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Abstract

Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity, affecting around 2% of adolescents worldwide.
Genetic factors play an important role in its etiology. Using a genome-wide association study (GWAS), we recently identified
novel AIS susceptibility loci on chromosomes 10q24.31 and 6q24.1. To identify more AIS susceptibility loci relating to its
severity and progression, we performed GWAS by limiting the case subjects to those with severe AIS. Through a two-stage
association study using a total of ,12,000 Japanese subjects, we identified a common variant, rs12946942 that showed a
significant association with severe AIS in the recessive model (P= 4.0061028, odds ratio [OR] = 2.05). Its association was
replicated in a Chinese population (combined P= 6.43610212, OR = 2.21). rs12946942 is on chromosome 17q24.3 near the
genes SOX9 and KCNJ2, which when mutated cause scoliosis phenotypes. Our findings will offer new insight into the
etiology and progression of AIS.
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Introduction

Adolescent idiopathic scoliosis (AIS) is the most common

structural deformity of the spine, occurring in 2–3% of healthy

children from the age of 10 to skeletal maturity worldwide [1]. A

Japanese study showed that the incidence of scoliosis of more than

15 degrees increases linearly with age from 10 (0.07% in boys,

0.44% in girls) to 14 (0.25% in boys, 1.77% in girls), and that most

of these cases are AIS [2].

AIS is a multi-factorial disorder, with genetic factors playing an

important role in its etiology [3]. Population studies have shown

that its familial incidence is higher than that in general populations

[4], while twin studies have consistently shown higher concor-

dance in monozygotic compared with dizygotic twins. For

example, a meta-analysis of several twin studies revealed 73%

monozygotic and 36% dizygotic twin concordance [5]. Using the

Danish Twin Registry, Andersen et al. observed 25% proband-

wise concordance in monozygotic twins (six of 44 concordant)

compared with 0% concordance in dizygotic twins (0 of 91), with

an overall prevalence of approximately 1% [6].

Several genetic studies regarding AIS susceptibility have

previously been reported. Although genome-wide linkage analyses

have revealed some AIS susceptibility loci [7–16], only CHD7 has

been identified as a susceptibility gene [13]. Genetic association

studies of AIS, however, have identified several predisposition

genes. Single nucleotide polymorphisms (SNPs) in ESR1, ESR2,

MATN1, MTNR1B, and TPH1 genes are reported to be associated

with AIS susceptibility [17–21]. Recently, we used genome-wide

association study (GWAS) to identify novel AIS susceptibility locus

on chromosomes 10q24.31 near the LBX1 gene [22] and 6q24.1 in

the GPR126 gene [23].

We used a common-control design [24,25] in our previous

GWAS. However, because undiagnosed general populations or

patients with unrelated diseases are used as controls in this design,
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there is a potential loss of power associated with the inability to

exclude latent diagnoses of the disease. One way of overcoming

this is to adopt a more stringent case definition; for example, one

based on early age of onset or the identification of a more severe

disease phenotype [26]. Severe cases are presumed to have a high

prevalence of susceptibility alleles for that disease and lower

phenotypic heterogeneity, and will hence improve the study power

by enriching for specific disease-predisposing alleles. In addition, it

is clinically important to consider the factors that influence the

progression of scoliosis, as the treatment of AIS patients depends

on its severity and possibility of progression. Both of these factors

have a genetic component [27,28]: the Danish meta-analysis twin

study showed a significant correlation with curve severity in

monozygous but not dizygous twins [5], while SNPs in ESR1,

ESR2, MATN1 and IGF1 genes are associated with AIS severity

[17–19,29]. Studies into severe AIS may clarify the factors that

influence AIS progression.

In the current study, we performed GWAS by including in our

case group only severely affected AIS subjects with a Cobb’s angle

above 40u. We have identified a novel susceptibility locus for

severe AIS on chromosome 17q24.3 that showed genome-wide

significance and replication of association in different ethnic

populations.

Materials and Methods

Subjects
We defined Cobb’s angle for severe AIS was above 40u. Cobb’s

angles were obtained at the time the patient was recruited in this

study. A written informed consent was obtained from all subjects

participating in the study. The study was approved by the

institutional review boards of RIKEN and participating institu-

tions. The subjects for the GWAS were all Japanese females; 554

with severe AIS (aged 10–39) and 1,474 control subjects (aged 7–

96) were recruited as previously described [22]. For the Japanese

replication study, we recruited an independent set of a case-control

subjects consisting of 268 severe AIS (aged 10–59) and 9,823

controls (aged 20–96) in the same way. For examining the relation

between the genotype of the SNPs identified by the case-control

association study and the AIS severity (Cobb angle) in Japanese,

we collected the data of 1,767 AIS subjects used for the previous

GWAS and replication studies who had AIS with a Cobb angle of

10u or greater. All were Japanese female. For the replication study

Table 1. Association of the 27 SNPs in the two-stage association study for AIS in Japanese.

dbSNP ID Chromosome RAF P valuea Odds ratio (95% CI)

case contrl allele recessive dominant allele recessive dominant

rs11190870 10q24.31 0.675 0.565 2.80610218 1.57610213 9.99610212 1.60 (1.44–1.78) 1.71 (1.48–1.97) 2.24 (1.76–2.84)

rs625039 10q24.31 0.734 0.636 1.28610215 1.29610212 6.1461029 1.58 (1.41–1.77) 1.67 (1.44–1.92) 2.32 (1.73–3.10)

rs925203 5p15.31 0.446 0.398 1.4661024 5.2861024 4.8561023 1.22 (1.10–1.34) 1.36 (1.14–1.63) 1.24 (1.07–1.45)

rs7545121 1q31.1 0.590 0.551 2.0761023 1.7861022 6.7261023 1.17 (1.06–1.30) 1.20 (1.03–1.39) 1.30 (1.08–1.58)

rs12946942 17q24.3 0.258 0.211 9.5861026 4.0061028 3.5761023 1.30 (1.16–1.45) 2.05 (1.58–2.66) 1.24 (1.07–1.43)

rs11598564 10q24.31 0.547 0.460 9.77610212 1.0261027 9.0361029 1.42 (1.28–1.57) 1.53 (1.31–1.79) 1.67 (1.40–1.99)

rs267766 5p13.2 0.297 0.246 4.3061026 8.3861023 1.2761025 1.29 (1.16–1.44) 1.41 (1.09–1.82) 1.37 (1.19–1.58)

rs1367272 2p25.1 0.594 0.547 1.7761024 2.4361024 1.5961022 1.22 (1.10–1.35) 1.32 (1.14–1.53) 1.26 (1.04–1.53)

rs2676801 17q21.33 0.758 0.722 1.4161023 6.7461024 2.3861021 1.21 (1.08–1.36) 1.28 (1.11–1.48) 1.18 (0.90–1.56)

rs2047176 5p13.2 0.461 0.401 1.9561026 7.0261025 1.3161024 1.28 (1.15–1.41) 1.42 (1.19–1.69) 1.35 (1.16–1.58)

rs6570507 6q24.1 0.499 0.430 3.7861028 1.7061024 3.6661027 1.32 (1.20–1.46) 1.38 (1.16–1.62) 1.53 (1.30–1.80)

rs655540 11q24.2 0.376 0.332 2.6161024 4.3461025 2.0561022 1.21 (1.09–1.35) 1.51 (1.24–1.84) 1.19 (1.03–1.37)

rs9405284 6p25.1 0.738 0.690 5.8561025 3.2161025 5.9361022 1.26 (1.13–1.41) 1.35 (1.17–1.56) 1.30 (0.99–1.70)

rs7895098 10q23.1 0.888 0.851 5.0461025 6.9661025 7.8461022 1.38 (1.18–1.62) 1.42 (1.19–1.69) 1.71 (0.93–3.15)

rs9496346 6q24.1 0.510 0.438 1.0061028 4.7261025 2.2661027 1.34 (1.21–1.48) 1.40 (1.19–1.65) 1.55 (1.31–1.83)

rs346981 1p22.2 0.532 0.497 5.8861023 1.7761022 3.4661022 1.15 (1.04–1.27) 1.21 (1.03–1.42) 1.20 (1.01–1.42)

rs2852199 11q22.3 0.325 0.295 1.0161022 5.2461022 2.5861022 1.15 (1.03–1.28) 1.26 (1.00–1.59) 1.18 (1.02–1.36)

rs4076823 16p13.13 0.647 0.613 7.3961023 3.7361022 1.8961022 1.15 (1.04–1.28) 1.17 (1.01–1.35) 1.30 (1.04–1.61)

rs7101916 11q13.1 0.490 0.454 4.5961023 1.4661022 2.5661022 1.16 (1.05–1.28) 1.23 (1.04–1.45) 1.20 (1.02–1.40)

rs10485749 20p12.2 0.693 0.647 1.6561024 9.5561024 5.4961023 1.23 (1.10–1.37) 1.27 (1.10–1.46) 1.41 (1.11–1.80)

rs11227247 11q13.1 0.482 0.447 5.9861023 1.7861022 3.3061022 1.15 (1.04–1.27) 1.22 (1.03–1.45) 1.19 (1.01–1.39)

rs12346254 9p24.1 0.761 0.724 1.0761023 2.7361023 3.3861022 1.22 (1.08–1.37) 1.25 (1.08–1.44) 1.38 (1.02–1.86)

rs10485285 6q14.1 0.565 0.521 5.4861024 3.4561023 7.3061023 1.19 (1.08–1.32) 1.25 (1.08–1.46) 1.28 (1.07–1.53)

rs9918553 7p14.1 0.743 0.706 1.5461023 3.0761022 6.0361024 1.20 (1.07–1.35) 1.17 (1.01–1.35) 1.72 (1.26–2.36)

rs7143583 14q21.2 0.914 0.888 1.3761023 1.3861023 2.8561021 1.34 (1.12–1.59) 1.36 (1.13–1.65) 1.51 (0.71–3.24)

rs17012036 4q28.1 0.259 0.218 1.1361024 1.1361021 8.4561025 1.25 (1.12–1.41) 1.27 (0.94–1.71) 1.33 (1.15–1.53)

rs454578 5q14.1 0.270 0.239 4.1961023 5.1361022 1.0161022 1.18 (1.05–1.32) 1.31 (1.00–1.71) 1.20 (1.05–1.39)

Combined results of GWAS and the replication study. RAF: risk allele frequency. CI: confidence interval.
acalculated by x2 test. P values below the genome-wide significance level (P,561028) are in bold.
doi:10.1371/journal.pone.0072802.t001
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in Chinese, we recruited 571 females with severe AIS (aged 10–19)

and 326 female controls (aged 25–83) living in and around

Nanjing city, China. All were self-reported Han Chinese.

Genotyping of SNPs and Quality Control
Genomic DNA was extracted from the peripheral blood

leukocytes of severe AIS and control subjects using standard

protocols. In the GWAS, we genotyped case subjects using the

Illumina Human610 Genotyping BeadChip and control subjects

with the Illumina HumanHap550v3 Genotyping BeadChip. SNPs

common to both platforms were then combined and analyzed as

previously described [30]. Inadequate SNPs and subjects were

checked and excluded as previously described [22]. In the

Japanese replication study, the case subjects were genotyped using

the PCR-based Invader assay [31] and controls were genotyped

using Illumina HumanHap550v3 Genotyping BeadChip. In the

Chinese replication study, all subjects were genotyped using the

PCR-based Invader assay as described above.

Statistical Analysis
The association between the SNPs was examined by x2 test for

three models (allele model, recessive model and dominant model)

and minimum P values in the three models were evaluated. In the

same way, incidence of severe AIS, and the Hardy–Weinberg

equilibrium (HWE) of the genotypes were examined by x2 test.

Data of GWAS and Japanese replication study were combined by

addition, and data of total Japanese studies and Chinese study

were combined using the Mantel-Haenszel method. The Breslow-

Day statistic was used to test homogeneity of the common odds

ratio. The associations between the SNP genotypes and the Cobb

angle of AIS subjects were evaluated using the Kruskal-Wallis and

Mann-Whitney U tests. Imputation was performed using MACH

version 1.0.16.c. and Minimac software with reference haplotypes

from the 1000 Genomes Project June 2011 EAS population as

described elsewhere [23]. In the analysis, pairwise r2 values were

calculated using the R Bioconductor package snpMatrix (version

1.16.2), and the LD map was created using in-house programs. We

performed association analysis of imputed data using the

single.snp.tests function in the R package snpStats version 1.3.4

after converting Minimac output to the uncertain genotype data

format for snpStats. Regional association plots were generated

using R statistical environment version 2.13.0.

Results

After stringent quality control of the subjects and SNPs, we

examined the association of 455,121 SNPs with severe AIS using

the x2 test for three models (allele model, recessive model and

dominant model). No SNP reached the GWAS significance

threshold (P,561028) at this stage (Figure S1).
Then, we selected 27 SNPs (Table S1) according to the

following criteria: 1) a minimum P value in the three models

,161024; 2) a minor allele frequency $0.1. SNPs in strong

linkage disequilibrium (LD) with a correlation coefficient (r2) of 0.8

with other SNPs were excluded from analysis. We checked their

association using an independent set of Japanese female case-

control subjects and combined all Japanese data.

Six SNPs showed association of genome-wide significance level

(P,561028) (Table 1). Five of them were in the known loci of

AIS susceptibility that we previously reported; three SNPs

(rs11190870, rs625039 and rs11598564) were close to LBX1 on

chromosome 10q24.31 [22] and two SNPs (rs6570507 and

rs9496346) were on chromosome 6q24.1 in the GPR126 gene

[23]. In addition, rs12946942 on chromosome 17q24.3 showed

significant association in the recessive model (P=4.0061028, odds

ratio [OR] = 2.05). We further examined the relation between the

rs12946942 genotypes and the AIS severity (Cobb’s angle) using a

total of 1,767 AIS cases. rs12946942 showed significant association

(P=3.0261022; by the Kruskal-Wallis test).

We performed a replication study for rs12946942 in a Chinese

case-control population. The association of rs12946942 was

significant in the Chinese population for all three models.

Combined P values from the Mantel-Haenszel method for the

Japanese and Chinese studies in the recessive model showed

genome-wide significance (P=6.43610212) (Table 2).
rs12946942 defined a 130-kb LD block within an approximately

2-Mb region on chromosome 17 (Figure 1). No RefSeq genes

have been mapped in this LD block. Twenty common SNPs in the

LD block were genotyped in the GWAS, the most significant of

which was rs12946942 (Figure 1).
To further characterize the chromosome 17q24.3 locus, we

imputed genotypes of additional SNPs in the locus using 1000

Genomes Project’s East Asian population samples’ (EAS) reference

haplotypes and tested their association with AIS. SNPs

rs12946942 and rs12941471 yielded the strongest evidence for

association (Figure S2A), which were in complete LD (r2 = 1) with

each other. After conditioning on the top SNP (rs12946942), there

was no secondary association signal for AIS within the region

(Figure S2B).

Discussion

The region defined by rs12946942 was a gene desert. The

closest genes include SOX9 and KCNJ2 [32]. SOX9 (MIM 608160)

is a promising candidate gene for AIS as it encodes a transcription

factor involved in chondrogenesis [33]. SOX9 mutations cause

campomelic dysplasia (MIM 114290), a skeletal dysplasia charac-

terized by bowed, long bones, small scapula, tracheobronchial

narrowing, sex reversal and kyphoscoliosis [34]. Very long-range

cis-regulatory elements controlling tissue-specific SOX9 expression

have been previously reported [35,36]. The LD block containing

rs12946942 has recently been defined as a susceptibility locus of

prostate cancer in European Caucasians [37]. The block contains

Table 2. Association of rs12946942 with severe AIS in
Japanese and Chinese populations.

Population Study RAF P valuea
Odds
ratio PBD

b

case control (95% CI)

Japanese GWAS 0.274 0.203 1.9561025 2.24
(1.53–3.27)

Replication 0.224 0.213 6.0961022 1.59
(0.97–2.59)

Total 0.258 0.211 4.0061028 2.05
(1.58–2.66)

Chinese Replication 0.392 0.288 3.2761025 2.59
(1.63–4.10)

Combined Meta-
analysisc

6.436102122.21
(1.76–2.77)

0.38

RAF: risk allele (T allele) frequency. CI: confidence interval.
Data of P value, odds ratio (95% CI) and PBD are for the recessive model (G/G
and G/T vs T/T).
aby x2 test.
bhomogeneity of odds ratios by the Breslow-Day test.
cby the Mantel-Haenszel method.
doi:10.1371/journal.pone.0072802.t002
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six enhancer elements, of which the E1 enhancer forms a long-

range chromatin loop to SOX9 in a prostate cancer cell line. Two

SNPs within the E1 enhancer were shown by in vitro reporter

assays to direct allele-specific gene expression. We hypothesize that

variants in this region may likewise participate in scoliosis

pathogenesis by controlling scoliosis-related tissue-specific expres-

sion of SOX9 or other genes.

KCNJ2 (MIM 600681) is another promising candidate gene for

AIS. It encodes the inward-rectifying potassium channel Kir2.1,

which is a component of the inward rectifier current IK1. IK1

provides a repolarizing current during the most terminal phase of

repolarization and is the primary conductance that controls the

diastolic membrane potential [38]. KCNJ2 mutations lead to a

cardiodysrhythmic type of periodic paralysis known as Andersen-

Tawil syndrome (ATS; MIM 170390) [39], which is characterized

by ventricular arrhythmias, periodic paralysis, facial and skeletal

dysmorphism including hypertelorism, small mandible, cleft

palate, syndactyly, clinodactyly, and scoliosis [38,39]. Further-

more, the 17q24.2-q24.3 micro-deletion syndrome whose deletion

area includes KCNJ2 and rs12946942 showed skeletal malforma-

tions similar to the ATS phenotype including progressive scoliosis

[40]. Interestingly, a similar micro-deletion syndrome including

KCNJ2, but not rs12946942, was not associated with a scoliosis

phenotype [41].

Thus, through a Japanese GWAS followed by replication

studies in Japanese and Chinese populations, we identified a

susceptibility locus for severe AIS on chromosome 17q24.3 that

showed genome-wide significance. This region contains a few

promising candidate genes that may be associated with the disease.

Further studies are now necessary to identify the causal gene and

its variant in the locus.

Supporting Information

Figure S1 Manhattan plot showing the P values from
genome-wide association study (minimum P value in
allele, recessive and dominant models). The horizontal line
represents the genome-wide significance threshold (P=561028).

(TIF)

Figure S2 Regional association plots and recombination
rates of AIS susceptibility locus on chromosome
17q24.3. The chromosome position (NCBI Build 37) of SNPs

Figure 1. Linkage disequilibrium (LD) map and P-value plot of the severe adolescent idiopathic scoliosis susceptibility locus at
chromosome 17q24.3. Top panel: The association results shown as – log10 of minimum P values in allele, recessive and dominant models and a
focus view of the 130-kb LD block including rs12946942. All SNPs are analyzed in GWAS. Two vertical lines in this graph indicate the range of the LD
block. rs12946942 is boxed. Middle panel: The ,2 Mb LD map (D’) around rs12946942 is shown using loci with MAF .0.10 from Phase II HapMap
(release 24) JPT individuals. LD score: (dark red) LOD.2, D’ = 1; (light red) LOD.2, D’,1; (blue) LOD,2, D’ = 1; (white) LOD,2, D’,1. Bottom panel:
The position of rs12946942 and the two candidate genes (KCNJ2 and SOX9) on chromosome (Chr.) 17.
doi:10.1371/journal.pone.0072802.g001
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against 2log10 [P value] from a logistic regression analysis is

shown. (A) Unconditioned analysis. The SNP with highest

association signal (rs12946942) is represented as a purple diamond.

Imputed (circles) and genotyped SNPs (squares) are colored

according the LD (r2) with rs12946942. (B) Conditioned analysis.

Red circles are unconditioned and gray circles are conditioned for

rs12946942 (gray triangle).

(TIF)

Table S1 Association of the 27 SNPs selected from the
GWAS.
(DOC)
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