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Abstract Hearing plays a crucial role in human develop-

ment. Receiving and processing sounds are essential for the

advancement of the speech ability during the early child-

hood and for a proper functioning in the society. Hearing

loss is one of the most frequent disabilities that affect

human senses. It can be caused by genetic or environ-

mental factors or both of them. Calcium- and integrin-

binding protein 2 (CIB2) is one of the recently identified

genes, involved in HI pathogenesis. CIB2 is widely

expressed in various human and animal tissues, mainly in

skeletal muscle, nervous tissue, inner ear, and retina. The

CIB2 protein is responsible for maintaining Ca2? home-

ostasis in cells and interacting with integrins—transmem-

brane receptors essential for cell adhesion, migration, and

activation of signaling pathways. Calcium signaling path-

way is crucial for signal transduction in the inner ear, and

integrins regulate hair cell differentiation and maturation of

the stereocilia. To date, mutations detected in CIB2 are

causative for nonsyndromic hearing loss (DFNB48) or

Usher syndrome type 1 J. Patients harboring biallelic CIB2

mutations suffer from bilateral, early onset, moderate to

profound HI. In the paper, we summarize the current status

of the research on CIB2.
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Introduction

Receiving and processing sounds are essential for a proper

development of communication skills during the early

childhood. Hearing loss is one of the most frequent dis-

abilities that affect human senses. According to the World

Health Organization [1], over 5 % of world population

(360 million of people, including 32 million of children)

suffers from hearing impairment (HI). This term refers to

hearing loss greater than 40 decibels (dB) in the better

hearing ear in adults and 30 dB in children. The prevalence

of newborns with HI is estimated to 2–4 per 1000 in the

developed countries and 6 per 1000 in the developing

countries [2]. Apart from environmental factors, such as

noise, infections, and ototoxic drugs [3]. HI can be caused

by genetic factors or a combination of both of them.

More than a half (50–60 %) of the congenital hearing

loss cases are due to genetic factors. To date, approxi-

mately 300 genes are considered related to the process of

hearing [4]. Most of them encode proteins involved in the

structure and function of inner ear.

Recently, CIB2 (calcium- and integrin-binding protein

2) gene has been added to the extensive list of genes

associated with hearing, loss [5].

CIB2 general information

The CIB2 gene (MIM# 605564) is localized on chromo-

some 15 (15q25.1) [6], encodes four different isoforms that

consist of 4–6 exons [5]. CIB2 protein plays a role in
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calcium ions homeostasis and interacts with integrins

(Fig. 1a) [7]. Ca2? is a crucial molecule in cellular sig-

naling pathways and also takes part in signal transduction

in the inner ear in the organ of Corti. It is one of the factors

determining the transmission of sound and balance infor-

mation through the hair cell apical mechanosensitive

transduction (MET) channels to the ribbon synapse at the

bottom of the hair cells. MET channels participate in the

transport of potassium and calcium ions from the endo-

lymph to the hair cells. Ca2? is a second messenger that

induces conformational changes in effector molecules

regulating the sensitivity of the cochlear amplifier, which is

a mechanism of increasing the amplitude and frequency

selectivity of sound waves. Consequently, the intracellular

Ca2? concentration is crucial for MET channels adaptation,

frequency tuning, hair bundle twitching, outer hair cells

(OHC), electromotility, and afferent synaptic transmission

[5, 8–10].

Integrins are essential for cell adhesion and activation of

intra- and extracellular signaling pathways. They are a/b
heterodimeric transmembrane receptors for ligands in the

extracellular matrix (Fig. 1b). Integrins and their ligands

play key roles in the development as well as in different

cellular functions, such as immune responses or hemosta-

sis. Their dysfunction may be the cause of many diseases,

which makes them a promising target for the rapidly

developing, effective therapies against, e.g., thrombosis

and inflammation [11, 12]. In the sound transduction sys-

tem, several integrins control the process of stereocilia

maturation and hair cell differentiation [13]. Furthermore,

integrins regulate the dynamics of actin, thereby they

determine the proper function of the F-actin cytoskeleton—

an important structure of the sensory hair cells [14]. Thus,

integrins are listed in the plethora of the indispensable

elements of the auditory pathway.

CIB2 pattern of expression

Studies on the CIB gene family started in the 1990s when

two independent research groups found a novel protein that

was named according to its putative function, i.e., CIB

(calcium-binding protein) [15] or KIP (kinase interacting

protein) [16], respectively. These first findings demon-

strated that the CIB/KIP protein shares sequence identity

with calmodulin and calcineurin B, interacted with nuclear

DNA-dependent serine/threonine protein kinase, and pre-

sented a calcium and integrin binding activity [6, 15–17].

The same protein was also known as calmyrin due to its

ability to bind Ca2? and undergo N-myristoylation [18].
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Fig. 1 Multiple roles of CIB2 protein. a Scheme of the interactions of CIB2 protein with other molecules. b CIB2 binds Ca2? ions through the

second and third EF-hand domains. c Integrin a7b1 is a heterodimeric transmembrane receptor for laminin
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The latter is a process of attachment of a 14-carbon satu-

rated fatty acid, myristate, to the N-terminal glycine resi-

due of specific target proteins in the cell, which may

influence intra- and intercellular interactions [19–22].

Except for CIB2, the human genome contains three other

genes (CIB1, CIB3, and CIB4) encoding highly homolo-

gous proteins, which together form a family of calcium-

binding proteins and contain elongation factor-hand (EF-

hand) domains [23].

Nonquantitative reverse transcription PCR analysis of

human tissues showed thatCIB2 mRNA was transcribed in a

wide variety of human tissues, including brain, lungs,

skeletal muscles [6], and human platelets [15], but so far, no

data have been published on the expression pattern of CIB2

in the human ear or retina. Further studies in mice confirmed

that expression of Cib2 included also the inner ear (cochlea)

and retina [5]. Particular localization of this protein was

established in animal studies, mainly in mice due to the fact

that mouse is a key model organism in analyzing mammalian

developmental, physiological, and disease processes in

hearing impairment [24]. When extrapolating the results of

mouse or rat studies to human, it should be emphasized that

in rodents, the majority of hair cells and supporting cells are

formed during the embryonic development, but the organ of

Corti undergoes processes of development and maturation

also after birth [25–27]. It is unlike in human, when this unit

is fully developed at the moment of birth [28].

Transcripts of the Cib2 gene are present in embryos,

throughout postnatal development as well as in adult mice

[17]. Using in situ hybridization high level of Cib2

expression was observed in forebrain, midbrain, hindbrain,

spinal cord, somites, inner ear, vibrissae, gut, and muscu-

lature in mouse embryos. In the ear, Cib2 transcripts were

detected in the cytoplasm of adult supporting cells, inner

hair cells, OHC, cuticular plate (an apical cytoplasm of the

hair cell formed of actin filaments), and along the stere-

ocilia. The signal for Cib2 was usually more intense in the

shorter row of stereocilia tips than in the longer row. The

transcript was first observed at postnatal day 2 in the

developing organ of Corti and vestibular organs. Until

postnatal day 8, it was limited to supporting cells in the

organ of Corti. In the retina, Cib2 was localized in inner

and outer segments of photoreceptor cells and in retinal

pigment epithelium. A signal of diffused immunoreactivity

was also detected in the inner plexiform layers, outer

plexiform layers, and the ganglion cell layer [5]. Semi-

quantitative and quantitative real-time PCR of skeletal

muscle, liver, brain, spleen, heart, kidney, and lung

revealed that in adult mice, Cib2 mRNA is mainly

expressed in skeletal muscles. Within the muscle, Cib2 is

expressed in sarcolemma, enriched in the myotendinous

junctions and neuromuscular junctions. Lower levels of

expression were noticeable in brain and in lungs [7].

In the rat brain tissue, the Cib2 transcript was observed

in several areas and the highest level of expression was

detected in the hippocampus (cornu ammonis area three

regions and dentate gyrus). Furthermore, it was also found

in sensory, entorhinal, and prefrontal cortex. Intracellular

localization of the Cib2 protein in rats is considered to be

the Golgi apparatus and in nerve cells the protein localizes

mainly to neurites [18].

In sheep, the expression of Cib2 mRNA was detected in

many various tissues, mainly in stomach, heart, and ovary

[29]. Expression of Cib2 in zebrafish is detected throughout

the development. Drosophila gene CG9236, encoding a

protein which is in 71 % similar and in 59 % identical to

the human CIB2, is expressed in several larval and imago

tissues, therein the adult eye [5].

CIB2 protein, its function, and interactions
with other molecules

The crucial functional units of the CIB family proteins are

the EF-hand domains, one of the most common structural

protein motifs in mammalian cells [30], which are able to

bind Ca2? and Mg2? ions. They are considered as regu-

latory motifs that mediate responses to changes in calcium

concentration and fulfill a role of intracellular calcium

signaling mediators. CIB2 contains three EF-hand domains

and through the second and third domains, it is able to bind

Ca2? (Fig. 1b). The first EF-hand domain is not functional

[18, 23, 31, 32]. EF-hand Ca2? binding proteins have a

crucial role in all aspects of Ca2? signaling, having diverse

roles that range from controlling the functioning of Ca2?

channels to moderating the intensity and duration of Ca2?

signals and transducing them into biochemical and

biomechanical responses [33]. It is believed that EF-hand

Ca2? buffers regulate presynaptic inner hair cells function

for metabolically efficient sound coding [34]. Upon bind-

ing Ca2? ions, Cib2 changes its conformation into a Ca2?-

bound form, which is one of the characteristic properties

for proteins transmitting Ca2? signals. Based on the

localization of Cib2 in stereocilia, it can be hypothesized

that CIB2 temporarily captures calcium entering the

stereocilia through MET channels until the ions exit

stereocilia through the plasma membrane Ca2? ATPase or

are uptaken by mitochondria. This is consistent with the

speculations that Cib2 may be involved in calcium sig-

naling that regulates MET in the inner ear [18, 35].

The CIB2 protein binds to myosin VIIa and whirlin

(Fig. 1a), which makes it a part of the usher syndrome

interactome, but none of the protein is required for proper

localization of Cib2 in the mouse stereocilia [5]. To date,

there is no published information on particular mechanisms

following this interaction.
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The presence of CIB2 in skeletal muscle and nervous

tissue suggests that Cib2 can play a significant role in the

development of the central nervous system and muscula-

ture. Laminin 2 is a protein required for muscle develop-

ment and stability and the laminin a2 chain is absent in

mice with severe muscular dystrophy [36]. In muscle cells,

integrin a7b1 is one of the major laminin a2 chain-binding

receptors (Fig. 1c) [37], and it is responsible for proper

muscle function. Studies on muscular dystrophy type 1A

mouse showed that in laminin a2 chain-deficient muscle,

not only integrin a7B subunit but also Cib2 expression was

reduced. It seems to be a consequence of decreased integrin

a7B level and supports the hypothesis of direct integrin

a7B and CIB2 interaction. These findings are consistent

with co-expression of Cib2 with integrin a7b subunit in

skeletal muscle and embryonic nervous system [7].

CIB2 gene mutations

To date, seven mutations in the CIB2 gene (RefSeq:

NM_006383.2, NP_006374.1) have been discovered:

c.97C[T (p.Arg33*), c.192G[C (p.Glu64Asp), c.196C[T

(p.Arg66Trp), c.272T[C (p.Phe91Ser), c.297C[G

(p.Cys99Trp), c.368T[C (p.Ile123Thr), and c.556C[T

(p.Arg186Trp) [5, 38, 39]. All of them except c.97C[T and

c.556C[T affect the three of four alternatively spliced

isoforms, i.e., A, B, and C, of the CIB2 protein. Mutation

c.97C[T affects isoforms B and C, but not the isoforms A

and CIB2-006 [5, 39], while c.556C[T affects presumably

[38], isoforms A, B, and CIB2-006. As all the identified

CIB2 mutations can be assigned to isoform B, it indicates

that this particular isoform is the most significant one for

the process of sound transduction, but further research is

necessary to confirm the presumption.

To date, all mutations discovered in the CIB2 gene present

a recessive pattern of inheritance. The majority of them lead to

hearing loss (DFNB48) and only p.Glu64Asp was identified in

a family with Usher syndrome type 1 J. All individuals har-

boring homozygous or compound heterozygousCIB2variants

suffered from the early onset, bilateral, moderate to profound

HI [5, 38, 39]. Although primarily examined patients with

CIB2 mutations present Pakistani and Turkish origin, further

research revealed also Dutch and Caribbean Hispanic CIB2

families. It indicates that individuals originating from other

than Pakistani and Turkish populations may carry mutations

in the CIB2 gene [5, 38, 39].

The c.192G[C, c.272T[C, and c.297C[G variants

probably reduce the interaction of CIB2 with integrins and

modify their activation. The c.192G[C mutation changes

the protein conformation, thereby it affects binding affinity

or kinetics of integrin. All these amino acids substitutions

may cause slight changes in subcellular location of the

protein which possibly affects the efficiency of calcium

sequestration [5]. Nevertheless, Seco et al. provided further

data for the c.272T[C mutation and suggest that this

variant does not influence calcium-buffering abilities of

CIB2 [39]. The c.272T[C as well as c.297C[G mutations

may disrupt effector binding site or Ca2? binding by the

second EF-hand domain. On the contrary, the c.368T[C

variant probably magnifies the affinity of Ca2? binding.

None of the mutations mentioned above induce significant

changes in CIB2 distribution in tissues [5]. The c.556C[T

mutation (the most C-terminal localized one) affects nei-

ther the tip localization of CIB2 nor its interaction with

whirlin but impairs the calcium-binding properties [38].

Variants c.196C[T and c.97C[T, as well as c.272T[C, do

not affect ATP-induced calcium responses in cells, but

probably alter integrin binding. Moreover, the c.97C[T

variant may result in nonsense-mediated decay (degrada-

tion of the aberrant mRNAs harboring premature termi-

nation codon) [39, 40].

Different disorders other than HI or Usher syndrome

have also been linked to the 15q24 locus, containing the

CIB2 gene. The deletion of this region was reported in

patients suffering from abnormalities of the ears (cleft

earlobe, preauricular tags, cupped, and underdeveloped

auricles) hypotonia and developmental delay. Linkage

analysis in a Pakistani family with spasticity, severe mental

retardation and visual impairment, pointed that the CIB2

gene may be involved in the pathogenesis of these abnor-

malities [7, 41, 42]. The most recent study provides an

evidence that increased CIB2 expression may also play a

protective role in cardiovascular diseases by decreasing the

pace of the vascular calcification [43].

Conclusion and future perspectives

Although some research has already been performed on the

CIB2 gene, its function still remains unclear and is to be

fully discovered. Mutations in CIB2, which so far have

been revealed, segregate with both DFNB48 and USH1 J.

Thus, CIB2 is a causative gene for both disorders. Never-

theless, further studies are required for a better under-

standing of the role of the CIB2 gene in human.

Clarification of its function and associated molecular

mechanisms will be the next step towards better prevention

and treatment of hearing loss or cardiovascular diseases in

patients, thereby towards improved living standards of

people at risk of CIB2-associated diseases.
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