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Serum laser Raman spectroscopy as a potential
diagnostic tool to discriminate the benignancy
or malignancy of pulmonary nodules

Huaichao Luo,1,4,5,* Ruiling Zu,1,4 Lintao Li,2,4 Yao Deng,1,4 Shuya He,1 Xing Yin,1 Kaijiong Zhang,1 Qiao He,1

Yu Yin,3 Gang Yin,2 Dezhong Yao,3 and Dongsheng Wang1,*

SUMMARY

It has been proved that Raman spectral intensities could be used to diagnose lung
cancer patients. However, the application of Raman spectroscopy in identifying
the patients with pulmonary nodules was barely studied. In this study, we
revealed that Raman spectra of serum samples from healthy participants and
patients with benign and malignant pulmonary nodules were significantly
different. A support vector machine (SVM) model was developed for the classifi-
cation of Raman spectra with wave points, according to ANOVA test results. It
got a good performance with a median area under the curve (AUC) of 0.89,
when the SVM model was applied in discriminating benign from malignant indi-
viduals. Compared with three common clinical models, the SVM model showed
a better discriminative ability and added more net benefits to participants, which
were also excellent in the small-size nodules. Thus, the Raman spectroscopy could
be a less-invasive and low-costly liquid biopsy.

INTRODUCTION

As lung cancer has become a common health issue in China, the government was devoted to the imple-

mentation of lung cancer screening.1 With the increasing screening by low dose computed tomography

(LDCT), a million of patients have been identified indeterminate pulmonary nodules (IPNs), which mostly

were false-positive nodules for malignancy.2,3 At present, those IPNs are recommended to be on serial

surveillance by LDCT according to expert guidelines, which may make patients suffer from physical, psy-

chological, and financial harms.4,5 It is a challenge to discriminate whether the pulmonary nodule (PN) is

malignant or benign at the first time identified. Accordingly, methods ameliorating LDCT diagnosis in a

short time could protect patients from those harms as soon as possible.

Recently, machine learning has become a method to improve accuracy of LDCT in estimating malignancy

risk of IPNs. As reported, a deep learning algorithm with convolutional neural networks (CNNs) only based

on the LDCT information reached a high accuracy.6 Moreover, some algorithms integrating the LDCT in-

formation and clinical information also performed excellently, such as Mayo Clinic (MC), Brock University

(BU), and Veterans Affairs (VA）model, with the area under the curve (AUC) over 0.8 in original research.7–9

However, those algorithms did not perform stably in the other validation research, which might be due to

the populations not matching with those in which they were developed.7 Furthermore, to improve the sta-

bility in other independent population, a research integrated a biomarker in blood with MC model and

significantly improved diagnostic accuracy of MC model, also validated in four independent cohorts.10

Likewise, in our previous research, a diagnostic model integrating the LDCT information with platelet fea-

tures outperformed MC, BU, and VA model in both internal and external cohorts.11 It was obvious that the

blood biomarkers could be noninvasive diagnosis of patients with IPNs, potentially reducing the unstable

results caused by model-developed population. The blood biomarkers have always been characterized in

liquid biopsies, which were less invasive and could be done serially.

Current liquid biopsies in cancer diagnostics often concerned the detection of biomarkers, which are nu-

cleic acids, proteins, or other organic compounds. Surface-enhanced Raman spectroscopy (SERS), a kind of

Raman spectroscopy (RS), could detect biomarkers like nucleic acid and proteins in serum by the substrate

enhancing the produced Raman signal, which was also described as a liquid biopsy.12,13 Not only focused
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on the detection of DNA, RNA, and microRNA (miRNA), a serum-based SERS test extracted unique peaks

of cancerous exosomes using principal-component analysis (PCA) allowing for diagnosing non-small cell

lung cancer.13,14 Although the SERS analysis combined with machine learning methods for identifying

lung cancer has demonstrated extreme strength and utility of the method, it still had potential drawbacks

that the Raman signals acquired from the SERS nanoparticles were detected from known and predeter-

mined depths.15 That means, SERS was not suitable for the screening of IPNs either. Whereas spontaneous

RS collecting multiple spectra from a heterogeneous sample could characterize the multi-component

composition while no special substrate was in need, of which the lower cost and an easier manipulation

might fit the IPNs screening.12,16–18

A Raman system based on spontaneous RS reported in a COVID-19 study could collect spectra with

approximately 15 scans per serum sample within a 3 s accumulation for each scan.19 Gathering spectra

data from different population and analyzing by machine learning could reach the classification purpose,

which has been already proved in the previous study.19 Reasonably, it was assumed that the Raman system

combining with appropriate machine learning could also be used in separating the healthiness from ma-

lignancy. And most RS research concentrated in the lung cancer diagnosis or staging; few focused on

discriminating the IPNs. So, we screened the serum from patients with benign and malignant PNs and

healthy individuals by RS. And machine learning was generated to access the commonalities of fingerprints

in the same groups and the differences among the different groups. Then a rapid, less-invasive, easy-to-

manipulate, and low-cost classificationmodel was constructed based on the fingerprints, which could bring

benefits at different levels to the patients with IPNs.

RESULTS

Clinical characteristics of participants

A total of 883 participants were enrolled in this research, including 148 benign, 220 healthy, and 515

malignant participants (Figure 6). This research was performed in two centers; one was in Sichuan Cancer

Hospital (SCH), and another was Sichuan Provincial People’s Hospital (SPH). The participants from Sichuan

Cancer hospital were divided into SCH batch 1 and SCH batch 2 according to the samples’ saving time.

There were 94 benign, 105 healthy, and 317 malignant participants in SCH batch 1, whose samples were

stored for more than 1 year. And other 19 benign, 67 healthy, and 120malignant participants were included

in SCH batch 2 with saving time less than 1 year. The components of each group were presented in Table 1.

In both discover and validation group, the gender and age were not significantly different among benign,

healthy, and malignant subsets. In the discover group, the patients diagnosed as lung adenocarcinoma

(LACC) predominantly consisted of the malignant subset (80.4%). And the nodules were mostly small

size, distributing from 0 to 3 cm in both benign (67.5%) and malignant subsets (57.6%). The common

LDCT symptom of malignant patients was ground-glass nodule (GGN) (21.6%), which was also a significant

symptom compared with benign subset (p = 0.035).

Raman spectra comparison

Figure 1 represented the Raman spectra of three subsets in the discover group. The average of each

subsets ’ preprocessed spectra was displayed in Figure 1A. Among the three subsets, healthy subset rep-

resented an obvious peak intensity at 1437.6 cm� 1, while malignant subset showed a least peak at the same

shift. There were still other different peaks that were not distinguished sufficiently by human eyes, for which

heatmaps were used to reflect the subtle differences among different subsets (Figure 1B). Overall, the heat-

maps illustrated the RS differences in the three subsets according to ANOVA test (p < 0.05), while the peaks

appeared at range of 500–1800 cm�1. As it is shown, more differences were observed between malignant

and healthy subset, where the peaks concentrated around at 821.9 cm� 1, 1041.5 cm� 1, and 1246.7 cm� 1.

Moreover, the heatmap constructs further confirmed the marked different intensities at 1437.6 cm� 1 in ma-

lignant patients as compared to benign and healthy individuals. The results also showed other spectra dis-

played difference of malignant subset as compared to benign subset.

Model construction

The support vector machine (SVM) models were developed for the classification of Raman spectra with

wave points, which were significantly different in ANOVA test results. In order to reduce selection bias,

all benign and malignant participants from discover group were split into 10 disjunctive parts, each time

combining a benign and malignant part to a combination with roughly the same proportion of benign
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and malignant instances as in the original datasets. For each combination, the receiver operating charac-

teristic (ROC) curves were used to evaluate the performance of the SVM model, which repeated 5 times in

every combination. The process was also applied in healthy-benign combination and healthy-malignant

combination (Figure 2A) (See also Table S1). When the SVM model was used to classify the healthy and

benign individuals, the AUCs were in the range from 0.81 to 0.9 in the 10 combinations, and the median

AUC was 0.86 in the validation group (Figure 2B). The AUCs were in the range from 0.83 to 1 in the classi-

fication of healthy and malignant individuals, and the median AUC was 0.87 in the validation group (Fig-

ure 2B). Delightedly, the AUCs were in the range from 0.87 to 0.95 in the discover group and the median

AUC was 0.89 in the validation group, when the SVM model was applied to discriminate benign from ma-

lignant individuals (Figure 2B).

Model estimation

The SVMmodel named LungRaDoc could provide a value of each sample, which was used to access the diag-

nostic value of LungRaDoc. As performed in the reserved validation group, the predicted values showedgrad-

ually rising levels in gradually advanced stage (Figure 3A, p < 0.001). Figure 3A also showed the predicted

values with significant increases in the patients with LACC compared to the benignancy (p < 0.001). As ground

Table 1. The clinical characteristics of participants

Discover group

P

Validation group

P

benign

（N = 108）
health

（N = 180） malignant （N = 475）
benign

（N = 40）
health

（N = 40）
malignant

（N = 40）

Center:

SCH_batch1 69 (63.9%) 86 (47.8%) 294 (61.9%) 25 (62.5%) 19 (47.5%) 25 (62.5%)

SCH_batch2 14 (13.0%) 55 (30.6%) 111 (23.4%) 5 (12.5%) 12 (30.0%) 9 (22.5%)

SPH 25 (23.1%) 39 (21.7%) 70 (14.7%) 10 (25.0%) 9 (22.5%) 6 (15.0%)

Gender (male) 62 (57.4%) 94 (52.2%) 233 (49.1%) 0.13 28 (70.0%) 23 (57.5%) 24 (60.0%) 0.47

Pathology: – –

LACC – – 337 (80.4%) – – 25 (62.5%)

LSCC – – 16 (3.82%) – – 2 (5.00%)

NSCLC – – 18 (4.30%) – – 3 (7.50%)

SCC – – 48 (11.5%) – – 7 (17.5%)

Benign 108 (100%) – – 40 (100%) – –

Up (Y) 58 (53.7%) – 278 (58.8%) 0.39 22 (55.0%) – 23 (57.5%) 1.0

GGN (Y) 13 (12.0%) – 102 (21.6%) 0.035 8 (20.0%) – 14 (35.0%) 0.21

Spiculation (Y) 19 (17.6%) – 115 (24.3%) 0.17 8 (20.0%) – 6 (15.0%) 0.77

age 57.5 (12.2) 54.8 (9.63) 59.3 (10.0) 0.14 58.0 (14.3) 55.2 (7.19) 60.1 (8.71) 0.43

Stage:

I – – 178 (37.6%) 1 (2.50%) – 11 (27.5%)

I – – 49 (10.4%) – – 4 (10.0%)

III – – 88 (18.6%) – – 9 (22.5%)

IV – – 85 (18.0%) – – 10 (25.0%)

smoking: 39 (36.1%) – 167 (35.3%) 0.96 15 (37.5%) – 16 (40.0%)

Size(cm): – 0.25 – <0.001

0-1 16 (18.0%) – 76 (18.9%) 10 (35.7%) – 7 (19.4%)

1-2 24 (27.0%) – 91 (22.6%) 12 (42.9%) – 5 (13.9%)

2-3 20 (22.5%) – 65 (16.1%) 1 (3.57%) – 6 (16.7%)

R3 29 (32.5%) – 171 (42.4%) 5 (17.9%) – 18 (50.0%)

Abbreviation: LACC, lung adenocarcinoma; LSCC, lung small cell cancer; NSCLC, non-small cell lung cancer; SCC, squamous cell carcinoma; up, the nodule

located in upper lobes; GGN, the nodule was a ground-glass nodule; Spiculation, margin of the nodule was spiculation; smoking, the participants has smoked;

size, the diameter of the largest nodule.
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glass was commonly discovered in a malignant nodule, the validation group was divided into ground-glass

subsets and non-ground-glass subsets to evaluate whether the performance of LungRaDoc was limited by

ground glass. As expected, in both ground-glass subsets and non-ground-glass subsets, the values were

significantly increased in malignant patients (p < 0.001) (Figure 3A). The effect of nodule size was next sought

to determine. Themalignant patients developed higher-grade values than the benignancy nomatter in small-

size subsets, whose nodule size was smaller than 3 cm (p < 0.001), and lager-size subsets, whose nodule size

was larger than 3 cm (p< 0.001) (Figure 3A). Using logistic regression analysis, we examinedwhich, if any, of the

predicted values were infected by age, gender, characteristics of nodules, and saving time of samples. It could

be reflected in Figure 3B that there was an observed correlation of LungRaDoc with the saving time. Following

that, we looked at the effect of saving time on themalignant prediction using logit regression adjustment (See

also Table S2). As shown in Figure 3C, only LungRaDoc and nodule size performed for reliability of malignant

prediction; the saving time did not affect the prediction (p > 0.05).

Model comparison

The LungRaDoc showed a better discriminative ability than other common clinical models with theAUCof 0.89

(95% confidence interval [CI] 0.82–0.96) (Figure 4A). The ROC curves of LungRaDoc and other three models

across validation group were shown in Figure 4A. As displayed, the MC model, VA model, and BU model

did not achieve good classification performance as LungRaDoc, with AUC values of 0.46 (95% CI 0.33–0.59)

for MC model, 0.61 (95% CI 0.48–0.73) for VA model, and 0.74 (95% CI 0.62–0.85) for BU model. The decision

curve analysis (DCA) indicated that the threshold probabilities of LungRaDocwere 1–80%, while the thresholds

of other threemodels were at smaller range. LungRaDoc could better predictmalignancy as it addedmore net

benefits (NBs) compared with the other three clinical models for almost all threshold values (Figure 4B). The

improvement in reclassification was indicated by net reclassification improvement (NRI) and integrated

Figure 1. The average Raman spectra of the three groups and the difference among three groups

(A) The total average of spectra in three subsets; the color band represents the standard deviation. The difference of spectra signal between two groups

(blue) and the spectra signal of two groups between G2 standard deviations (red and purple).

(B) The results of the ANOVA test. The spectra range with significant differences in the ANOVA test (p < 0.05) was indicated in yellow, while no significance

was indicated in blue.
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discrimination improvement (IDI). Compared with MC, BU, and VA model, the NRI was 21% (95% CI = 12%–

29%), 21% (95% CI = 12%–29%), and 19% (95% CI = 10%–29%), respectively, and the IDI was 13% (95% CI =

9.1%–16%), 12% (95% CI = 9%–16%), and 14% (95% CI = 10%–18%) (Figure 4C), respectively. These results

were performed in the validation group, indicating that LungRaDoc discriminated malignancy from benig-

nancy with greater accuracy than the other three clinical models.

Model application

In the LungRaDoc, a predictive value cutoff of 0.0773 had the highest AUC (0.89, 95% CI 0.82–0.96) in dis-

tinguishing between benign and malignant patients. To some extent, the differences between cutoff value

and actual value could reflect the diagnostic accuracy. As shown in Figure 5A, the false positive and nega-

tive individuals were all called wrong discrimination displayed in yellow. In 27 patients whose nodule size

was less than or equal to 1 cm, only 2 were false negatives and 3 were false positives. There were 4 false

negatives and 6 false positives in 49 patients whose nodule size were less than or equal to 2 cm. In the

validation group, 40 benign and 40 malignant patients were further selected to validate diagnostic perfor-

mance. At the pathology’s specificity, LungRaDoc achieved a specificity of 85%, whereas, at pathology’s

sensitivity, LungRaDoc achieved a sensitivity of 80% (Figure 5B). With the high positive predicted value

of 0.93, LungRaDoc had a potential application in IPNs screening. Correlation analysis was used to estimate

Figure 2. LungRaDoc construction

(A)The steps of LungRaDoc construction and validation.

(B) The ROC curves of LungRaDoc used in both discover and validation group to discriminate the healthy from benign individuals and malignant individuals

and to discriminate the benign from malignant individuals.
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the factors influencing LungRaDoc, as depicted in Figure 5C, integrating the histogram and heatmap. The

diagnostic performance of LungRaDoc was not affected by age, gender, smoking status, nodule location,

and symptoms. And the patients with lower predicted values were concentrated in SPH batch, while the

patients with close predicted values to cutoff were concentrated in SCH batch 2 (Figure 5C), which might

also indicate the influence of saving time.

Possible origin exploration

To illuminate the molecular modifications causing the Raman signal changes, proteome sequencing was

used to seek out the possible origins of the changes. The proteome sequencing analysis identified 36

differentially expression proteins (DEPs) between malignancy and benignancy, in which 35 proteins were

upregulated and 1 protein was downregulated (Figure 5D). After Gene Ontology (GO) (see Figure S2),

Cluster of Orthologous Groups of proteins (KOG) (Figure 5E), Kyoto Encyclopedia of Genes and Genomes

(KEGG), protein domain, subcellular localization (see Figure S2), and signal peptide analysis, the DEPs were

mainly from cytoskeleton, also involved in cell process vesicle and focal adhesion, even related to interme-

diate filament protein and keratin. While keratin was reported visible at the peaks of 1030 cm�1 on the

Raman spectrum of the serum, it might explain the significant difference between benignancy and

malignancy around the peaks of 1030 cm�1.20 And the reflection of intermediate filament protein on Raman

spectrum and the other significant different spectra would be analyzed in the next work.

Figure 3. Estimation of LungRaDoc

(A) The predicted values calculated by LungRaDoc in validation group stratified by the stage and pathology of lung cancer; the predicted values between

benignancy with malignancy in ground-glass subsets and non-ground-glass subsets; the predicted values between benignancy with malignancy in smaller-

size subsets and lager-size subsets. Boxplots are defined as median (center), with the bounds of the box representing the interquartile range (upper and

lower bounds), the whiskers representing upper and lower extremes, and points indicating individual patients. Statistical analysis was conducted using

Wilcoxon rank-sum test (to test for specific intergroup differences).

(B) Heatmap showing correlation of LungRaDoc with age, gender, characteristics of nodules, and saving time of samples. The characteristics and P-value

were displayed in the cross square.

(C) The weight of LungRaDoc, gender, characteristics of nodules, and saving time of samples in the malignant prediction, displayed as a bar graph on the

right-hand side. A significance level of <0.05 was adopted.
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DISCUSSION

With the increasing PNs discovered by LDCT, a part of suspicious patients receipted unnecessary surgery

whose nodules were difficult to discriminate as benignancy. In this research, an RS system developed pre-

viously by our team was performed to screen the serum from patients with PNs, which operated easily, de-

tected fast, and cost low. After combing with the SVM and ANOVA, the Raman spectra differences were

used to construct a classifier named LungRaDoc, discriminating the IPNs, exceeding than the other clinical

models. For LungRaDoc was not affected by age, gender, and nodules’ features, it could facilitate the IPNs

assessment. And LungRaDoc achieved a high positive predicted value indicating a helpful application as a

screen tool for the identification of IPNs.

PNs were always defined as single and less than or equal to 3 cm in diameter, always discovered by LDCT.

The possibilities of malignancy increased with the nodule size; LDCT could accurately discriminate the le-

sions with diameter over 3 cm. However, the nodules below 3 cm in size had more difficulties for LDCT in

discrimination of malignancy. Thus, other invasive methods providing pathological results were always

used to define the indistinct nodules, such as trans-thoracic needle aspiration (TTNA) and trans-bronchial

forceps biopsy (TBB). For the common shortages of invasive methods, TTNA could only be attempted if

the nodules were located within the periphery of the lung, which might also carry a high risk of periproce-

dural pneumothorax.21 TBB was also limited by the nodule size with the sensitivity below 40% when the

nodule size was smaller than 2.5 cm, whichmight also carry an invasive damage for patients.22 Furthermore,

surgical resectionmight be the final diagnosis and treatment of choice for those indistinct nodules; butmore

than 23% in those indistinct nodules were finally proved benign after surgery.3 As suggested in the guide-

line, the IPNs at small size would be rather on LDCT surveillance than unclear resection. So, a surveillance

method ameliorating LDCT for the IPNs screening with no or less-invasive damage was increasingly urgent.

Liquid biopsies as the less-invasive methods have become the research focuses currently. Most liquid

biopsies have depended on the identification of tumor-derived nucleic acids and antibodies or proteins

Figure 4. Comparison of the LungRaDoc with other common clinical models

(A) The ROC curves of LungRaDoc and three common clinical models used in discriminating the malignant from benign individuals. Black, gray, yellow, and

red ROC curves indicated VA, MC, BU, and LungRaDoc, respectively. AUCs were included.

(B) Black, gray, yellow, and red DCA curves indicated VA, MC, BU, and LungRaDoc at whole risk threshold, respectively.

(C) The NRI and IDI of LungRaDoc compared with MC, BU, and VA model, respectively. The comparison pairs were displayed on the left-hand side, and

associated 95% confidence intervals of each NRI and IDI were included.
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present in blood, plasma, serum, or sputum.23 Combining with machine learning, the diagnostic values of

those molecules mostly increased due to the construction of diagnostic classifiers,24–26 including mRNA,

DNA methylation, and circulating tumor cells (CTCs) detection. These classifiers all performed well in

the discrimination of PNs with AUC higher than 0.8. However, the plentiful gene detection, DNA methyl-

ation detection, and CTC detection were all high costly and needed professional operation, which might

not suit for massive screening. Some researchers raised RS might be a satisfactory liquid biopsy for

screening as it is less invasive, low cost, and easy to operate and assess.12

RS waswidely applied in the diagnosis in different kinds of diseases, for the reason that it was consisted of light

generated by different vibration modes of various biomolecules including nucleic acids, proteins, lipids, and

carbohydrates,18,27–29 and this molecular ‘‘fingerprint’’ could be used for the sensitive and specific detection

of cancer.18 Until now, RS in cancer diagnostics has investigated amultitude of different cancer types including

lung, cervix, breast, prostate, lymph nodes, esophagus, colon, larynx, bladder, and brain.30 And in the past

research, the SERS was widely used in the lung cancer diagnosis. SERS has advantages that characterize the

interaction of biomolecules with metallic surfaces, to quantify biomolecules in complex matrices and to inves-

tigate cells such as CTCs, attributing to the optical properties of plasmonic nanostructures.31 In our past work,

SiO2@Au structurewas applied to theSERSmeasurement, andwith the aidof SVManaccuracy of over 90%was

shown in predicting the lung cancers.32 However, since the noble metallic nanostructure was essential in the

SERS, a number of potential drawbacks appeared due to the structure and optical properties of the nanostruc-

ture.15 Although SERS application is possible for disease detection due to the lower price of the device, the

consumables used for SERS were more expensive, caused by the signal amplification generated through the

use of plasmonic nanostructures.33 And the high-quality requirements of the nanostructure might bring a

high cost, which made SERS not appropriate for the IPNs screening.

Compared to SERS, spontaneous RS could collect multiple spectra from a heterogeneous sample to

characterize the multi-component composition, making it useful to integrate multiple potential biomarkers

into one spectroscopic signature.12 In the serum of malignant patients, there are numbers of biomolecules

changed, which could be reflected in the RS spectra. When the spontaneous RS was combined with

machine learning to analyze the spectra signature, the sensitivity and specificity were highly improved in

cancer diagnosis.12 As reported previously, the Raman spectral intensity was significantly different among

healthy individuals and lung cancer patients with stage I, stage II, or stage III/IV, which indicated that laser

Raman spectroscopy could be used in the diagnosis of lung cancer.16 So, we suspected that, compared

with benign serum, the composition and content of biomolecules in the serum of lung cancer patients

may have subtle changes. The differences of Raman spectra could be useful to analyze the metabolic

changes between benignancy and malignancy. As reported previously, the peak intensities of lung cancer

patients were different at 1446 cm�1 and 1658 cm�1.16 Similarly, in our results, the differences of peak

intensities between benignancy and malignancy were around at 1437 cm�1, which suggested that protein

and phospholipids in the sera of lung cancer patients varied from benign patients. The RS spectra derive

the morphological and biochemical composition of serum. Since some previous RS research constructed

diagnostic model using components directly verified by mass spectrometry (MS), the molecular modifica-

tions causing the Raman signal changes could be more clearly stated. The proteome sequencing was also

used to seek out the possible origins of the changes; then 36 DEPs between malignancy and benignancy

were identified, which were mainly from cytoskeleton, also involved in cell process vesicle and focal adhe-

sion, even related to intermediate filament protein and keratin. As previously reported, the peaks of

Figure 5. The application of LungRaDoc

(A) The recognition ability of LungRaDoc at the cutoff in the group whose nodule size was less or equal to 1 cm (left) and size was less or equal to 2 cm (right).

Data are presented as differences (differences = predictive value – cutoff, cutoff = 0.0773) of the patients whose nodule size was less than or equal to 1 or

2 cm, with bars indicating individual patients. The yellow bars reflected the false positive and negative individuals recognized by the LungRaDoc, whose

predictive values were close to cutoff with 0.5 differences.

(B) Compared with the pathology, the performance of LungRaDoc at Youden threshold in validation group was depicted. The 4-fold contingency table

represents counts of benignancy and malignancy classified by pathology and LungRaDoc, respectively. The accuracy, sensitivity, specificity, positive

predicted value, and negative predicted value were displayed in a table.

(C) The discrimination ability of LungRaDoc in validation group, and the correlation of LungRaDoc with LDCT information and other three models. The

histogram indicated the individual levels of predicted values, presented as the differences. Heatmap constructs of predicted values with group, center, age,

gender, smoking status, nodule characteristics, pathology, and probabilities calculated by three clinical models. For each attribute and further generation of

heatmap constructs, the differences scaled from �1 to 1 were illustrated as defined in the color key gradients provided at the right of the Figure.

(D) Heatmap of differentially expressed proteins (DEPs) between true positive and negative individuals.

(E) KOG enrichment analysis of DEPs.
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1030 cm�1 were also visible on the Raman spectrum of the serum, representing the expression of the

keratin in the patient’s serum.20 Same in our research, multiple proteins changed in serum of malignant

patients reflecting on the spectra peaks, while more nucleic acids, amino acid, and lipid might also change

the spectra peaks. As a result, the diagnostic model could be constructed using spectra peaks without gen-

eral pictures of the biophysical origins, as generality in same set and specificity in different set of the spectra

figures could be analyzed using machine learning.

Figure 6. Workflow of this research
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Moreover, the RS system used in our research was a system that needed only 0.5 mL serum and 1 min in

each test. Since blood-based biomarkers might have a role in refining selection criteria for lung cancer

screening, miRNA, cell-free nucleic acids, proteins, DNA methylation, and other promising biomarkers

were established for early detection of lung cancer.34 Even those molecular biology methods also outper-

formed in required time—a factor to consider in developing lung cancer screening consultation processes;

several hours were also needed, which were much slower than RS. Therefore, the few experimental con-

sumables indicated less strict requirements of samples, and the short scanning time indicated a rapid

testing rate, which meant the RS system was much more applicable for the IPNs screening.

In order to improve the sensitivity and specificity of the RS system and make it extensive in clinical applica-

tion, ANOVA and SVM were used to obtain qualified results from the spectrum data analyzing. And in our

previous research, combining the Raman spectra with SVM performed excellent in the discrimination of

COVID-19 from suspected patients.19 Same in this research, the analyzing method had a discernible effect

in the discrimination of IPNs. According to the information of Raman spectra, the LungRaDoc model could

provide a value. After estimated by ROC, the threshold of LungRaDoc value was set at 0.0773 with the high-

est AUC. In the patients with suspicious nodules, the Raman spectrum could be used to evaluate the malig-

nancy if the SVM value was higher than 0.0773. The MC model, VA model, and BU model were used to

compare with our LungRaDoc, which were classical clinical models and widely cited in a lot of other similar

research.35,36 These three models calculated the probabilities of malignancy in patients with PNs using the

patients’ clinical information and LDCT information. Since the three models were set up with retrospective

data based on specific population, which might contain racial and other differences, the three models

showed limited values in our validation. The results of NRI, IDI, and NB also reflected that the LungRaDoc

performed better in classification of the suspicious patients, which could bring more benefit to those pa-

tients and further reduce the unnecessary surgery. The nodules’ characteristics including location and

whether GGNor speculation was necessary for the three clinical models needed assessment by imaging ex-

perts.While shown in our results, the LungRaDocwas not correlatedwith those features, indicating an easier

assessment than theothermodels. And the LungRaDocwas alsomore convenient tomanipulate,while it still

retained a higher diagnostic value with the ROC-AUC of 0.89 in our results. Thus, the LungRaDoc could be a

useful method for the screening of IPNs. And in the future work, a large external validation would be accom-

plished; the application in the prognosis and treatment monitoring would also be researched.

In conclusion, our results indicated that there were significant differences in Raman spectra among patients

with malignant nodules, the patients with benign nodules, and the healthy individuals. In addition,

LungRaDoc was constructed based on the Raman spectra data, which could distinguish the patients

with benign or malignant nodules in a high accuracy. The LungRaDoc also performed excellently and stably

in the small-size nodules and exceeded the other clinical models. While the LungRaDoc was convenient to

assess, less invasive, and low costly, it would be more of benefit to the patients with IPNs.

Limitations of the study

During cross-validation procedure, spectra from one sample would appear both in test set and training.

Since sample size was unbalanced, the benign samples were much less than malignant samples. Spectra

results from malignant samples were divided into 10 groups randomly to match with the benign groups,

which might cause some overlap. However, the samples in validation group were absolutely independent,

which could avoid the spectra from one sample being both in test set and in validation set.
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R R Foundation for Statistical Computing http://www.R-project.org

FragPipe github https://github.com/Nesvilab/FragPipe

Diamond github https://github.com/bbuchfink/diamond/releases

InterProscan EMBL-EBI https://www.ebi.ac.uk/interpro/

WoLF PSORT NAKAI Lab https://wolfpsort.hgc.jp

SignalP DTU Health Tech https://services.healthtech.dtu.dk/

service.php?SignalP-4.1

Raman spectrum analysis software Sichuan Institute for Brain Science and

Brain-Inspired Intelligence

Andor camera

Other

silicone-coated serum tubes C.D.RICH Co., Ltd, Chengdu, China N/A

LC-MS Bruker Daltonics, Germany N/A

caret package https://github.com/topepo/caret/ https://github.com/topepo/caret/

ggplot2 package https://ggplot2.tidyverse.org https://ggplot2.tidyverse.org

pROC packages https://web.expasy.org/pROC/ https://web.expasy.org/pROC/

ggDCA packages https://cran.rstudio.com/web/

packages/ggDCA/index.html

https://cran.rstudio.com/web/packages/

ggDCA/index.html

PredictABEL package https://cran.r-project.org/web/packages/

PredictABEL/index.html

https://cran.r-project.org/web/packages/
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glmnet package https://glmnet.stanford.edu https://glmnet.stanford.edu

ComplexHeatmap package https://github.com/stemangiola/tidyHeatmap https://github.com/stemangiola/

tidyHeatmap

clusterProfiler package https://www.bioconductor.org/packages/clusterProfiler/ https://www.bioconductor.org/

packages/clusterProfiler/

ll
OPEN ACCESS

14 iScience 26, 106693, May 19, 2023

iScience
Article

mailto:luohuaichao@scszlyy.org.cn
http://www.R-project.org
https://github.com/Nesvilab/FragPipe
https://github.com/bbuchfink/diamond/releases
https://www.ebi.ac.uk/interpro/
https://wolfpsort.hgc.jp
https://services.healthtech.dtu.dk/service.php?SignalP-4.1
https://services.healthtech.dtu.dk/service.php?SignalP-4.1
https://github.com/topepo/caret/
https://github.com/topepo/caret/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://web.expasy.org/pROC/
https://web.expasy.org/pROC/
https://cran.rstudio.com/web/packages/ggDCA/index.html
https://cran.rstudio.com/web/packages/ggDCA/index.html
https://cran.rstudio.com/web/packages/ggDCA/index.html
https://cran.rstudio.com/web/packages/ggDCA/index.html
https://cran.r-project.org/web/packages/PredictABEL/index.html
https://cran.r-project.org/web/packages/PredictABEL/index.html
https://cran.r-project.org/web/packages/PredictABEL/index.html
https://cran.r-project.org/web/packages/PredictABEL/index.html
https://glmnet.stanford.edu
https://glmnet.stanford.edu
https://github.com/stemangiola/tidyHeatmap
https://github.com/stemangiola/tidyHeatmap
https://github.com/stemangiola/tidyHeatmap
https://www.bioconductor.org/packages/clusterProfiler/
https://www.bioconductor.org/packages/clusterProfiler/
https://www.bioconductor.org/packages/clusterProfiler/


EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects

This multi-center and prospective research was approved by the medical ethical committee of Sichuan

Cancer Hospital (SCCHEC-02-2021-073), and Sichuan Provincial People’s Hospital (2021-NO.404). And

informed consent was obtained from all subjects. As displayed in Figure 6, when the pulmonary nodules

were first observed in Sichuan Cancer Hospital and Sichuan Provincial People’s Hospital, the suspicious

patients were enrolled in this study. After the surgery or biopsy, the enrolled patients were separated

into benign and malignant group according to the pathological results. The guidelines of Chinese society

of clinical oncology (2019 version) were diagnostic basis of histological type and TNM staging. The basic

information, anamnesis, family history, personal history, LDCT information, and pathology information

were captured and summarized. And the healthy individuals were recruited from the health examination

population with the blood samples collected. So, the exclusion criteria were as followed:1) patients who

were not confirmed by the surgery or biopsy; 2) patients with acute inflammation; 3) patients who were

pregnant; 4) patients who received plasma or blood transfusion in half of a month; 5) patients without com-

plete clinical and LDCT data. A total of 883 participants were enrolled in this research, including 148

benign, 220 healthy, and 515 malignant participants, respectively. The single subject details including

gender and age information are reported in Table S3.

METHOD DETAILS

Sample preparation and storage

The blood sample of all the suspicious patients were collected at the same time they admitted to hospital.

The blood samples were taken from all participants using silicone-coated serum tubes (C.D.RICH Co., Ltd,

Chengdu, China). After one-hour reposed, the serum was isolated from blood samples by centrifuging at

3000 rpm for 10 min. The serum samples were transferred into a new EP tube, and stored at 4 �C. All the
samples were needed to measure within 36h after the collection. 2 ml cryopreservation tubes made up

with polypropylene were prepared in advance. Approximately 0.5 ml of the serum samples were strictly

sealed in the cryopreservation tubes for the Raman scan. Finished with Raman scan, each sample was trans-

ferred back to EP tube and stored at -80�C.

RS detection

As previously, the Raman system (Ando_iVac_316) used in this research was designed by the Sichuan Insti-

tute for Brain Science and Brain-Inspired Intelligence.19 Before manipulation, the device was pre-cooled to

-60�C. After the wave-number was calibrated using ethanol spectrum, the samples were excitated with

laser power around 760mA, while the spectra were recorded in the range of 600–1800 cm�1 and collected

15 times per sample, with 1s exposure time for each collection. The total time was about 1 minute for a sam-

ple, while 15 spectra pictures were collected. Collecting multiple spectra per sample ensures an accurate

representation of the heterogeneous composition of a sample.

Feature extraction and model construction

In this research, a total of 883 individuals were final involved, where 120 individuals were random pre-

selected into validation group including 40 malignant patients, 40 benign patients and 40 healthy partic-

ipants. And then the rest of 761 individuals were enrolled into discover group, including 180 healthy

individuals, 108 patients with benign nodules, and 475 patients with malignant nodules. Wave-number

data points from all the participants were considered to extract features. After the data smoothed by

Savitzky–Golay digital–moving average filter, and the baseline corrected by the Improved Modified

Multi-Polynomial Fitting algorithm, ANOVA analysis was used for the statistical test. Random sampling

70% of the data was repeated one hundred times. Once the distributions of random samples satisfied

Gaussian distribution, variances test was selected for ANOVA test. Points showing statistical significance

of ANOVA test for more than 70 times out of 100 between two comparison groups, were selected as the

features to input in support vector machine (SVM) model, and built the classification model. The data

set was trained using slide-wise cross-validation where discover group was used for training and validation

group was used for cross-validation. The whole training procedure was subjected to 10-fold cross-valida-

tion to obtainmalignant probabilities for the training samples. The probabilities were also used to calculate

cross-validation performance. For each cross-validation, the ROC curves were used to evaluate the perfor-

mance of the SVM model, which was repeated 5 times in every cross-validation. Performance was also

determined by applying SVM model to the validation group.
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Model estimation

The SVM model could output probabilities for each particular group that could be evaluated using ROC

curves. The predicted values calculated by SVM model were compared in validation group stratified by

the stage and pathology of lung cancer. After the validation group was separated into ground glass subsets

and non-ground glass subsets, the predicted values were compared in the two subsets. While the valida-

tion group was separated into smaller size subsets and lager size subsets, the predicted values were also

compared in the two subsets. Logistic regression was used to investigate the correlation of SVMmodel with

age, gender, characteristics of nodules and saving time of samples. In order to compare the classifying

performance of SVM model with other clinical models, ROC curves reflecting the sensitivity (Sens), speci-

ficity (Spec), accuracy (ACC), the area under the curve (AUC), Net reclassification improvement (NRI), inte-

grated discrimination improvement (IDI) and net benefit (NB) were used. The recognition ability of SVM at

the cutoff in the individuals with small size nodules was in contrast with pathology, and displayed as four-

fold table.

Sample-selection for the possible origins’exploration

A total of 14 samples were selected based on the predicted values of SVMmodel, including 7 true positive

individuals from group of which predictive values were over than cutoff value and 7 true negative individ-

uals from group of which predictive values lower than cutoff value. At same time, the 14 samples were

randomly from SCH batch 1, SCH batch 2 and SPH batch with age and gender matched, and all samples

were stored at -80�C after RS test previously.

Proteome sequencing analysis

The total proteins were extracted (Bio-Rad) and analyzed by LC-MS (Bruker Daltonics, Germany). MS raw

data were analyzed with FragPipe (v17.1) which relies onMSFragger for qualitative analysis and uses Phoso-

pher for validation and filtering. Spectra files were searched against the homo sapiens SwissProt database

(20425 entries). IonQuant mode and TMT-Integrator was used to perform isobaric labeling-based quanti-

fication (TMT/iTRAQ). Proteins denoted as contaminants were removed, the remaining identifications were

used for further quantification analysis. The conditions use to filter the deferentially expressed proteins

were as follows: |log2-fold change| R 1.5 and adjusted P-value < 0.05. Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway, Cluster of Orthologous Groups of proteins (KOG) and Gene Ontology

(GO) enrichment analyses were used to identify the significant pathways, InterPro (v5.59-91.0) was used

to provide functional analysis of protein sequences by classifying them into families and predicting the

presence of domains and important sites, and WoLF PSORT was used to reveal the subcellular location.

P < 0.05 was set as the cutoff criterion for significant enrichment.

Packages used

Statistical analysis was conducted with caret package (version 6.0) (https://github.com/topepo/caret/).

Boxplot visualization was carried out using the ggplot2 package (version 3.3.5) (https://ggplot2.

tidyverse.org). ROC depiction and cut-off selection used the pROC R packages (version 1.18) (https://

web.expasy.org/pROC/). DCA analysis is conducted by ggDCA R packages (version 1.1) (https://cran.

rstudio.com/web/packages/ggDCA/index.html). NRI, IDI, and NBwas performed using PredictABEL pack-

age (version 1.2) (https://cran.r-project.org/web/packages/PredictABEL/index.html). Logistic regression

and heatmap was carried out using the glmnet package (version 4.1) (https://glmnet.stanford.edu) and

ComplexHeatmap package (version 2.7.11) (https://github.com/stemangiola/tidyHeatmap). Enrichment

analyses were finished with clusterProfiler package (v3.10.1) (https://www.bioconductor.org/packages/

clusterProfiler/).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed by using R 4.0.4 (Version 1.74) (R Foundation for Statistical Computing, http://

www.R-project.org). The data were compared among the three groups using theNonparametric test. Thus,

p<0.05 were considered significant with two sided, and values were indicated inmedians. The construction,

performance and validation of the model were implemented under R either.

ll
OPEN ACCESS

16 iScience 26, 106693, May 19, 2023

iScience
Article

https://github.com/topepo/caret/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://web.expasy.org/pROC/
https://web.expasy.org/pROC/
https://cran.rstudio.com/web/packages/ggDCA/index.html
https://cran.rstudio.com/web/packages/ggDCA/index.html
https://cran.r-project.org/web/packages/PredictABEL/index.html
https://glmnet.stanford.edu
https://github.com/stemangiola/tidyHeatmap
https://www.bioconductor.org/packages/clusterProfiler/
https://www.bioconductor.org/packages/clusterProfiler/
http://www.R-project.org
http://www.R-project.org

	ISCI106693_proof_v26i5.pdf
	Serum laser Raman spectroscopy as a potential diagnostic tool to discriminate the benignancy or malignancy of pulmonary nodules
	Introduction
	Results
	Clinical characteristics of participants
	Raman spectra comparison
	Model construction
	Model estimation
	Model comparison
	Model application
	Possible origin exploration

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Human subjects

	Method details
	Sample preparation and storage
	RS detection
	Feature extraction and model construction
	Model estimation
	Sample-selection for the possible origins’exploration
	Proteome sequencing analysis
	Packages used

	Quantification and statistical analysis




