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Abstract: Cognitive resilience is the ability to withstand the negative effects of stress on cognitive
functioning and is important for maintaining quality of life while aging. The UK Biobank does
not have measurements of the same cognitive phenotype at distal time points. Therefore, we used
education years (EY) as a proxy phenotype for past cognitive performance and current cognitive
performance was based on processing speed. This represented an average time span of 40 years
between past and current cognitive performance in 330,097 individuals. A confounding factor was
that EY is highly polygenic and masked the genetics of resilience. To overcome this, we employed
Genomics Structural Equation Modelling (GenomicSEM) to perform a genome-wide association
study (GWAS)-by-subtraction using two GWAS, one GWAS of EY and resilience and a second
GWAS of EY but not resilience, to generate a GWAS of Resilience. Using independent discovery and
replication samples, we found 13 independent genetic loci for Resilience. Functional analyses showed
enrichment in several brain regions and specific cell types. Gene-set analyses implicated the biological
process “neuron differentiation”, the cellular component “synaptic part” and the “WNT signalosome”.
Mendelian randomisation analysis showed a causative effect of white matter volume on cognitive
resilience. These results may contribute to the neurobiological understanding of resilience.

Keywords: cognitive resilience; healthy aging; genomics; processing speed; proxy phenotypes;
functional analysis

1. Introduction

Cognitive decline is one of the most feared aspects of aging leading to major health
and social issues and is associated with illness, dementia and death [1]. Non-pathological
or age-related cognitive decline leads to increased challenges in completing tasks that
require information processing and memory, which in turn leads to a deleterious effect
on an individual’s enjoyment of and participation in life events [2]. Cognitive resilience
is our ability to withstand negative effects of stress and maintain cognitive functioning.
Understanding the factors that contribute to resilience is becoming increasingly important
given the aging demographics of the world’s population [3]. There is a growing knowledge
of how non-genetic factors such as cardiovascular health and social participation contribute
to cognitive resilience [4]; however, an understanding of the genetic contribution has been
hampered by the lack of large datasets with genetic data and suitable longitudinal data
on cognition. One theory that examines the biological influences on rates of cognitive
decline in healthy aging is the concept of reserve, maintenance, and compensation leading
to cognitive resilience [5]. Reserve is usually described in terms of both brain reserve, which
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is the overall strength of size of structural components such as the quantity of neurons
and synapses, and cognitive reserve, which refers to adaptability of these components [6].
These are hypothesised to reflect a level of neural resources built up over our lifetime,
maintained via the ability to repair cellular damage to maintain cognitive function, with
losses compensated for by use of alternative undamaged cognitive functions. In turn,
these mechanisms are thought to be mediated by a combination of environmental and
genetic factors.

Others propose that variation in the rate of cognitive decline can be explained by
variation in intelligence. Longitudinal analysis in the Lothian Birth Cohort has shown that
childhood intelligence has a protective effect on cognitive decline in late life [7]. Other
studies show that while higher education reflects greater cognitive ability, the rates of
change in that ability over time are consistent across all education levels, with those starting
at a higher level simply having further to fall before they present with mild cognitive
impairment [8,9]. The role of intelligence is confounded by the fact that higher intelligence
is associated with healthier life styles, which has a protective effect on cognitive decline [10].

Salthouse proposed the reduced speed of processing hypothesis as earlier studies
on cognitive decline showed that processing speed is one of the strongest predictors of
performance across cognitive tasks in older adults [11,12]. This theory proposes that older
adults take longer to process information and the result of this slower processing leads to
impairment in cognitive functions and information is not available for the next part of a
task as quickly as in younger adults. It is proposed that superior intelligence is linked to
faster processing speed and speed of higher-order information processing explains about
80% of variance in cognitive ability [13]. In a study using 1800 adults ranging in age from 20
to 90, it was found that 70 to 80% of decline in processing speed was shared with declining
reasoning ability [14].

The purpose of this study was to explore genetic variation associated with cognitive
resilience within the UK Biobank (UKB) [15]. Due to the absence of robust longitudinal
data in the UK Biobank, we examined the available cognitive and other phenotypic data to
explore cognitive resilience for the first time in a large dataset. After careful consideration
and given the growing need to understand cognitive decline in an aging population, we
decided on an approach that would make the best use of the available data. The cognitive
measure that was most sensitive to age within the UK biobank and that was tested on
the largest number of people was reaction time (RT), reflecting an individual’s processing
speed, as a measure of current cognitive performance. Processing speed is a key component,
and predictor, of cognitive ability [13,16]. In the absence of a direct measure of processing
speed at an earlier time point, we used academic achievement measured by number of years
in education (education years (EY)) as a proxy phenotype for cognitive performance in
early adulthood, following several previous studies [17–19]. By separating the population
based on years of education, we are assuming that we are capturing individuals that in
general have increased processing speed in early life. We created our final phenotype to
capture individuals that had preserved their processing speed over a 40 year time span.

Individual differences in processing speed are important in the relationship between
executive functioning and academic performance [20]. This approach captures an average
time span of 40 years between past and current cognitive performance in the UKB. A con-
founding factor in this strategy is that EY is highly heritability with a polygenic nature [21]
that can mask the genetics of resilience. To overcome this we employed Genomics Structural
Equation Modelling (GenomicSEM) [22] to perform a GWAS-by-subtraction [23] using two
GWAS, one which captured genetic variants associated with EY and resilience and a second
which captured genetic variants associated with EY but not resilience. Subtracting one
from the other generated two new GWAS, one capturing EY and the other capturing the
genetics of a processing speed-based cognitive resilience phenotype. Replication of this
approach was shown using independent discovery and replication samples within the UKB
and explored in an independent longitudinal dataset. Full GWAS results were examined
further using functional genomics analysis.
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2. Materials and Methods
2.1. Ethics Statement

Our use of UK Biobank data in this study falls within the UK Biobank’s generic
Research Tissue Bank (RTB) approval from the NHS North West Research Ethics Committee,
UK (reference 11/NW/0382).

2.2. The UK Biobank

The UKB is a dataset of over half a million participants between the ages of 40 and
69, recruited from all over the UK in the period of 2006 to 2010 and has been described
extensively elsewhere [15]. We obtained permission to access both the phenotypic and
genetic data under project # 23739.

2.3. Genetic Data

Genotypic data were collected, processed, quality controlled and imputed by the
UKB [24]. During our in-house quality control of the imputed data, we excluded samples
with a Mahalanobis distance >6 SD from multi-mean of European Population structural
analysis, removed samples with discordant sex information, chromosomal aneuploidies,
high missingness/heterozygosity, and retracted consent using UKB definitions. Using
the UKB-provided file on genomic relatedness, subjects with more than 10 relatives were
removed and then one individual from each pair was removed until no related subjects
were present. The final sample size used in this analysis was 333,664 participants.

Variants were screened by applying quality control filters (geno 0.02, MAF 0.001, info
score 0.09 and HWE 0.0001) and removing duplicates resulted in 8,378,152 variants for use
in our final analysis.

2.4. Phenotypic Data

Participants undertook a wide range of cognitive tests. The types of tests and the
method of collection and reliability are described elsewhere [25,26]. Analysis of cross-
sectional cognitive data at time zero using IBM SPSS V24 [27] shows a moderate correlation
between age and decline in performance on reaction time and a small correlation with
numeric memory, pairs matching, prospective memory, and a weak correlation with fluid
intelligence ( Supplementary Table S1). Fluid intelligence was repeated at two subsequent
intervals; however, no significant sensitivity to aging was found. Deficiencies in the
robustness of the longitudinal data collected at the second and third time points have
been discussed elsewhere [26]. Follow-up web-based cognitive data were examined as a
potential general or ‘g’ factor phenotype; however, this approach had insufficient power to
generate meaningful results.

2.5. Generation of Resilience Phenotype

Given the lack of longitudinal data, an alternative approach was to use proxy phe-
notypes. For past cognitive performance, we examined the use of educational attain-
ment/years in education [17–19]. Educational attainment is available for 332,089 individ-
uals in the UKB that met our genotypic QC requirements. In the dataset, age completed
full time education was recorded for participants who did not go to college but not for
those who attended higher education. We therefore assigned a default score of 20 to those
who attended college and created a binary phenotype using less than or equal to age 17 to
divide participants into two categories—above average and below average education years
(EY). We then examined the cognitive data and selected the parameter of processing speed
as measured by reaction time (RT) as an indicator of current cognitive performance. RT was
chosen as it had a good correlation with age and data were available on most participants
(N = 331,495). RT is the speed in milliseconds to correctly identify matching pairs. It was
adjusted for age using the slope of the Pearson’s correlation between age and RT and for
normality [17], using the natural log of corrected RT. A binary RT variable was created
using the natural log mean value (5.71). Those with a value less than or equal to the mean
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were considered to have faster than average processing speed or RT (quicker to react) and
those above the mean were considered to have slower than average processing speed or
RT. At total of 330,097 individuals had measurements for EY and RT and genetic data and
these made up the final sample (Supplementary Table S2).

Using these two binary variables—above or below average EY and faster or slower
RT—we created four group of participants (Figure 1b). One of these groups demonstrated
high resilience and these were our cases for our first “EY + Res” GWAS who had below
average EY previously and faster than average RT now. A second group demonstrated
low resilience or cognitive decline, and these were our controls for that GWAS who had
above average EY previously and slower than average RT now. The two remaining groups
of UKB samples displayed consistent cognitive performance over time. Here, our cases
for our second “EY/NonRes” GWAS had below average EY previously and slower than
average RT now (below average cognition over time) and our controls had above average
EY previously and faster than average RT now (above average cognition over time).

Figure 1 shows an overview of the analysis steps and a detailed description of the
process used to generate the resilience variable is included in the methods. Given the multi-
step method proposed in this analysis, we sought to confirm findings using our method in
an independent sample. Therefore, we divided the UKB into discovery (N = 266,543; 81% of
participants) and replication (N = 63,554; 19% of participants) samples (Figure 1a). Sample
sizes used for analysis are shown in Supplementary Table S1. We used EY as a proxy
phenotype measuring past cognitive performance [17–19]. Processing speed as measured
by RT was chosen as an indicator of current performance given its strong correlation with
age and the fact that data were available on most participants in the UKB. We created a
binary variable for each measure by using the average score within the dataset to split
the participants into similarly sized groups. By combining these two binary variables, we
created four groups of participants (Figure 1b). One of these groups demonstrated high
resilience and these were our cases for GWAS who had below average EY previously and
faster than average RT now. A second group demonstrated low resilience or cognitive
decline, and these were our controls for GWAS who had above average EY previously and
slower than average RT now. Results for this GWAS were dominated by SNPs associated
with EY because the high resilience cases and low resilience controls had below average
and above average EY measures, respectively. We named this GWAS “EY + Res” because it
identified SNPs associated with both EY and resilience (Figure 1c).
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Figure 1. Flow chart of study design. (a) The available UKB samples were split into Discovery (81%)
and Replication (19%) samples. Following successful replication analysis, the Full sample was also
put through the analysis pipeline. (b) For Discovery, Replication or Full, samples were assigned
to one of four categories based on their EY and RT measures. (c) EY+Res cases and controls were
analysed in a GWAS. (d) EY/NonRes cases and controls were analysed in a GWAS. (e) GBS used
to subtract the genetic signals for EY/NonRes from EY+Res to result in a Resilience GWAS and an
EduYears GWAS. (f) Resilience GWAS functionally analysed to identify associated SNPs and genes,
and enriched tissues, cell types and pathways, identify genetic correlations with other traits and
explore causal relationships between resilience and other traits using Mendelian randomisation.
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2.6. GWAS-by-Subtraction (GBS)

To extract SNPs that were associated with resilience only, we used Genomics Structural
Equation Modelling (GenomicSEM) [22]. There are several processing steps that need to
be performed to enable the summary statistics to be processed through GenomicSEM
and these are described in the original paper by Grotzinger et al. and accompanying
tutorials [28]. Closely following the process used by Demange et al. [23], we defined a
Cholesky model (Figure 2) as follows using the summary statistics from the EY + Res and
EY/NonRes GWASs. Both EY + Res and EY/NonRes were regressed on a latent factor,
which captured the shared genetic variance in EY (hereafter “EduYears”). EY + Res was
further regressed on a second latent factor capturing the variance in EY + Res independent
of EY/NonRes, hereafter “Resilience”. Genetic variance in Resilience was independent of
genetic variance in EduYears (rg = 0) as the Resilience factor represents residual genetic
variation in our EY + Res phenotype that is not accounted for by the EduYears factor.
These two latent variables, Resilience and EduYears, were then regressed on each SNP
in the original GWASs (EY + Res and EY/NonRes), resulting in new GWAS summary
statistics for both Resilience and EduYears (Figure 2). To calculate the path loadings for
λEduYears–EY + Res and λResilience–EY + Res, the model was run without the SNPs.
(Refer to https://github.com/joanfitz5/cog.res for Detailed Analysis Steps, accessed on 18
December 2021).
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Figure 2. SEM of GWAS-by subtraction model. The observed variables are the GWAS EY + Res and
EY/NonRes and SNP and the latent variables (unknown) are Resilience and EduYears. There are
two pathways for the SNPs analysis in this model to EY + Res—the first is through EduYears to EY +
Res and EY/NonRes and incorporates the genetic effects of the variables used in the phenotype. The
other path is through Resilience to EY + Res and measures the genetic effect of resilience independent
of EduYears. To calculate the model, the genetic covariances between EY + Res and EY/NonRes
and Resilience and EduYears are set to 0 and the variances of EY + Res and EY/NonRes are also set
to 0. The variance is therefore explained by the latent factors. The SNp value is calculated as 2pq
from allele frequencies of the 1000 Genome phase 3 data, where p is the reference allele and q the
alternative allele.

https://github.com/joanfitz5/cog.res
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2.7. Execution of GBS

To show replication of our GBS-based Resilience GWAS, we divided the UKB into a
discovery (81%) and replication (19%) sample. The replication sample included partici-
pants in the UKB that had brain imaging data available (N = 37,439) and other random
participants to give a total sample size of 63,554. The discovery sample consisted of the
remaining suitable participants (N = 266,543) Sample sizes used for analysis are shown in
Supplementary Table S3. For the discovery, replication and full analysis, we performed
two initial GWAS for each sample (EY + Res and EY/NonRes) in plink2.0 [29] using sex,
age, assessment centre, genotype array and the first 8 principal components of the pop-
ulation stratification analysis as supplied by the UK Biobank. We then performed GBS
on both sets of samples, resulting in a discovery.Resilience and discovery.EduYears GWAS, a
replication.Resilience and a replication.EduYears GWAS, and later a full Resilience GWAS and
EduYears GWAS.

2.8. Calculation of Sample Size after GBS

Running the analysis through GBS alters the sample size and it is necessary to calculate
the new value for downstream analysis. To calculate sample size or effective N (Neff) of
the Resilience GWAS for test, replication and full, we followed the procedure specified in
GenomicSEM [30] and by Demange et al. (see Appendix A URLs). To do this, we needed
to determine path loading for the models used in the three analyses as the path loading
differs with different sample sizes. We trimmed our data to only include SNPs with a MAF
of >0.10 and <0.40, as low and high MAF can bias the result. The output of this analysis
and the calculations of sample size are in Supplementary Table S4.

2.9. Additional GWAS

To examine the effect of GBS on EY + Res, we ran two further case–control GWAS of
above/below average EY and faster/slower than average age-corrected RT. We mirrored
the sample size used to generate EY + Res and EY/NonRes by randomly selecting 82,000
samples as cases and controls from the dataset. This analysis was run in plink 2.0 [29]
using sex, age, assessment centre, genotype array and the first 8 principal components
of the population stratification analysis as supplied by the UKB. To further interpret the
relationship of resilience to RT we performed a quantitative GWAS on the 164,000 samples
used in the cases control study. In addition, we also performed a full dichotomised study
of all 333,664 individuals in the UK biobank with RT data.

2.10. Identification of Genomic Loci Associated with Resilience

Manhattan plots of GWAS outputs from original phenotypes and GBS outputs were
generated in FUMA v 1.3.6 [31] using a p-value setting of <5 × 10−8 for genome-wide
significant SNPs. We used an LD r2 setting of 0.6 and the 1000 G phase 3 European reference
panel to identify independent lead SNPs and an additional r2 setting of 0.1 to identify
lead SNPs and a maximum distance for LD blocks of 250 kb to separate findings into
separate genetic loci. Conditional analysis was performed where there was more than one
independent significant SNP within 1000 kb distance using the “–condition” command in
Plink 1.9 [29], which adds a SNP as a covariate in GWAS analysis.

FINEMAP [32] was used to investigate causal SNPs by analysing the relationship
between the candidate GWAS SNPs generated in FUMA and LD data. LD files were
generated in plink 1.9 using the “–r square spaces” command. Results of SNPs listed by
Bayes Factor for each locus were examined as well as the configuration files generated by
FINEMAP to examine for causal SNPs sets. The maximum number of SNPs in a set was
fixed at 3.

2.11. Function Analysis of GWAS Output

We used FUMA v 1.3.6 [31] to perform functional analysis. We used the default settings
as described in the Tutorial section of the website and in previous publications [33,34].
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FUMA analysis of Resilience is published and can be viewed publicly in FUMA as ID:171.
We used the calculated effective sample size of 111,316 (Neff) for the analysis of the Resilience
output to examine the functional consequences of SNPs on genes, Combined Annotation-
Dependent Depletion (CADD) scores, chromatin states and Regulome DB analysis.

2.12. Mapping SNPs to Genes

Gene mapping was performed in FUMA using three strategies: (a) positional mapping
which mapped SNPs to genes based on their genomic location within a 10 kb window
of known gene boundaries. (b) Expression quantitative trait (eQTL) mapping which aligned
cis-eQTL SNPs to genes whose expression they affected, selecting information from tissue
types in 4 datasets in FUMA (PsychENCODE [35], BIOS QTL [36], Blood eQTL [37], and
GTEx 8 [38]). (c) Chromatin interaction mapping using the 3D DNA to DNA interactions
mapped SNPs to genes.

Gene-set analyses: The GENE2FUNC function within FUMA examines enrichment of
mapped genes using hypergeometic tests of 9494 gene sets from GTEx [39], MSigDB [40]
and GWAS catalog [41].

2.13. MAGMA Gene-Based Analysis

FUMA computes a gene-based genome-wide association analysis (GWGAS) from the
SNP-based p-value from the GWAS. A total of 18,879 protein-coding genes containing a
minimum of one GWAS SNP were used in this analysis and were used to test for association
with 53 tissue types. Associations were Bonferroni corrected for multiple testing with a
p value threshold of <0.05/18,879 = 2.648 × 10−6.

We further explored the sets of associated genes in cell type specificity analyses with
scRNA-seq in FUMA [42] using the following datasets: GSE104276 human prefrontal cortex
per ages [43], GSE67835 human cortex [44] and Linnarsson Mouse Brain Atlas [45]. We
analysed significant cell types across datasets, independent cell type associations based on
within-dataset conditional analyses and pair-wise cross-datasets conditional analyses.

2.14. Comparison with Published Traits

LD score regression (LDSR) analysis was performed using the LDSC function within
GenomicSEM [22] to examine the genetic correlation between Resilience with other pheno-
types. Various sources were used to obtain summary statistics from GWAS of published
research in psychiatry, brain imaging, and other traits of interest (Supplementary Tables S5
and S6). Munged summary statistic files generated during GBS were used for Resilience,
EduYears, EY + Res and EY/NonRes in the LDSR. Associations were Bonferroni corrected
for multiple testing with a p value threshold of 0.05/21 = 2.88 × 10−3.

2.15. Mendelian Randomisation

Mendelian randomisation was performed using Generalised Summary statistics-based
Mendelian Randomisation [46] (GSMR) using the GCTA tool. The procedure examines
credible causal associations between different traits based on GWAS outputs and requires
non-overlapping samples. This restricted our analysis because most of the traits examined
by LDSC contained UKB participants. However, the sample used for the discovery.Resilience
GWAS (Section 2.7) does not contain individuals that have imaging data within the UKB, so
we used this cohort to examine unidirectional and bidirectional causal associations between
Resilience and phenotypes that showed significant correlations with Resilience using LDSC.
We used a HEIDI-outlier p-value of 0.01 for outlier detection analysis. Given the low level
of independent significant SNPs in the discovery.Resilience GWAS and the imaging GWAS,
we reduced the default minimum level of significant SNPs from 10 to 8. For the disorders
of ALS, bipolar disorder and schizophrenia, we used the full Resilience GWAS and ran the
analysis at the default setting of a minimum of 10. Associations were Bonferroni corrected
for multiple testing with a p value threshold of 0.05/12 = 4.23 × 10−3.



Genes 2022, 13, 122 9 of 23

2.16. US Health and Retirement Study (HRS)

The HRS is a longitudinal study of adults aged 50 years or older in households in the
United States. The study commenced in 1992 and participants were interviewed at baseline
and every two subsequent years. Phenotypic data were accessed through the HRS web site
(see Appendix A URLs). Genetic data were supplied through dbGaP as project 18937.

2.17. Genetic Data

The imputed genetic data were available per chromosome as probability files (gprob.gz).
Pgen files were created and were screened by applying quality control filters (geno 0.02,
MAF 0.01, info score 0.09 and HWE 0.000001) and removing duplicates for each chro-
mosome. In addition, SNPs in the kgp format were converted to RSID using the USCS
browser [47].

2.18. Cognitive Phenotypes

Several cognitive tests were administered by interviewers, by phone or face to face.
These tests are described in detail on the HRS website. The HRS dataset does not contain a
reaction time or processing speed measure. To maximise the number of participants with
two data points, we consisted of the interviewer reading a randomised list of 10 nouns
to the respondent from one of four lists, and afterwards asked the respondent to recall as
many words as possible.

Data were available for eleven intervals, each two years apart, representing a time
span of 22 years. Cognitive data were available for 38,183 participants. Of these, 15,620
had genetic data and this was reduced further when individuals were eliminated based on
ethnicity (non-Caucasian), missing data or less than 2 data points, to reduce the available
sample to 9526 individuals. Linear mixed modelling (LMM) in SPSS was used to analyse the
data as this method allows for missing data in longitudinal samples, using the covariates
of gender, birthyear, education, time of test and quadratic time point [48].

2.19. GWAS of Cognitive Change over Time

We created a cognitive phenotype for cognitive change from the LMM output and
performed a GWAS using the first six PCA components as covariates as recommended in
the genotype QC report [49]. The output of the GWAS was processes through FUMA.

3. Results
3.1. Initial Phenotype Development

In order to identify SNPs that were associated with resilience alone and remove
SNPs that were associated with the EY component of the phenotype, we performed a
second GWAS using the two remaining groups of UKB samples that displayed consistent
(i.e., unchanging) performance over time. The first of these groups consisted of those with
below average EY previously and slower than average RT now (i.e., consistently below
average performance over time); the second group consisted of those who showed above
average EY previously and faster than average RT now (i.e., consistently above average
performance over time). We named this GWAS “EY/NonRes” because it identified SNPs
associated with EY but not resilience (Figure 1d).

We then used GWAS-by-subtraction (GBS) [23] to subtract the results of EY/NonRes
from EY + Res to leave SNP associations with resilience. This method uses Genomic-
SEM [22] to integrate GWAS into structural equation modelling (Figure 2). Both EY +
Res and EY/NonRes were regressed on a latent factor, which captured the shared genetic
variance in EY, hereafter “EduYears”. EY + Res was further regressed on a second latent
factor capturing the variance in EY + Res independent of EY/NonRes, hereafter “Resilience”.
Genetic variance in Resilience was independent of genetic variance in EduYears (rg = 0) as
the Resilience factor represents residual genetic variation in our EY + Res phenotype that is
not accounted for by the EduYears factor. These two latent variables, Resilience and EduYears,
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were then regressed on each SNP in the original GWASs (EY + Res and EY/NonRes),
resulting in new GWAS summary statistics for both Resilience and EduYears (Figure 1e).

3.2. Discovery and Replication Analysis within the UKB

For the discovery sample, we performed the two initial GWASs (discovery.EY + Res
and discovery.EY/NonRes) and then performed GBS on both sets of samples, resulting in
discovery.Resilience GWAS results and discovery.EduYears GWAS results. We repeated this for
the replication sample to produce replication.Resilience GWAS results and replication.EduYears
GWAS results. Comparison of the discovery.Resilience GWAS with the replication.Resilience
GWAS by LD score regression (LDSR) analysis [22] showed extremely high correlation
between the two datasets (rg = 0.964, p = 4.45 × 10−44). The discovery.Resilience GWAS was
then processed through FUMA v 1.3.6 [31] and ten independent genome-wide significant
SNPs were identified. When compared to the replication.Resilience GWAS, there was a
consistent direction of effect for all ten SNPs (Binomial sign test, p = 9.77 × 10−4). Five
of the ten SNPs were significant after Bonferroni multiple test correction for those SNPs
tested (p < 0.005). Thus, we demonstrated that we could replicate genetic associations
with Resilience in an independent sample. Results for the ten independent genome-wide
significant SNPs and their replication analysis are in Supplementary Table S7.

3.3. Analysis of the Full Sample

Next, in order to increase the statistical power of our analysis, we combined both the
discovery and replication samples to run an analysis on the full sample (N = 330,097). This
resulted in initial EY + Res and EY/NonRes GWASs and following GBS, Resilience GWAS
results and EduYears GWAS results. SNP-based heritability estimate analysis showed a
h2 value of 0.13 (SE = 0.006) for Resilience. For comparison in similarly sized samples,
we also ran GWASs of EY and RT using participants randomly selected from the UKB
(EY, N = 82,000 above average EY cases and N = 81,999 below average EY controls; RT,
N = 82,000 faster than average RT cases and N = 82,000 slower than average RT controls).
These comparisons are shown in Supplementary Table S8. A Manhattan plot and a quantile–
quantile (Q–Q) plot of Resilience on the full sample is shown in Figure 3a,b. Manhattan
plots for the other five GWAS (EY + Res, EY/NonRes, EduYears, EY and RT) are in Supple-
mentary Figure S1.

Initially, both EY + Res and EY/NonRes had a strong negative correlation with EY
(rg = −0.88 and rg = −0.89, respectively (Supplementary Figure S2). The strength of these
correlations likely reflects the major contribution of EY to these phenotypes and they are
negative because for EY + Res and EY/NonRes, the direction of effect is in the opposite
direction to EY, as the cases are low EY, whereas for the EY GWAS, the cases are high EY. EY
+ Res and EY/NonRes had a moderate positive correlation with each other (rg = 0.54). After
GBS, there was no genetic correlation between Resilience and EduYears (rg = 0.01, p = 0.803),
suggesting that the subtraction had successfully separated out the genetic associations for
both phenotypes.

Although the EY component of Resilience was addressed by the GBS method, the
RT component was not and the genetic correlation between Resilience and RT was strong
(rg = 0.80; Supplementary Figure S2). This finding was examined further following func-
tional analysis of associated loci with detail on this provided at the end of Results.
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Figure 3. Resilience GWAS and gene identification. (a) Manhattan plot of Resilience identifying 13
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tile –quantile plot of the gene-based association test. (d) Venn diagram of overlapping mapped
genes by four strategies showing 33 genes were mapped by all four strategies. These genes are
listed underneath.
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3.4. Analysis in a Dataset Independent of the UKB

The US Health and Retirement study (HRS) is a longitudinal study of adults aged
50 years or older in households in the United States [49]. The study commenced in 1992
and participants were interviewed at baseline and every two subsequent years. In order
to maximise sample size, we used immediate memory recall as our cognitive measure.
Using linear effect modelling [48] we generated a cognitive change phenotype and ran
a GWAS using available participants (N = 9526). Although no significant genetic loci
were found in this analysis and only one of our Resilience genetic loci was nominally
significant in the HRS GWAS (chromosome 3 locus; p = 0.025), there was a significant
genetic correlation (rg = −0.65, p = 1.5 × 10−3) between cognitive change and Resilience.
This negative correlation is expected as the HRS GWAS used a measure of cognitive change,
whereas the Resilience GWAS used a measure of resilience to change. Manhattan and Q–Q
plots of the HRS cognitive change GWAS are in Supplementary Figure S1g.

3.5. Functional Analysis
3.5.1. Description of Genetic Loci

Function analysis was performed on Resilience in FUMA v 1.3.6 [31].
A total of 1329 significant SNPs were tagged from the Resilience GWAS and were

associated with 26 independent lead SNPs (p < 5 × 10−8). Including SNPs in the reference
panel that are in LD with the independent SNPs resulted in a total of 1922 candidate SNPs.
Functional annotation of the candidate SNPs showed that 82% were intergenic/intronic. A
total of 84 SNPs had a Combined Annotation-Dependent Depletion (CADD) score greater
than the threshold of 12.37 which indicates that the variants are potentially pathogenic [50]
(see Supplementary Tables S9 and S10).

Lead SNPs were grouped into 13 independent genetic loci that are on 9 different
chromosomes. Detailed maps of each locus are available in Supplementary Figure 3.
Conditional analyses showed that the significance of all independent lead SNPs at each
locus was reduced when the GWAS was conditioned for the index or most associated SNP,
confirming the linkage of the index SNP to each lead SNP (Supplementary Table S11).

3.5.2. Fine Mapping

FINEMAP [32] was used to provide further information on significant SNPs in LD with
the index SNP on each locus using the GWAS SNPs generated by FUMA (Supplementary
Table S12). The log10 Bayes Factor (B10) quantifies causal evidence for a particular SNP
and a posterior probability value yielding a B10 greater than 2 indicates considerable
evidence of causality [32]. One SNP, rs62074125, on chromosome 17, exceeded this value
(B10 = 2.64). This SNP is an intron within the WNT3 gene, which is associated with cognitive
function [51]. The next highest result was on chromosome 4 where rs2189234 had a value
slightly below 2 (B10 = 1.62). This SNP is an intronic variant in the TET2 gene, which is
discussed below. FINEMAP analysis showed that the index SNP had the highest Bayes
Factor for all loci with four exceptions (Supplementary Table S13).

3.5.3. Gene Mapping

Three approaches were used in FUMA to map the associated variants to genes: (a) po-
sitional mapping mapped 141 SNPs to genes based on their genomic location within a
10 kilobase window of known gene boundaries. (b) Expression quantitative trait (eQTL)
analysis mapped 207 cis-eQTL SNPs to genes whose expression they were associated with.
(c) Chromatin interaction analysis using the 3D DNA to DNA interactions mapped SNPs to
243 genes. Circos plots for all loci are included in Supplementary Figure S4. The circos plot
from chromosome 3 shows that 102 genes were mapped to this region, representing 42% of
the total genes mapped. In addition, the circos plot from chromosome 17 shows two distinct
clusters of SNPs. Genes in this region (MAPT, WNT3, CRHR1, KANSL1, and NSF) have
been previously associated with general cognitive function but also with other cognitive
indicators [51]. Details of this gene mapping analysis is in Supplementary Table S14.
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In addition to the three approaches above, we also performed a genome-wide gene-
based association analysis (GWGAS) using the MAGMA function within FUMA [31], which
looks at the aggregate association results of all SNPs in a gene in contrast to the previous
analyses that examined the association signals at the level of individual SNPs. A GWGAS
was performed using the Resilience GWAS on 18,879 protein-coding genes containing at
least one SNP from the GWAS. Based on the number of genes tested, a Bonferroni-corrected
threshold of p < 2.65 × 10−6 was used (see Q–Q plot of this association—Figure 3c). A
total of 52 protein-coding genes were identified as associated, 40 of which were identified
by the previously described strategies (Supplementary Table S15). In total, 33 genes were
identified by all four mapping strategies (Figure 3c and Supplementary Table S16).

Many of these 33 genes have been connected with cognitive performance, neurode-
generative disorders or aging and represent potential therapeutic targets: STAU1 (chr 20)
and SEMA3F (chr 3) are predicted to control cognitive decline in aging through formation
of neural circuits and synaptic transmission [52]. BNS (chr 3) codes for bassoon presy-
naptic cytomatrix protein which is implicated in the regulation of neurotransmitters at
inhibitory and excitatory synapses [53]. IP6K1 (chr 3) codes for inositol pyrophosphate
biosynthesis, and mouse studies have shown its involvement in short-term memory by
altering presynaptic vesicle release and short-term facilitation of glutamatergic synapses in
the hippocampus [54]. MST1 (chr 3) has been shown to play a role in protecting cells from
oxidative stress which leads to aging and eventual cell death [55]. TET2 (chr 4) codes for
ten eleven translocation methyl cytosine dioxygenase 2 which catalyses the production of 5-
hydroxymethylcytosine and is associated with increased neurogenesis in the hippocampus
and cognition in animal studies [56]. ATXN2 (chr 20) is involved in regulating mRNA and
is linked to decline in cognitive function in older adults [57], general cognitive function [51]
and neurodegenerative disorders [58]. The ATXN2/BRAP locus has a strong association
with parenteral lifespan [59]. Another mapped gene close to ATXN2 and BRAP is SH2B3,
which encodes lymphocyte adaptor protein LNK, and plays a role in human aging though
the mechanism involved is not fully understood [60]. The gene ALDH2 (chr 12) codes for
aldehyde dehydrogenase and there is a link between this enzyme and life span as well as
cardiovascular aging [61].

Among the associated SNPs at the 33 prioritised genes are two UTR3 variants on
chromosome 3 (rs2681781 (CADD = 17.77) and rs4625 (CADD = 15.6)) that map to RBM5
and DAG1, respectively. Animal studies have shown that RBM5 is a likely regulator of
Rab4a, which in involved in many neurobiological functions including the transport of
transmembrane proteins required for neurotransmission [62]. DAG1 has been associated
with increased cognitive performance and is associated with GABAergic signalling in the
hippocampus [63]. In addition, one other variant of note is rs1130146 that maps to DDX27
(chr 20), a gene that was mapped by all strategies except for GWGAS and is associated with
longevity [64]. This missense SNP has a CADD score of 31 and is predicted by SIFT to be
deleterious and by PolyPhen to be possibly damaging.

3.5.4. Tissue, Cell Type and Pathway Enrichment Analysis

Using gene expression data for 53 tissues obtained from GTEx [65], we found all brain
regions to be significantly enriched for our associated genes with the strongest enrichments
for the frontal cortex, BA9 (p = 2.26 × 10−11), the cortex (p = 8.48 × 10−11) and the cerebellar
hemisphere (p = 1.18 × 10−10; Figure 4a and Supplementary Table S17). There was no
significant enrichment in other tissues of the body. Expression analysis at the cellular level
was performed using datasets from the human prefrontal cortex by age [43], the human
cortex [44] and Linnarsson Mouse Brain Atlas [45]. We analysed significant cell types across
datasets, independent cell type associations based on within-dataset conditional analyses
and pair-wise cross-datasets conditional analyses (Figure 4b and Supplementary Tables
S18 and S19). These analyses identified four neuronal cell types to be enriched for our
associated genes. For human data, these were neurons in the cortex (p = 2.16 × 10−6),
and GW26 GABAergic neurons in the prefrontal cortex (p = 6.59 × 10−8). For mouse data,
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these were excitatory glutamatergic neurons in cortical pyramidal layer 5 of the cerebral
cortex (TEGLU10; p = 6.98 × 10−6) and excitatory glutamatergic/nitric oxide neurons in
the tegmental reticular nucleus of the pons in the hindbrain (HBGLU8; p = 6.74 × 10−7).
The enrichment in GABAergic neurons is interesting because there is growing evidence to
suggest that impairment of the GABAergic system caused by aging results in an imbalance
in the inhibitory/excitatory process involved in the neuronal response to cellular challenges
and environmental changes. This results in increased vulnerability to synaptopathy and
cognitive decline [66].
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Gene-set analysis performed on curated gene sets and Gene Ontology (GO) [67]
terms using the full distribution of SNP p-values from the Resilience GWAS identified
two GO terms to be significantly enriched after adjustment for multiple testing These
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were the biological processes“ neuron differentiation” (p = 9.7 × 10−7) and the cellular
component “synaptic part” (p = 2.14 × 10−6). Bi-directional conditional analysis using
MAGMA 1.08 [68] showed that these two annotations were independent of each other
(Supplementary Table S20). One term that was nominally significant for enrichment with
a very large β value was “Wnt signalosome” (β = 1.22, p = 4.75 × 10−6). There are 12
genes in this gene set and 6 of the 12 genes had nominally significant p values and three of
these remained significant after correcting for multiple testing (p < 0.0042) (Supplementary
Table S21). Two of these genes are mapped in Resilience loci by eQTL analysis. The first is
APC on locus 5A. The other is WNT3 on locus 17 (Supplementary Figure S3d,k). Deficient
Wnt signalling is associated with loss of cognitive ability [69].

3.5.5. Genetic Correlations with Other Traits

We compared our Resilience GWAS with recent published GWAS of cognitive phe-
notypes, psychiatric and neurological disorders, and global brain imaging phenotypes
using LDSR analysis. A moderate negative correlation of Resilience with intelligence [34]
(rg= −0.26, p = 1.29 × 10−17 and educational attainment [21] (rg= −0.45, p = 1.64 × 10−56 is
as expected given that the resilience phenotype was derived from individuals within the UK
biobank that has lower than average education years. Of the 13 independent genome-wide
significant SNPs for Resilience, 6 are associated with intelligence at genome-wide significant
levels (p < 5 × 10−8) but the remaining 7 SNPs are not associated with intelligence (p > 0.01).
This indicates that some of genetic basis of Resilience does not overlap fully with the genetics
of intelligence.

When genetic correlation analyses between Resilience and psychiatric phenotypes were
corrected for multiple testing (Pbon < 2.4 × 10−3), Resilience had a small positive correlation
with unipolar depression [70] (rg = 0.17, p = 5.0 × 10−10), a small negative correlation with
schizophrenia [71] (rg = −0.18, p = 1.24 × 10−12) and bipolar disorder [72] (rg = −0.17,
p = 1.84 × 10−7), and a nominally significant negative correlation with neuroticism [73]
(rg= −0.07, p = 2.02 × 10−2). Examination of neurological disorders showed Resilience
had a small nominally significant correlation with amyotrophic lateral sclerosis (ALS) [74]
(rg = −0.21, p = 1.44 × 10−2), stroke [54] (rg = 0.08, p = 1.89 × 10−2), and Parkinson’s
disease [75] (rg = −0.08, p = 4.58 × 10−2), but Alzheimer’s disease (AD) [33] was not
significant (rg = 0.04, p = 0.358) (Supplementary Table S5 and Figure 5). The lack of
correlation with Alzheimer’s disease may be due to the difference in the genetic profile of
both phenotypes. It has been shown that decline seen in Alzheimer’s disease (AD) is not
an acceleration of the healthy ageing process but has a unique pathology of its own [76].

The GWAS of 11 brain phenotypes from the UK Biobank [77] were examined by LDSC
for genetic correlation with the Resilience (Supplementary Table S6 and Figure 5). The
volume of global white and grey matter and cerebral white matter in the left and right
hemisphere were examined based on the relationship between brain volumes and cogni-
tion [78]. Volume of cerebrospinal fluid was included based of its documented association
with brain atrophy [79] and the hippocampus, amygdala and nucleus accumbens were
examined as moderators of cognitive function [80,81]. After adjusting for multiple testing
(Pbon = 2.4 × 10−3), the only significant correlations found were for white matter volumes
where a small positive correlation was found between Resilience and global white matter
volume (rg = 0.14, p = 1.19 × 10−3), and the volume of cerebral white matter in the left
(rg = 0.148, p = 1.74 × 10−3) and right hemisphere (rg = 0.160, p = 7.34 × 10−4).

The correlations of cognitive and psychiatric and neurological disorders are largely
supported by gene enrichment analysis of the genes associated with Resilience here and
previous GWAS of cognitive and psychiatric phenotypes. An analysis of published research
from the GWAS catalog [41] showed that the significant SNPs found in this study were
previously cited 294 times. A total of 47% of these citations were from studies of cognitive
phenotypes (educational attainment, cognitive ability, maths ability and RT) and 5% were
from studies of psychiatric disorders (Supplementary Table S22). In addition, when this
exercise was repeated for overlapping mapped genes, we found that there was considerable



Genes 2022, 13, 122 16 of 23

overlap with these phenotypes amongst others. The most significant overlap was where 40
mapped genes in the Resilience analysis overlapped with the 99 reported genes for short
sleep duration (p = 2.03 × 10−57). In a recent Mendelian randomisation study on sleep
duration, it was suggested that sleep duration may represent a potential causal pathway for
differences in cognitive ability [82] and increase sleep in adults over 60 is associated with
poorer cognitive function [83]. There was also a significant overlap with genes associated
with extremely high intelligence [84] where 32 Resilience mapped genes overlapped with the
81 associated genes reported in that study (p = 1.17 × 10−45). Many of the overlapping genes
for sleep duration and extremely high intelligence were on chromosome 3 (Supplementary
Table S23).
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3.5.6. Mendelian Randomisation

To investigate whether genetic correlations reflected directional effects, we exam-
ined the potential credible causality of the relationship between Resilience and phenotypes
where independent samples were available using Generalised Summary statistics-based
Mendelian Randomisation [46] (GSMR) (Supplementary Table S24). We observed a sig-
nificant bidirectional causal effect of Resilience on schizophrenia (bxy = −0.25, p = 7.02 ×
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10−9) and schizophrenia on Resilience (bxy = −0.07, p = 3.80 × 10−7) indicating an inter-
relationship between the two phenotypes. By contrast, bipolar disorder and ALS did not
have significant credible causality relationships with Resilience.

GSMR analysis was also performed using white matter volume variables and Resilience.
To maintain independence between GWAS datasets, we used the discovery.Resilience GWAS
that did not include UKB participants with imaging data. The low level of independent
significant SNPs in the discovery GWAS did not allow for analysis of the causal effect
of Resilience on white matter. A nominally significant causal association of white matter
volume with Resilience was detected (bxy = 0.13, p = 0.049) along with causal associations of
left and right cerebral hemisphere white matter volume with Resilience. The association
with the right hemisphere survived multiple test correction (left: bxy = 0.15, p = 0.005; right:
bxy = 0.17, p = 0.002). There is no evidence of substantial pleiotropy in the GSMR analysis.

3.5.7. Examination of the Relationship of Resilience with RT

Given the strong positive correlation of Resilience with RT (rg = 0.80), a possible concern
was that we were just identifying genetic associations with RT that are independent of EY.
To examine this further we performed a functional analysis on a GWAS of a dichotomised
RT phenotype using all suitable participants in the UK Biobank (N = 333,664). This GWAS
was perfectly correlated (rg = 1, p = 7.24 × 10−115) with a previously published GWAS
where RT was studied as a quantitative phenotype [51]. We found that while nine of the 13
loci identified in the Resilience GWAS overlapped with RT, four loci did not (Supplementary
Table S8). There was a total of 534 mapped genes for RT and 366 for Resilience. Of these,
301 were unique to RT and 133 unique to Resilience with 223 shared genes. Only 11 of our 33
prioritised genes in Resilience were among the 27 prioritised genes for RT (Supplementary
Figure S5). Pathway enrichment analysis identified GO terms that were enriched for both
RT and Resilience associated genes (e.g., the cellular component “synaptic part”) but also
showed pathways related to neuronal processes that are only significant in Resilience (e.g.,
the biological process “neuron_differentiation”; Supplementary Table S25). The genetic
correlation between Resilience and RT is strong because this is an RT-based resilience
phenotype. However, there are differences in the associated genes being detected and
prioritised because we detected SNPs associated with faster than average RT in individuals
that previously showed below average EY, i.e., the resilience phenotype in this study.

3.5.8. Effect of Large Locus on Chromosome 3

Almost 30% of the mapped genes and over 50% of prioritised genes can be attributed
to a single large locus on chromosome 3: 49385350–50250837. We were concerned that this
locus might have an inflated influence on the functional analysis of Resilience. To investigate
this, we extracted all SNPs in this locus from the GWAS of Resilience and reprocessed the
GWAS through FUMA. This analysis showed a decrease in candidate SNPs and mapped
genes; however, the main findings of the functional analysis remained unchanged.

4. Discussion

This is the first study, to our knowledge, to explore the genetic basis of cognitive
resilience in a large dataset, here using processing speed measured in later adulthood
as a basis for a resilience phenotype. In the absence of longitudinal data, we used a
proxy phenotype of EY to measure cognitive performance in earlier adulthood and have
combined case–control GWAS with structural equation modelling to extract genetic variants
associated with Resilience in the UKB. We have shown the robustness of this method by
confirming associations detected in a discovery sample replicate in an independent sample.
We have successfully identified 13 independent genome-wide significant loci, resulting
in 366 mapped genes and 33 prioritised genes for Resilience. Functional analysis showed
significant expression of associated genes in all brain tissues, and particularly in the frontal
cortex. Significant enrichment of associated genes was also found at the cellular level in
both GABAergic and glutamatergic neurons indicating an excitatory/inhibitory control
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in the prefrontal cortex, and within biological processes related to neuron differentiation,
synaptic activity, and WNT signalling.

Mapping of GWAS results identified genes that have been previously associated
with cognitive decline including STAU1, SEMF3A, IP6K1, MST1, the ATNX2/BRAP locus,
ALDH2 and DDX27, where a likely functional missense variant is highly associated. Other
associated genes involved with synaptic activity and neurogenesis include BNS, DAG1,
IP6K1 and TET2, pointing to potential targets for improvement of cognitive resilience.

A limitation of our study was our reliance on RT to create the Resilience phenotype,
which results in a strong genetic correlation between Resilience with RT. This reflected our
study design that detected SNPs associated with faster than average RT or processing speed
in individuals that previously showed below average EY. However, the majority of genes
prioritised by our Resilience GWAS are not prioritised by the RT GWAS and vice versa. We
conclude that these findings point to genes that enhance maintenance of processing speed
over the life span. Decline in processing speed is a strong predictor of decline in cognitive
processing in older adults [11] and had been found to be associated with cerebral small
vessel disease and factors involved in the maintenance of cerebellar morphology [85]. In
addition, better cognitive processing speed is also associated with larger cerebral cortex
volumes (supporting our finding of a causal relationship with white matter volume), lower
levels of inflammatory markers and insulin and is mediated by physical exercise [86]. Over
half of our genome-wide significant loci for Resilience are not associated with intelligence,
indicating that factors such as reserve, compensation and maintenance may play a role
over and above overall intelligence in determining resilience.

Our use of a proxy phenotype for past cognitive performance and GBS to generate
a Resilience GWAS was in response to the limitation of not having direct repeated mea-
surements of same cognitive phenotype in large numbers of genotyped samples over an
extended time period. Instead, we refined our analysis to make best use of available phe-
notypic data in the UKB to exploit the large sample size available for genetic discovery.
We used the proxy phenotype of academic achievement (EY) to represent past cognitive
performance in the absence of a direct measure of processing speed. EY itself is not a
predictor of cognitive decline [87]; however, it is associated with cognitive performance
in younger adults [9]. Our assumption is that superior processing speed is a necessary
component of academic success. Processing speed is indeed the key predictor of number
sense, fluid intelligence and working memory, which in turn predict individual difference
in academic achievement [88]. Studies using EEG have shown that higher processing speed
can explain about 80% of variance in general intelligence. A more efficient transmission of
information between frontal attention to memory storage and retrieval benefits those with
higher intelligence [20]. The non-cognitive contributors to academic achievement also affect
this proxy phenotype [23]. There is debate within the cognitive scientific community as to
the suitability of education achievement as a proxy for cognition, some showing a modest
correlation [89] while others describe a high phenotypic and genetic correlation [18].

A further limitation is that processing speed as measured by RT is only one component
of cognition and it may not be possible to extrapolate the results of this analysis to global
cognitive resilience. To support our approach, we explored the use of a much smaller
dataset (HRS) which had longitudinal data over time. We showed a genetic correlation
between our Resilience findings in the UKB and cognitive change in HRS. This dataset was
not sufficiently powered to confirm the Resilience genetic variants. However, this can be
addressed by various biobanks that plan new data collection in the future.

This study demonstrated a new method to explore cognitive resilience and identifies
associated loci and genes that may provide neurobiological insights for this processing
speed-based resilience phenotype. Given the limitations in the method used to construct the
resilience phenotype, these findings are preliminary and will need to be confirmed by future
research; however, the findings suggests that cognitive resilience is not just a function of
superior intelligence and is causally related to variation in white matter volume. This is turn
may represent a potential target for studies seeking to enhance resilience therapeutically.
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Appendix A

URLs:

UK Biobank: http://biobank.ndph.ox.ac.uk, accessed on 18 December 2021.
Plink: www.cog-genomics.org/plink/2.0/, accessed on 18 December 2021.
GenomicSEM: https://github.com/MichelNivard/GenomicSEM/wiki, accessed on 18
December 2021.
GWAS-by-subtraction: https://rpubs.com/MichelNivard/565885, accessed on 18 Decem-
ber 2021.
GBS sample size (N effective) calculation: https://github.com/PerlineDemange/non-
cognitive/blob/master/GenomicSEM/Cholesky%20model/Calculation_samplesize.R, ac-
cessed on 18 December 2021
Functional Mapping and Annotation (FUMA): https://fuma.ctglab.nl/downpage.html,
accessed on 18 December 2021.
Venn diagram: http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 18 De-
cember 2021.
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FINEMAP: http://www.christianbenner.com/, accessed 18 December 2021.
Generalised Summary-data-based MR: https://cnsgenomics.com/software/gcta/#GSMR,
accessed on 18 December 2021.
GWAS Catalog: https://www.ebi.ac.uk/gwas/, accessed on 18 December 2021.
Brain phenotypes: https://open.win.ox.ac.uk/ukbiobank/big40/, accessed 18 Decem-
ber 2021.
GWAS Atlas: https://atlas.ctglab.nl/, accessed 18 December 2021.
Ensembl Variant Effect Predictor: https://www.ensembl.org/Tools/VEP, accessed on 18
December 2021
HRS: https://hrsonline.isr.umich.edu/, accessed 18 December 2021
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