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The pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a
significant threat to global health. Currently, no specific prophylactic and therapeutic treatment is available. No
evidence from randomized clinical trials (RCTs) that a treatment may ameliorate the clinical outcome of patients
with COVID-19 exists with the only exception of preliminary evidence from remdesivir trials. Here, we present
evidence from the literature and a compelling hypothesis on the potential immunomodulatory, iron chelating
and anti-oxidant effects of iron chelators in the treatment of COVID-19 and its complications. Interestingly,
iron chelation has been shown in vitro to suppress endothelial inflammation in viral infection, which is the
main pathophysiologic mechanism behind systemic organ involvement induced by SARS-CoV-2, by inhibiting
IL-6 synthesis through decreasing NF-kB.
Iron chelators exhibit iron chelating, antiviral and immunomodulatory effects in vitro and in vivo, particularly
against RNA viruses. These agents could attenuate ARDS and help control SARS-CoV-2 viamultiple mechanisms
including: 1) inhibition of viral replication; 2) decrease of iron availability; 3) upregulation of B cells; 4) improve-
ment of the neutralizing anti-viral antibody titer; 5) inhibition of endothelial inflammation and 6) prevention of
pulmonary fibrosis and lung decline via reduction of pulmonary iron accumulation. Both retrospective analyses
of data in electronic health records, as well as proof of concept studies in humans and large RCTs are needed to
fully elucidate the efficacy and safety of iron chelating agents in the therapeutic armamentarium of COVID-19,
probably as an adjunctive treatment.

© 2020 Elsevier Inc. All rights reserved.
The pandemic of coronavirus disease 2019 (COVID-19) caused by se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed
a significant threat to global health [1–3]. After a median incubation pe-
riod of approximately 5 days (range: 2–14 days) [4], the majority of
cases present mild symptoms, mainly from the respiratory tract, while
some progress to viral pneumonia, acute respiratory distress syndrome
(ARDS), multiorgan failure or death. While ARDS is associated with a
highmortality rate of 30–40% [5,6], evidence suggests that COVID-19 re-
lated ARDS may have a worse outcome [7–9].

Currently, no specific prophylactic and therapeutic treatment is
available. No evidence from randomized clinical trials (RCTs) that a
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treatment may ameliorate the clinical outcome of patients with
COVID-19 exists [10] with the only exception of preliminary evidence
from remdesivir trials [11]. Here, we present evidence from the litera-
ture and a compelling hypothesis on the potential immunomodulatory,
iron chelating and anti-oxidant effects of iron chelators in the treatment
of COVID-19 and its complications.

SARS-CoV-2 is a Betacoronavirus originating from bat-derived
coronaviruses with transmission through an unknown intermediate
mammal host to humans and presenting many similarities with
SARS-Co-V [1,2]. SARS-CoV-2 targets epithelial cells through the S
protein which attaches to the angiotensin-converting enzyme 2
(ACE2) receptor [12].

SARS-CoV-2 primarily affects the tissues expressing elevated levels
of ACE2 including the lung, heart, kidney, the gastrointestinal tract, as
well as the endothelium with systemic manifestations [13–15]. Diffuse
endothelial inflammation with systemic involvement of microcircula-
tion leading to thrombosis, tissue edema and organ ischemia has been
demonstrated in histological analyses of various organs in patients suf-
fering from COVID-19 [16]. Potential mechanisms of the systemic clini-
cal findings of COVID-19 include: 1) themulti-tissue expression of ACE2
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receptors; 2) the pronounced systemic increase of inflammatory cyto-
kines and mediators, which may be even characterized as a “cytokine
storm” [17]; 3) diffuse endotheliitis [16]; and 4) the dysregulated iron
homeostasis resulting in oxidative stress and inflammatory response.

Dysregulation of iron homeostasis with higher iron levels may pro-
mote the course of viral infections [18–20], being associated with a
range of respiratory diseases, including ARDS and pulmonary fibrosis
[21]. Experimental and clinical data have indicated that excessive oxida-
tive and nitrosative stress may contribute to the pathogenesis of ARDS.
Furthermore, altered plasma and lung iron levels, as well as related pa-
rameters are associated with ARDS pathogenesis [22–24]. Evaluating
serum ferritin levels in patients at risk may help predict the develop-
ment of ARDS and, thereby, improve treatment [25]. Interestingly,
based on a pre-print of in silico analysis performed on published biolog-
ical protein sequences, it was shown that protein sequences of SARS-
CoV-2 may form a complex with porphyrin, as well as affect the heme
on the 1-β chain of hemoglobin resulting in the dissociation of the
iron [26].

Iron chelators (Deferoxamine, Deferiprone and Deferasirox), partic-
ularly deferoxamine (DFO), have been approved by the FDA for the
treatment of iron overload [27,28]. Besides iron chelation, DFO may in-
hibit pathogens, including bacteria, viruses and fungi, due to its immu-
nomodulatory properties in various infected animal models [29]. Due
to their antiviral and immunomodulatory effects in vitro and in vivo
[29], we hypothesize that iron chelators may possess beneficial immu-
nomodulatory and antiviral actions against SARS-CoV-2. Indeed, DFO
treatment has been shown to decrease the mortality and relieve the
symptoms of Enterovirus 71-infected mice [29]. More importantly, B
cell levels of the infected mice were upregulated while the neutralizing
antibody titer was also improved [29]. COVID-19 is characterized by
lymphopenia [30–32].We hypothesize that iron chelatorsmay improve
both lymphopenia observed in COVID-19 by upregulating lymphocytes,
particularly B cells, as well as the neutralizing antibody titers against
SARS-CoV-2.

More importantly, we would speculate that iron chelators may de-
crease SARS-CoV-2 replication via decreasing iron availability which
plays an important role in viral replication, as shown in a number of
RNA viruses. Iron chelators have been shown to inhibit human immu-
nodeficiency virus type 1 (HIV-1) replication. The expression of the
p24 antigen in human monocyte-derived macrophages and peripheral
blood lymphocytes was reduced by all three iron chelators through
the decrease of cellular proliferation, highlighting an additional benefit
in antiretroviral combination therapy [33]. Moreover, iron availability
plays an important role in viral replication in RNA viruses as shown in
West Nile virus infection in its mosquito vector, HIV and Hepatitis C
Virus (HCV) [33–35]. Based on mechanistic studies, iron may affect
HCV replication via its effect on a number of host genes which are piv-
otal in replication [34]. Saliva from mosquitoes treated with DFO re-
sulted in decreased viral titers of West Nile virus compared with
untreated controls, indicating low viral transmission capacity [36]. In-
terestingly, the treatment with DFO infusions ameliorates the response
rate to interferon-α treatment of chronic viral hepatitis B, resulting in
histological improvement and loss of hepatitis B virus DNA [37].

It could also be reasonable to speculate that iron chelators may pre-
vent the development of pulmonary fibrosis and lung function decline
following COVID-19 infection. Increased iron levels and/or dysregulated
iron homeostasis occur in several lung diseases, including pulmonary fi-
brosis [21].More than 20% of survivors of the 2003 outbreak of SARS de-
veloped residual pulmonary fibrosis one year after infection [38–40]. Of
note, fibrotic changes have also been reported in more than 17% of pa-
tients during the acute phase of COVID-19 [41]. In animal models, fibro-
sis and lung function decline are associated with pulmonary iron
accumulation in bleomycin-induced pulmonary fibrosis [21]. Further-
more, iron accumulation is elevated in lung sections from patients
with idiopathic pulmonary fibrosis where human lung fibroblasts ex-
hibit higher proliferation and cytokine and extracellular matrix
responses when exposed to higher iron levels. In experimental pulmo-
nary fibrosis, intranasal treatment with the iron chelator DFO has been
shown to prevent pulmonary fibrosis and decline in lung function pre-
senting also immunomodulatory properties [21].

Iron is also implicated in endothelial inflammation induced by viral
infections through induction of reactive oxygen species leading to nu-
clear factor kB (NF-kB) activation and subsequent upregulation of pro-
inflammatory mediators such as IL-1β, IL-6 and TNF-α. Iron chelation
by DFO has been shown to suppress endothelial inflammation induced
by influenza A infection in vitro by inhibiting IL-6 synthesis through de-
creasing NF-kB [42]. Emerging evidence suggests that endothelial in-
flammation is the main pathophysiologic mechanism behind the
multiorgan involvement and failure induced by SARS-CoV-2 infection.
Therefore, we believe that iron chelating agents might prove useful to
ameliorate the systemic manifestations of COVID-19.

In conclusion, iron chelating agents exhibit iron chelating, antiviral
and immunomodulatory effects in vitro and in vivo [29], particularly
against RNA viruses. These agents could attenuate ARDS and help con-
trol SARS-CoV-2 via multiple mechanisms including: 1) inhibition of
viral replication; 2) decrease of iron availability; 3) upregulation of B
cells; 4) improvement of the neutralizing anti-viral antibody titer; 5) in-
hibition of endothelial inflammation and 6) prevention of pulmonary fi-
brosis and lung decline via reduction of pulmonary iron accumulation.
To do so, both retrospective analyses of data in electronic health records,
as well as proof of concept studies in humans and, at a later stage, large
RCTs are needed to fully elucidate the efficacy and safety of iron chelat-
ing agents in the therapeutic armamentarium of COVID-19, probably as
an adjunctive treatment.
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