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Abstract

Bacteriophages are a major force in the evolution of bacteria due to their sheer abundance

as well as their ability to infect and kill their hosts and to transfer genetic material. Bacterio-

phages that infect the Enterobacteriaceae family are of particular interest because this bac-

terial family contains dangerous animal and plant pathogens. Herein we report the isolation

and characterization of two jumbo myovirus Erwinia phages, RisingSun and Joad, collected

from apple trees. These two genomes are nearly identical with Joad harboring two additional

putative gene products. Despite mass spectrometry data that support the putative annota-

tion, 43% of their gene products have no significant BLASTP hit. These phages are also

more closely related to Pseudomonas and Vibrio phages than to published Enterobacteria-

ceae phages. Of the 140 gene products with a BLASTP hit, 81% and 63% of the closest hits

correspond to gene products from Pseudomonas and Vibrio phages, respectively. This

relatedness may reflect their ecological niche, rather than the evolutionary history of their

host. Despite the presence of over 800 Enterobacteriaceae phages on NCBI, the unique-

ness of these two phages highlights the diversity of Enterobacteriaceae phages still to be

discovered.

Introduction

The existence of bacteriophages has been known since the early 1900’s when Frederick Twort

and Felix d’Herelle independently isolated phage [1]. Phages are now considered the most

abundant source of biomass on the planet [2] and contribute heavily to the evolution of bacte-

ria because of their ability to infect and lyse different bacterial strains as well as their ability to

transfer genetic information [3, 4]. Due to this transfer of genetic information, phages have

been shown to be required for the pathogenicity of several bacterial strains, such as pathogenic

V. cholerae, C. diphtheriae, and E. coli strains [5–7]. This incredible bacterial host specificity
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has led to many attempts to use them as diagnostic and therapeutic agents [8]. d’Herelle was

one of the first to put this into practice by using phage to treat and cure patients with Bacillus
based dysentery [9].

Enterobacteriaceae is one of the most highly studied bacterial families with over 50 accepted

genera. These genera include several well-known animal pathogens such as Enterobacter,
Escherichia, Klebsiella, Salmonella, Shigella, and Yersinia, as well as plant pathogens such as

Erwinia and Dickeya (for a recent discussion on the classification of this family see [10]). This

family is a major health concern in the United States with the Centers for Disease Control and

Prevention (CDC) citing carbapenem resistant and extended spectrum β-lactamase (ESBL)

producing Enterobacteriaceae as “urgent” and “serious” threats [11]. Plant pathogens are also

of great concern, with Erwinia infections causing over $100 million in agricultural loss per

year [12]. Studying the evolution of this family of bacteria, including the phages that infect

them, is critical to controlling many health and agricultural concerns.

Over 800 phages that infect members of the Enterobacteriaceae family have been isolated,

sequenced, and deposited in NCBI. Most of these phages infect genera with common animal

pathogens including Escherichia, Salmonella, Shigella, and Klebsiella. Phages of the plant patho-

gens have also been recently deposited, including those that infect Erwinia amylovora, the

causative agent of fire blight [13]. When infected, fire Blight causes the leaves of the Rosaceae
plants to dry and shrivel up, giving the appearance of being scorched. Another similar wilting

disease infecting the Cucurbita genus, which includes squash and pumpkin, is caused by Erwi-
nia tracheiphila. It has been reported to cause millions of dollars of agricultural loss in the

northeastern United States [14]. Therefore, the study of Erwinia phages may aid in under-

standing and treating multiple devastating agricultural diseases. Currently, 45 Erwinia specific

phages have been isolated and deposited on NCBI, 25 of which were discovered by our group.

Herein we report the isolation and characterization of two of these Erwinia phages,

vB_EamM_RisingSun (RisingSun) and vB_EamM_Joad (Joad). These phages have only very

distant relationships to other published phages and are highly similar to one another, with

Joad containing two additional genes. BLASTP hits to putative annotated ORFs indicate that

much of their genomes are composed of novel proteins with no BLASTP hit, while many of

those having BLASTP hits harbor closer relationships to Pseudomonas and Vibrio phages as

opposed to Enterobacteriaceae phages.

Methods

Phage isolation, sequencing and host range

Both Joad and RisingSun were isolated from apple blossom samples collected in Payson, Utah.

Blossoms were crushed with a mortar and pestle and the resulting debris was added to an

exponential culture of Erwinia amylovora ATCC 29780 [15, 16]. The enrichment culture was

harvested by centrifugation 48 hours later, filtered with at 0.45 μM filter, and used to infect a

fresh culture of bacteria. Three plaque purifications were performed, after which a high titer

lysate was made in liquid broth. Phage DNA was extracted from this lysate using the Phage

DNA Isolation Kit (Norgen Biotek Corporation), and was sequenced, assembled, and anno-

tated as previously described [15]. Host range was performed by spotting 5 uL of lysate onto

0.5 mL of bacteria imbedded in LB top agar. Positive spots were verified by plaque assay. Bacte-

rial strains used included Erwinia amylovora ATCC 29780, Erwinia amylovora EA110 [16],

Pantoea agglomerans E325 [17], Pantoea vegans C9-1 [18], Dickeya chrysanthemi ATCC 11663

[19], the common clinical strain Pseudomonas aeruginosa Boston 41501 ATCC 27853 [20],

Pseudomonas chlororaphis ATCC13985 [21], Vibrio cholerae ATCC 14035 (originally depos-

ited by Standards Lab., London) [22], Salmonella enterica typhimurium LT2 (a generous gift
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from John Roth, UCDavis), Enterobacter cloacae ATCC 13047(deposited by the CDC) [23],

and E. coli BW25113 [24].

Electron microscopy

Samples were prepared for transmission electron microscopy by placing 20 uL of high-titer

phage lysate on a 200-mesh copper carbon type-B electron microscope grid for two to five

minutes. Excess lysate was wicked away and the grid was then stained for one minute using 2%

phosphotungstic acid. The grid was then briefly dipped into distilled water and excess liquid

was wicked away. Phages were imaged at the BYU Microscopy Center. The phages were mea-

sured for capsid width as well as tail length and width using ImageJ software [25].

Mass spectrometry

Samples were prepared according to the methods of Guttman et al. [26]. Briefly, (all concentra-

tions are final concentrations) fresh lysates were diluted with TNE (50 mM Tris pH 8.0, 100

mM NaCl, 1 mM EDTA) buffer and RapiGest SF reagent (Waters Corp.) was added to 0.1%

before 5 min of boiling. Next, samples were incubated at 37˚C for 30 min in the presence of 1

mM TCEP (Tris (2-carboxyethyl) phosphine). Iodoacetamide (0.5 mg/ml) was used to carbox-

ymethylate the samples for 30 min at 370 C. Carboxymethylation was neutralized with 2 mM

TCEP. Using a trypsin:protein ratio of 1:50 samples were digested overnight at 370 C. Next,

250 mM HCl was used to degrade the RapiGest for 1 hr at 370 C. Samples were then centri-

fuged for 30 min at 40 C and 14000 rpm. In new tubes, peptides were extracted from the solu-

ble fractions by desalting using Aspire RP30 desalting columns (Thermo Scientific).

High pressure liquid chromatography (HPLC) coupled with tandem mass spectroscopy

(LC-MS/MS) using nano-spray ionization was used to analyze the trypsin-digested peptides

according to the method of McCormack et al. [27]. Experiments were performed on a Triple-

TOF 5600 hybrid mass spectrometer (ABSCIEX) interfaced with nano-scale reversed-phase

HPLC (Tempo) using a 10 cm-100 μm ID glass capillary packed with 5-μm C18 ZorbaxTM

beads (Agilent Technologies, Santa Clara, CA). The peptides were eluted from the C18 packed

capillary tubes into the mass spectrometer using a linear gradient of Acetonitrile (ACN) (5–

60% generated from two buffers: buffer A with 98% H2O, 2% ACN, 0.2% formic acid, and

0.005% TFA, and buffer B with 100% ACN, 0.2% formic acid, and 0.005% TFA) at a flow rate

of 250 μl/min for 1 hr.

MS/MS data were acquired in a data-dependent manner in which the MS1 data were

acquired for 250 ms at m/z of 400 to 1250 Da and the MS/MS data were acquired from m/z of

50 to 2,000 Da. For independent data acquisition (IDA) parameters of MS1-TOF for 250 milli-

seconds, followed by 50 MS2 events of 25 milliseconds each were used. The IDA criteria were

set at over 200 counts threshold, charge state of plus 2–4 with 4 seconds exclusion window.

Finally, the collected data were analyzed using MASCOT1 (Matrix Sciences) and Protein Pilot

4.0 (ABSCIEX) for peptide identifications.

Analysis of RisingSun and Joad phage genomes

Gepard [28] was used to create three dot plots, one with whole genome sequences, one with

major capsid protein (MCP) sequences, and one with terminase sequences. Putative major

capsid proteins and terminase proteins from phage Joad were used in BLASTP [29–31] analy-

sis to find related phages [2, 32, 33]. Accession numbers that were used are: whole genome

accession numbers (Joad [MF459647], RisingSun [MF459646], Pseudomonas phage EL

[NC_007623.1], Pseudomonas phage OBP [NC_016571.1], Vibrio phage pTD1 [AP017972.1],

Vibrio phage VP4B [KC131130.1], Pseudomonas phage phiKZ [AF399011.1]), MCP accession
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numbers (Joad [ASU03832.1], RisingSun [ASU03587.1], Pseudomonas phage EL [YP_418111.1],

Vibrio phage pTD1 [BAW98274.1], Vibrio phage VP4B [AGB07257.1], Pseudomonas phage OBP

[YP_004958031.1], Pseudomonas phage phiKZ [AAL83021.1]) and terminase accession numbers

(Joad [ASU03673.1], RisingSun [ASU03430.1] Pseudomonas phage EL [YP_418044.1], Vibrio
phage pTD1 [BAW98365.1], Vibrio phage VP4B [AGB07167.1],Pseudomonas phage OBP

[YP_004957913.1], Pseudomonas phage phiKZ [NP_803591.1]). Kalign [34–38] was used to deter-

mine average nucleotide identity (ANI) of the phage genomes.

Motif analysis and identification

The Center for Phage Technology Galaxy Server (https://cpt.tamu.edu/galaxy-pub/) and

MEME [39] were used to scan the phage genome for significant motifs with an e-value less

than 10−7. The Galaxy Server was able to scan the entire genome at once. FIMO [40] was used

to search the phage genome for motifs found in the Galaxy results that passed our significance

threshold (q value <0.01) and determined the exact positions of the motif(s) in the entire

genome. We then used DNA Master [41] and Phamerator [42] to analyze the genes neighbor-

ing the motifs to determine putative transcription patterns.

Results and discussion

Phage isolation and sequencing

Joad and RisingSun were isolated from apple tree samples that appeared to be infected with

fire blight. DNA analysis suggests Joad and RisingSun are Jumbo phages [43] with genome

sizes of 235374 bp and 235108 bp respectively (a summary of their genomes is provided in

Table 1). A search for tRNA’s using tRNA ScanSE [44] returned no tRNA results. No rigorous

testing for lysogeny formation has been performed, but their clear plaque morphology and

ease in obtaining higher titers suggest they may be lytic phages. This conclusion is supported

by a BLASTP analysis of the putative Major Capsid Protein (MCP) from Joad, which has only

close BLASTP hits to phage and none to bacterial genomes. In a recent analysis of phage, Cas-

jens et al. found that MCP’s from temperate phages generally have BLASTP hits that are>70%

identity in bacterial genomes [45].

Phage morphology

Transmission electron microscopy (TEM) analysis revealed the large nature of these phages.

From three independent TEM images of RisingSun (Fig 1), the average capsid width was 143.2

+/- 6.0 nm, tail width was 23.2 +/- 2.4 nm, and tail length was 206.8 +-3.6 nm, consistent with

the large genome size reported above. The measurements from the single Joad image obtained

were within the standard deviation of RisingSun measurements. The viral morphology, icosa-

hedral capsids attached to long contractile tails, is consistent with these phages belonging to

the jumbo myoviridae bacteriophages [32].

Table 1. General characteristics of Erwinia amylovora phages Joad and RisingSun.

Phage Name GenBank

Accession #

Fold Coverage Genome

Length (bps)

ORFs tRNAs GC%

Joad MF459647 522.2 235374 245 none 48.29

RisingSun MF459646 138.6 235108 243 none 48.32

https://doi.org/10.1371/journal.pone.0200202.t001
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Genomic analysis

Whole genome dot plot comparisons (Fig 2A) were performed using the whole genome

sequences of Joad, RisingSun, and any phages that were retrieved from a BLASTP analysis of

their putative major capsid (MCP) and terminase proteins. The dot plot reveals two distinct

clusters of phages, and low relatedness between singletons (unique phages unrelated to others

in the group). Clusters are defined here similarly to other studies, as two or more phages with

sequence similarity over at least half of the genome [2]. Joad and RisingSun constitute one

cluster with Pseudomonas phage EL being a distant relation in the gray area of cluster bound-

ary, while the second cluster is comprised of two Vibrio phages, VP4B and pTD1. Whole

genome Average Nucleotide Identity (ANI) data shown in Table 2A support the clusters iden-

tified in Fig 2A with a 96% identity match between Joad and RisingSun. These two phages also

had 46% similarity compared to EL and only 36% similarity compared to OBP and phiKZ,

while low similarity is seen between Joad and the singleton phages. A 75% identity match is

also observed within the vibrio phage cluster of VP4B and pTD1. ANI data show that Joad and

RisingSun differ in genome size by 266 nucleotides, Joad having the larger genome, in an oth-

erwise highly similar genome (~96.6% nucleotide identity). In addition to the distinct clusters,

Fig 2A shows a distant relationship between Joad and EL, indicative of divergent evolution

and lateral gene transfer that has occurred.

A dot plot of the Major Capsid Protein (MCP) and terminase amino acid sequences (Fig 2B

& 2C) and percent identity data (Table 2B) support this distant relationship between Joad and

EL. Table 2B shows a 57% identity between the MCP amino acid sequences of the two phages,

whereas Vibrio phages pTD1 and VP4B MCP amino acid sequences are highly similar at nearly

90% amino acid identity. The terminase dot plot, Fig 2C, and percent identity data in Table 2C

continue to support a distant relationship between Joad and EL.

Both the dot plot and ANI indicate that the Joad cluster is markedly different from the Vib-
rio cluster and EL phage consistent with the weak similarity of the MCP and terminase amino

sequences. Comparing Joad to OBP and phiKZ, which have similar terminase proteins, shows

little relation and confirms the distinctiveness of Joad. Since terminase conservation has been

shown to reflect phage packaging mechanisms [46] the terminase similarity to phiKZ, although

distant (~28% identity) suggests these phages package DNA by a headful mechanism [47].

Fig 1. Transmission electron microscopy revealed (A) RisingSun and (B) Joad as Myoviridae.

https://doi.org/10.1371/journal.pone.0200202.g001
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This analysis is consistent with analysis of our whole-genome phage sequencing raw results for

RisingSun analyzed by Phageterm [48] which also suggested a headful packaging mechanism.

Whole-proteome comparison of Joad and RisingSun

Phamerator [42] was used to produce full-genome comparison maps for both Joad and Rising-

Sun which were modified for simplicity (Fig 3). Consistent with the mild differences seen in

ANI analysis, the genomes encode nearly identical gene products (colored with similar color-

ing based on the Phamerator default values of greater than 32.5% identity by BLASTP and less

than 1e-50 e-value from ClustalO), with many having 100% identity. The most obvious differ-

ence is the two genes present in Joad that are not present in RisingSun, of which gene product

Fig 2. Dot plot comparisons for whole genome nucleotide sequences, MCP amino acid sequences, and terminase

amino acid sequences of seven phages. Blue horizontal and vertical lines were added to show genome boundaries.

Erwinia phages: Joad, RisingSun (RS). Vibrio phages: pTD1, VP4B. Pseudomonas phages: EL, OBP, phiKZ. A)

Nucleotide dot plot shows genome similarity between seven phage genomes. Two distinct clusters are shown, the Joad

and RS cluster and the Vibrio phage cluster. B) Dot plot comparison for MCP amino acid sequences of seven phages.

The clusters are shown between Joad and RS and between Vibrio phages pTD1 and VP4B. C) Dot plot comparison for

terminase amino acid sequences of seven phages. Two clusters are formed between Joad and RS and between Vibrio
phages pTD1 and VP4B.

https://doi.org/10.1371/journal.pone.0200202.g002

Table 2. Joad and RisingSun are a unique cluster of phages when compared to others using whole genomes, MCP amino acid sequences, and terminase amino acid

sequences. 2A) Similarity of seven phage genomes according to Average Nucleotide Identity (ANI). 2B) Percent identity of major capsid proteins (MCP) amongst seven

phages. 2C) Percent identity of terminase proteins amongst seven phages. Percent identity was determined by BLASTP analysis.

2A ANI of Whole genome

Joad Rising Sun EL pTD1 VP4B OBP phiKZ

Joad 100

RisingSun 96.61 100

EL 45.83 45.73 100

pTD1 38.24 37.86 35.21 100

VP4B 38.8 38.41 35.67 75.14 100

OBP 36.53 36.17 33.7 37.08 41.11 100

phiKZ 36.25 35.94 33.5 37.04 41.2 46.98 100

2B Identity of MCP gene products

Joad Rising Sun EL pTD1 VP4B OBP phiKZ

Joad 100

RisingSun 100 100

EL 57.22 57.22 100

pTD1 40.78 40.78 21.98 100

VP4B 40.48 40.48 38.27 89.74 100

OBP 30.71 30.71 31.18 33.61 34.90 100

phiKZ 23.58 23.58 21.98 21.60 22.19 25.29 100

2C Terminase gene products

Joad Rising Sun EL pTD1 VP4B OBP phiKZ

Joad 100

RisingSun 99.63 100

EL 56.43 56.43 100

pTD1 53.63 53.63 50.42 100

VP4B 53.96 53.96 50.08 95.75 100

OBP 48.49 48.49 48.31 47.59 47.97 100

phiKZ 27.71 27.71 27.29 31.54 32.24 28.73 100

https://doi.org/10.1371/journal.pone.0200202.t002
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122 had a BLASTP hit to an HNH endonuclease and the other encodes a protein with

unknown function. Not every gene with a BLASTP or Phamerator hit is labeled on this map as

many have an unknown function or are indiscriminant structural proteins. Proteins of signifi-

cance are discussed in the following section “Interesting proteins”, for which Fig 3 will serve as

a reference.

Interesting proteins and host range

Joad and RisingSun appear to be two very similar Jumbo phages [43] with only distant rela-

tionship to other phages. Due to the fact that these phages are so similar, we will be specifically

Fig 3. Whole genome comparison map between the phages Joad and RisingSun adapted from Phamerator [42].

Boxes on top of the genome ruler are genes expressed on the forward strand, while boxes under the genome ruler are

genes expressed on the reverse strand. The colored boxes categorize homologous proteins. The purple between the two

genomes represents high nucleotide similarity, while the white between the two nucleotides represents nucleotide

variation. Annotated functions were collected through BLAST and Phamerator searches. Abbreviations include:

Discoidin (Coagulation factor also known as F5/8 type C domain known as the discoidin (DS) domain family); GroEL

(GroEL-like type 1 chaperonin protein); PhoH (Phosphate starvation protein PhoH); ZipA (cell division protein

ZipA).

https://doi.org/10.1371/journal.pone.0200202.g003
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referring to the genes, gene functions, and gene products of RisingSun. Of the 243 putative

gene products in the RisingSun genome ~43% have no known function and do not have any

significant BLASTP hits (e-value of 10−7 or less). This large proportion of proteins with no

BLASTP hit (~43%) represents proteins that have not been previously found in nature [49,

50]. This finding, combined with their nucleotide dissimilarity discussed above, further sets

RisingSun and Joad apart. The remaining gene products are represented as those with BLASTP

hits but no known function (NKF) (~24%) and those with BLASTP hits and putative or

known functions (~33%) (Fig 4A). Of the ~33% of gene products with known functions, ~36%

of them are unspecified structural proteins and another ~12% represent major capsid and tail

fiber proteins. The remaining gene products with putative function are primarily putative

enzymes, namely those involved with DNA and RNA synthesis including an NAD-dependent

DNA ligase (gp108), RNA polymerase beta subunit (gp29), and a helix-turn-helix XRE-family

domain among others (gp180) (Fig 4B).

The RisingSun gene products that have BLASTP hits are mainly homologous to other

phage gene products. Specifically, of the 140 gene products with BLASTP hits, 81% correspond

to Pseudomonas phage gene products. Gene products from phages EL, OBP, and phiKZ match

74%, 53%, and 24% of NKF/putative function gene products, respectively, while other Pseudo-
monas phages match 37%. Vibrio phages also showed a marked similarity to the RisingSun

proteome with 63% of gene products with a BLASTP hit from a Vibrio phage gene product.

Phages VP4B and pTD1 match 58% and 60%, respectively, and other Vibrio phages match

24% of NKF/putative function gene products. Due to the high similarity of gene products with

a BLASTP hit, we further analyzed the entire proteome of RisingSun in comparison to the

Pseudomonas and Vibrio phages EL, OBP, VP4B and pTD1.

Fig 4. RisingSun and Joad are unique phages whose proteomes contain novel proteins. A) Distribution of proteins

in RisingSun based upon BLASTP hits that are novel, have no known function, and putative function. B) Putative gene

ontology in RisingSun. C) Percentage of RisingSun gene products with BLASTP hits to proteins in other phages/

organisms.

https://doi.org/10.1371/journal.pone.0200202.g004
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Despite the lack of strong nucleotide similarity (see Table 2), an analysis of total RisingSun

gene homologs reveals 42% of RisingSun genes have homologs in Pseudomonas phage EL, 30%

have homologs in Pseudomonas phage OBP, 33% in Vibrio phage VP4B and 35% in Vibrio
phage pTD1 (see S1 Table for specific gene product homologs). In contrast RisingSun has only

14% of its gene products in common with phiKZ (Fig 4C). Note that these numbers are based

off of annotation of gene products and could be different based on annotation. Given that

other phage classifications systems have grouped related phage by 40% or greater proteome

conservation, Pseudomonas phages EL and OBP as well as VP4B and pTD1 are distant mem-

bers of a more evolutionarily diverse supercluster, with EL being the closest member to the

Joad Cluster. The conserved gene products of this supercluster (totaling 63 gene products) are

primarily structural genes (24 gene products) and include the MCP, portal, terminase and tail

proteins. Nineteen of the remaining conserved gene products have putative functions in DNA

replication and recombination, one appears to be involved in cell lysis (a phage related lyso-

zyme). This leaves 19 of the 63 conserved gene products (~30%) that have no putative function.

Due to this relationship, we tested the ability of phage Joad to infect Pseudomonas aeruginosa
as well as several Enterobacteriaceae strains (Table 3). Although clear spots could be seen on

Erwinia amylovora, Pantoea vegans and Pseudomonas aeruginosa Boston 41501 by spot test, no

plaques were observed on Pseudomonas aeruginosa when assayed by plaque assay suggesting

the spot test resulted from a toxin product in the Joad lysate. Joad did not appear to infect sev-

eral other Enterobacteriaceae tested (including a Pantoea agglomerans strain, a Vibrio cholerae
strain, an E. coli strain, a Dickeya strain, a Salmonella strain and an Enterobacter strain). As

noted by the infectivity Pantoea vegans but not Pantoea agglomerans strain, this host range is

no wise comprehensive since several other species or even strains within a species may be a

host of Joad.

The RisingSun proteome also showed similarity to a range of other phage and bacteria. The

most prominent group being a highly related Erwinia phage family, which consists of phages

Deimos-Minion, Simmy50, SpecialG, and Ea35-70. This family matched to 21% of all Rising-

Sun gene products, while gene products from other Erwinia phages corresponded to a total of

23% of gene products. Other phages infecting Cronobacter and Ralstonia bacteria among oth-

ers matched 26% of the gene products, while 37% of total RisingSun gene products had a

BLASTP hit to various bacteria including Pseudomonas aeruginosa (Fig 4C). While several of

these less common matches had the lowest e-value from a particular BLAST, in a handful of

Table 3. Host range of phage Joad suggests narrow specificity towards Erwinia amylovora and the closely related

Pantoea vegans bacteria. The bacteria tested is provided along with the plaque forming units from three independent

assays.

Bacteria tested Plaque forming units/mL (Pfu/mL)

Erwinia amylovora ATCC 29780 108

Erwinia amylovora EA110 108

Pantoea vegans C9-1 108

Pantoea agglomerans E325 0

Dickeya chrysanthemi ATCC 11663 0

Salmonella enterica serovar typhimurium LT2 0

E. coli BW25113 0

Enterobacter cloacae ATCC 13047 0

Pseudomonas aeruginosa Boston 41501 0

Pseudomonas chlororaphis ATCC13985 0

Vibrio cholerae ATCC 14035 0

https://doi.org/10.1371/journal.pone.0200202.t003
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cases they were for the most part orders of magnitude higher than the Pseudomonas and Vibrio
phages discussed above.

Due to the distant nature of many of the BLASTP hits, we analyzed several protein putative

functions by comparing their predicted folds to those of their BLASTP hits using RaptorX (Fig

5). Of the 50 RisingSun gene products with a putative function of interest, 26 shared similar

folds to at least one of their respective BLASTP hits, suggesting that they share that putative

function (S2 Table). Ten of these 26 proteins matched those from bacteria other than Erwinia
while nine matched those from non-Erwinia phages. This leaves over half of these proteins

originating from a source other than Erwinia or its phages. The remaining 24 proteins do not

have enough sequence homology to suggest further conserved function.

Mass spectrometry

As shown in Table 4, we were able to confirm the accuracy of our genome annotation via mass

spectrometry identification of protein fragments within the viral lysate of RisingSun. Mass

spectrometry was able to identify nine structural proteins, three proteins with other putative

functions, five novel proteins, and 14 hypothetical proteins within the phage lysate. The two

proteins that had the most significant coverage and retrieval were gp68 and gp83. The gp83

product is the likely major capsid protein from BLASTP analysis, whereas gp68 has homology

(E-value: 3.10e-07) to pfam12699 phiKZ-like internal head proteins. Besides phage structural

proteins, three proteins with putative function were identified; a putative transglycosylase

(gp231) that may aid in breaking down the Erwinia cell wall, a putative UvsX-like protein

that is likely to function in DNA recombination (gp218), and a tubulin-like protein (gp17).

Although a majority (84%) of the peptides identified by mass spectrometry belong to putative

hypothetical proteins having homologs in NCBI, five completely novel proteins were identified

that have never before been reported (that lack a BLASTP hit with an E-value <10−7). These

proteins demonstrate the distant nature of this phage when compared to known phages, as

43% of the proteins annotated were novel. Proteins that are under-represented in the mass

spectrometry data may indicate either lower expression levels, or proteins whose expression

occur in the host but are not present in the virion.

In work by Lecoutere et. al. the team performed ESI-MS/MS on Pseudomonas phages

phiKZ and EL [53]. Upon comparing the gene products, they and we have retrieved several

different gp have been in common. Of the structural proteins retrieved in RisingSun, gene

Fig 5. Predicted gp164 RisingSun functional protein modeling using RaptorX [51, 52]. A) This model reflects

RisingSun gene product 164 aligned to the protein DNA adenine methylase [Bilophila sp. 4_1_30]: WP_009733305.1.

Both proteins have similar folds, indicating that they may share the same function. B) This model reflects RisingSun

gene product 85 aligned to the protein RNA polymerase beta subunit [Erwinia phage vB_EamM_RAY]: ANH51783.1.

The protein folds diverge drastically, indicating that the two proteins may not share a similar function.

https://doi.org/10.1371/journal.pone.0200202.g005
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products 1, 2, 63, 66, and 68 had corresponding proteins retrieved by Lecoutere. Gene prod-

ucts 200 and 204 do not have matches to phage EL according to BLASTP while gp83 and

gp196 do have matches but were not retrieved in the other analysis. Gene product 231 with a

putative transglycosylase function was also retrieved by both labs while gp17 and 218 were

retrieved in our lab. In the hypothetical protein grouping gp131 and 185 did not have matches

to phage EL while gp28, 212, and 216 were only retrieved by our group. The rest of the proteins

in this group namely gp5, 59, 64, 65, 73, 189, 207, 233, and 243 were obtained by both labs.

Table 4. RisingSun gene products with peptides detected by LC/MS/MS of a crude phage lysate.

RisingSun gp # Putative Protein Function Retrieval #� %Cov/%Cov(95) Peptides(95%)

Phage Structural Proteins

gp83 major capsid protein 1 75.1/54.88 48

gp68 internal head protein 2 62.65/40.96 80

gp200 virion structural protein 12 36.36/26.22 5

gp204 virion structural protein 13 35.56/25.7 6

gp2 tail tube protein 17 61,41/18.79 4

gp63 phage capsid and scaffold 26 34.33/6.54 2

gp1 tail sheath protein 43 24.12/1.26 1

gp196 virion structural protein 57 52.94/6.23 1

gp66 internal head protein 73 27.61� 0

Other Putative Functions

gp231 transglycosylase 44 53.06/4.76 1

gp218 UsvX recombination protein-like 84 20� 0

gp17 tubulin-like protein 62 41.43/4.36 1

Novel Hypothetical Proteins (no BLASTP hit E-value of <10−7)

gp163 9 64.81/37.96 7

gp206 60 29.38/9.00 1

gp71 54 47.54/3.93 1

gp150 72 11.45� 0

gp72 11 37.77/20.11 10

Hypothetical Phage Proteins

gp28 14 34.19/11.65 5

gp5 15 51.69/13.84 6

gp189 16 40.26/14.29 5

gp59 18 50/8.59 3

gp243 20 46.08/6.14 2

gp185 25 38.59/9.00 2

gp233 27 29.56/4.56 2

gp65 32 18.5/4.62� 1

gp216 33 29.08/1.59� 1

gp73 40 37.26/3.79 1

gp207 51 18.21/5.84 1

gp131 SPFH domain containing protein 55 41.87/5.19 1

gp64 67 43.49/4.75 1

gp212 71 21.25� 0

The gene product number (RisingSun gp #), putative protein function (from BLASTP homolog or conserved domain CD), retrieval number, percent of the protein

covered by peptide matches is provided (the percentage is given for both total and 95 percent confidence peptides), and number of 95% peptides is given. �The retrieval

numbers missing correspond to bacterial or human (such as keratin) proteins present in the crude lysate. No reverse peptides of RisingSun were detected. The asterisks

(�) indicates low confidence proteins due to total coverage of less than 30%.

https://doi.org/10.1371/journal.pone.0200202.t004
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Motif analysis shows putative structural protein conservation. Finding conserved

motifs in phage genomes may provide insight into transcriptional regulons, and therefore a

deeper understanding of phage lifecycle and proteomics due to the frequent co-regulation of

related genes [54]. RisingSun was analyzed for motifs using The Center for Phage Technology

Galaxy Server [55], a software that allows you to search an entire genome at once. After cover-

ing the entire genome only one motif passed our e-value significance threshold of 10−7. We

then ran this motif through FIMO [40], a program that allows the search of an entire genome

for a specific motif. We looked for occurrences of the motif represented by a logogram in (Fig

6A), which passed a q-value significance threshold of 0.01. Only 5 repetitions of this motif

occurred and all in a relatively small area near the end of the genome (Fig 6B).

Fig 6. Locations of one motif discovered in five different structural genes. A) Exact location of motif sites, p and q-

values, sequence of motifs (conserved nucleotides shown in red), and putative gene function. Logogram shows motif

sequence and larger letters represent frequent conservation. B) Arrows show approximate location of motif site. Genes

were analyzed from the RisingSun annotation and thus locations are shown in the RisingSun phamerator map.

https://doi.org/10.1371/journal.pone.0200202.g006
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Identifying genes neighboring these motifs may identify co-regulated genes with related

function. Fig 6. is a portion of the Joad and RisingSun genome map showing the motif locations

within a span of 10 genes. Five gene products, namely gp204, gp203, gp200, gp199 and gp196

contain the motifs suggesting gene products 196–205 may be co-regulated. One of the gene

products (gp205) in this region is completely novel (no BLASTP hit), and nine (gp204, gp203,

gp202, gp201, gp200, gp199, gp198, gp197 and gp196) are putative virion/structural proteins

based on annotation of related phage BLASTP hits. Despite the novelty of one of the genes, the

evidence that this conserved motif brings suggests that genes gp196-205 are indeed structural

proteins or are involved in virion assembly and that all are transcribed together. These results,

however, are hypothetical and wet lab experiments are necessary for confirmation.

Conclusions

Herein we report the discovery and characterization of two newly isolated Erwinia phages,

Joad and RisingSun, bringing the apparent total number of Erwinia phages on NCBI as of writ-

ing of this article to 45 reported full genome sequences. Joad and RisingSun, at over 200kbp,

are two highly related Jumbo phages of the Myoviridae family, only distantly related to Pseudo-
monas phages EL and OBP and even more distantly related to Vibrio phages VP4B and pTD1

(Fig 2A). All six of these phages are most likely distant phiKZ-like phages as previously deter-

mined for EL and OBP [56, 57]. Dot Plot, ANI and BLASTP analysis all suggest the unique

nature of Joad and RisingSun phages but also brings to attention that these phages have closest

similarity to phages that infect bacteria outside of the Enterobacteriales order of bacteria. A

BLASTP analysis of the putative proteome reveals BLASTP hits for ~57% of the proteins, how-

ever 33% are proteins of unknown function. The remaining putative gene products with no

BLASTP hits (43%) represent proteins that have not been previously found in nature. These

join the bounty of phage gene products [49, 50] with unknown structural folds and function.

Both Pseudomonas and Vibrio phages had higher similarity to Joad and RisingSun than any

of the>800 Enterobacteriaceae phages on NCBI, despite all three of their respective hosts phy-

logenetically only having the class Gammaproteobacteria in common [58]. Of the 140 gene

products with a BLASTP hit, 81% and 63% of the closest hits corresponded to gene products

from Pseudomonas and Vibrio phages, respectively. Given that Pseudomonas bacteria are

found on apple blossoms [59–64] it is reasonable to posit that extensive exposure to this strain

has allowed for lateral gene transfer between phages, with possible tail fiber exchange for host

recognition [65–69]. However, recent work by Adeolu and colleagues has indicated that the

Enterobacteriales order is more nuanced than previously thought and that classification meth-

ods may need to be rethought [10]. In addition to a standard 16S rRNA based phylogenetic

tree for the order Enterobacteriales, Adeolu and colleagues constructed three more trees based

on 1548 core proteins, 53 ribosomal proteins, or four multi-locus sequence analysis proteins.

After analyzing 179 species within this order they propose forming seven families, one of

which is an Erwinia-Pantoea clade [10]. This classification is supported by our findings that

these phages are quite distinct from other Enterobacteriaceae phages and can infect a Pantoea
vegans strain. A reclassification of this magnitude highlights the complex evolution, and hence

classification, of bacteria and the phage that infect them. Because phages are a major source of

bacterial evolution, through the control of bacterial number as well as lateral gene transfer,

understanding their complexity is vital. Joad and RisingSun join the 43 other Erwinia phages

available on NCBI and provide insight into this evolutionary complexity, highlighting the sim-

ilarity between Erwinia and the Pseudomonads. The relationship of these phages with more

distant bacteria may reflect both an ecological niche as well as true diversity within the

Enterobacteriales.
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common, using the e-value cutoff of 1e-7. Putative functions and the gene product number are

provided from the annotation of phage RisingSun (from both BLASTP hits and conserved

domains retrieved). The symbol “x” indicates no homolog was found. Bolded gp# indicates

that the putative function was taken from the phage of that column.
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