425, 452, and 469 nm, accompa-
nied by weak emission peaks at 482, 493, 525, and 561 nm. The complex emission peaks
in fluorite were also caused by REE, which is rich in energy-level transitions. Table 2
summarizes the possible formation mechanisms of the emission peak. The broad emission
centered at 425 nm was caused by the 4f 7-4f 65d1 transition of Eu2+ [21–25]. The lumines-
cence center at 452 nm may be caused by 1D2-3H4 of Tm3+ [26–30]. The emission peak at
469 nm was caused by 3H4-3P1 of Pr3+ [31,32]. The adjacent emission peaks at 482 and
493 nm may be due to 1G4-3H6 of Tm3+, 5D4-3F6 of Tb3+, 4I15/2-4F7/2 of Er3+, 4F9/2-6H15/2
of Dy3+, and 3H4-3P0 of Pr3+ [32,33]. Er3+, Dy3+, or Sm3+ may cause emission peaks at 525
and 562 nm [34–36].

Table 2. Emission lines and electronic transitions of natural fluorite.

Possible REE Ions Emission Lines (nm) Electronic Transitions Reference

Eu2+ 425 Eg-8S7/2 [21–25]
Tm3+

452
1D2-3H4 [26–30]

Er3+ 4I15/2-4F5/2
Pr3+ 469 3H4-3P1 [31,32]
Tm3+

482 and 493

1G4-3H6

[32,33]
Tb3+ 5D4-7F6
Er3+ 4I15/2-4G7/2
Dy3+ 4F9/2-6H15/2
Pr3+ 3H4-3P0
Er3+ 525 2H11/2-4I15/2 [34,35]
Er3+

561

4S3/2-4I15/2
[35,36]Sm3+ 4G5/2-6H5/2

Dy3+ 4F9-6H13/2
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Figure 8 shows the photoluminescence decay curves of the three samples. The decay
curves can be fitted by a double exponential equation [53]:

I(t) = I0 + A1exp(−t/τ1) + A2exp(−t/τ2) (2)
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Figure 8. The photoluminescence decay curves of 425 (a), 452 (b), and 469 nm (c) emission peaks of
the three samples.

Among them, I(t) and I0 are the luminous intensity and background intensity of time,
t, respectively, A1 and A2 are emission intensity factors, and τ1 and τ2 are, respectively,
the attenuation times of the exponential component [54]. The average lifetime is calculated
by the following equation:

τave = (A1τ1
2 + A2τ2

2)/(A1τ1 + A2τ2) (3)

Based on Equation (3), Table 3 shows the luminescence lifetimes of the three samples
at 425, 452, and 469 nm (λex = 238 nm). The luminescence lifetimes of the three emission
peaks were 129 to 130, 8 to 123, and 9 to 43 ms, respectively. The luminescence lifetime of
sample 2 at 452 nm was 8 ms, and the luminescence lifetime of sample 3 at 469 nm was
9 ms. The luminescence lifetime of Eu2 at 425 nm was consistent with previous studies,
mostly 0.6–0.8 µs, and a few luminescence lifetimes can reach several ms. The prolonged
luminescence lifetime may be caused by the energy migration of other long luminescence
center ions in the samples. The emission peaks at 452 and 469 nm may be related to Tm3+

and Pr3+, respectively. The luminescence lifetime of Tm3+ is mainly 30–35 µs, and the
luminescence lifetime of Pr3+ is mostly in the range of 5–10 µs [13,25]. The luminescence
lifetimes of the three samples at 452 and 469 nm were different from previous studies.
The reason may be that fluorite has multiple emission centers in the wavenumber range of
450–500 nm, such as Pr3+, Dy3+, Tb3+, Er3+, etc. The emission peaks of different lumines-
cence centers shielded from each other, or energy transfer occurred, resulting in changes
in the luminescence lifetime of the luminescence centers. The blue fluorescence of the
samples was mainly caused by Eu2+, which has high luminous intensity and the longest
luminous lifetime.

Table 3. The luminescence lifetime of the three samples for 425, 452, and 469 nm (λex = 238 nm).

Sample Name λem = 425 nm λem = 452 nm λem = 469 nm

Sample 1 0.129 ms 0.125 ms 0.009 ms
Sample 2 0.129 ms 0.008 ms 0.043 ms
Sample 3 0.130 ms 0.119 ms 0.040 ms
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To obtain the effect of temperature on the luminescent properties of fluorite, the lu-
minescence spectra of the three samples in the temperature range from 303 to 543 K were
measured. Figure 9a–c show the two-dimensional fluorescence spectra of fluorite of the
three samples in the temperature range from 303 to 543 K. Figure 9d–f show the variation
of luminescent intensity with the temperature for the three main emission peaks of 425, 452,
and 469 nm (λex = 238 nm). Figure 9g–i display the three-dimensional spectra of fluorite of
the three samples in the temperature range from 303 to 543 K, respectively. The results show
that with the increase of temperature, the main luminescence positions for the emission
peaks of fluorite had no significant changes. The intensity of the three strong emission
peaks at 425, 452, and 469 nm first increased and then decreased. During the heating
process (303–543 K), the luminous intensity of the three samples was almost higher than
those at room temperature. Under the excitation of 238 nm, the higher the content of REE,
the greater the luminous intensity of the main emission peaks. The luminous intensity of
the main emission peaks of sample 2 was always higher than that of samples 1 and 3.

Figure 10a–c reveal the emission colors and CIE chromaticity coordinates (x, y) of
the three samples at 303, 393, 483, and 543 K. As the temperature continued to rise,
the luminescent color of fluorite showed a red shift, but remained in the blue area. During
the heating process, fluorite exhibited excellent luminescence stability. Mott formula was
used to describe the thermal behavior of sample 3. The strong emission peaks at 469 and
493 nm were selected for discussion.
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Figure 10. (a–c) The CIE chromaticity coordinates (x, y) of the three samples at 303, 393, 483, and 543 K.

Figure 11a shows the luminous intensity of the two emission peaks at 469 and 493 nm
in the range of 303–343 K. Figure 11b reveals the fitted curve FIR (I469 nm/I493 nm) in the
temperature range of 303–343 K. The parameters can be derived according to Equation (4):

FIR =
I469nm

I493nm
= A exp

(
−∆E

kT

)
(4)

In Equation (4), the values of A and ∆E/KT are 1.87971 and 51.54436, respectively.
The results show that the fluorite has a certain temperature sensing significance in this
temperature range.
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4. Conclusions

In summary, the composition, structure, and luminescence mechanisms of the purple,
blue, and light green fluorite samples were studied. The results showed that the color of
purple fluorite and blue fluorite was mainly caused by the broad absorption peak centered
near 570 nm. The formation of this absorption peak is related to colloidal calcium and
the F− center, and the yellow-green hue of fluorite is related to trace amounts of Ce and
Sm. During the heating process of 303–543 K, the luminous intensity and luminous color
were relatively stable. In addition, this study showed that natural fluorite has a certain
temperature sensing significance in the range of 303–343 K.
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