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Abstract

The zinc transporter protein ZIP13 plays critical roles in bone,
tooth, and connective tissue development, and its dysfunction is
responsible for the spondylocheirodysplastic form of Ehlers-Danlos
syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular
pathogenic mechanism of SCD-EDS caused by two different
mutant ZIP13 proteins found in human patients: ZIP13G64D, in
which Gly at amino acid position 64 is replaced by Asp, and
ZIP13DFLA, which contains a deletion of Phe-Leu-Ala. We demon-
strated that both the ZIP13G64D and ZIP13DFLA protein levels are
decreased by degradation via the valosin-containing protein
(VCP)-linked ubiquitin proteasome pathway. The inhibition of
degradation pathways rescued the protein expression levels,
resulting in improved intracellular Zn homeostasis. Our findings
uncover the pathogenic mechanisms elicited by mutant ZIP13
proteins. Further elucidation of these degradation processes may
lead to novel therapeutic targets for SCD-EDS.
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Introduction

Zinc (Zn) transporters are pivotal for Zn homeostasis, which is

important for human health (Fukada & Kambe, 2011). Zn contributes

to a variety of cellular functions and physiological events (Fukada

et al, 2014), and impaired Zn regulation can cause a variety of

diseases (Prasad, 1995; MacDonald, 2000; Lichten & Cousins, 2009;

Fukada et al, 2011b; Ryu et al, 2011). One such disease is acroder-

matitis enteropathica (AE), a pediatric disorder resulting from Zn

deficiency. Patients with autosomal recessive AE have mutations in

the SLC39A4 gene (Wang et al, 2002; Dufner-Beattie et al, 2007),

which encodes ZIP4, a membrane protein that mediates Zn influx

across the cell membrane. A loss-of-function SLC39A4 gene mutation

in humans results in growth retardation, dermatitis, and hair loss
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(Wang et al, 2002; Dufner-Beattie et al, 2007). ZIP4 may also affect

pancreatic cancer pathogenesis and progression (Li et al, 2007;

Zhang et al, 2013), and intestinal integrity (Geiser et al, 2012). ZIP6

is reported to control metastasis (Yamashita et al, 2004; Hogstrand

et al, 2013), ZIP7 is involved in the progression and proliferation of

breast cancer cells (Taylor et al, 2007), and ZIP8 plays a key role in

osteoarthritis-related cartilage destruction (Kim et al, 2014). Tran-

sient neonatal Zn deficiency is a disease related to the SLC30A2 gene,

which encodes the Zn efflux protein ZnT2. A heterozygous mutation

in ZnT2 causes a low Zn concentration in mothers’ milk, resulting in

Zn deficiency in their breast-fed infants (Chowanadisai et al, 2006;

Itsumura et al, 2013). ZnT8, which is expressed in pancreatic b cells,

is essential for packaging insulin crystals (Bosco et al, 2010; Hardy

et al, 2011), and variants in the SLC30A8/ZnT8 gene are associated

with an increased risk for type 2 diabetes (Xu et al, 2012; Tamaki

et al, 2013).

The spondylocheirodysplastic form of Ehlers-Danlos syndrome

(SCD-EDS, OMIM 612350), a genetic disorder of connective tissues,

bones, and teeth, is also related to Zn imbalance (Fukada et al,

2008; Giunta et al, 2008; Warman et al, 2011; Byers & Murray,

2012). SCD-EDS patients show short stature, skeletal dysplasia of

the spine, and clinical abnormalities of the hands and teeth, in addi-

tion to the common features of EDS such as skin and joint loose-

ness. A mouse model of SCD-EDS, the Slc39a13/Zip13-deficient

(Zip13-KO) mouse, has features similar to those of human patients,

that is, abnormal development of the skin, bone, teeth, and cranio-

facial structures. (Fukada et al, 2008, 2011a; Munemasa et al,

2014). Molecular analyses revealed that the mesenchymal-

originated cells from Zip13-KO mice have impaired BMP/TGF-b
signaling, indicating that ZIP13 is critical for the development of

hard and connective tissues (Fukada et al, 2008). By homozygosity

mapping of Portuguese patients with SCD-EDS, we identified a path-

ogenic mutation (c.221G>A, G74D) in the SLC39A13 gene (Fukada

et al, 2008). The ectopic expression of the G74D ZIP13 mutant could

not fully rescue Zip13-KO primary osteoblasts or dermal fibroblasts,

indicating that G74D was a loss-of-function mutation (Fukada et al,

2008). This mutation was later renamed G64D, after identification

of the de facto start codon 10 amino acids downstream from the

conventional start codon, and its membrane topology was refined

(Bin et al, 2011). Another mutant ZIP13 protein, in which phenyl-

alanine–leucine–alanine (FLA) is deleted (ZIP13DFLA), was also

reported in human SCD-EDS patients (Giunta et al, 2008). Charac-

terization of the wild-type (WT) ZIP13 protein revealed that it is

localized to the Golgi, possesses 8 putative transmembrane domains

(TMs) with luminal N- and C-termini, and forms homo-dimers

(Fukada et al, 2008; Bin et al, 2011), and its luminal loop was

proposed to be responsible for Zn selection (Potocki et al, 2013).

However, it remains unknown how the identified ZIP13 mutations

lead to SCD-EDS.

Here, we demonstrate that both the ZIP13G64D and ZIP13DFLA

proteins are rapidly degraded via the valosin-containing protein

(VCP)-linked ubiquitin proteasome pathway, leading to an imbal-

ance of intracellular Zn homeostasis. Furthermore, the protein

expression levels and Zn homeostasis were recovered by inhibiting

the proteasome machinery. This is the first demonstration of the

mechanism by which these mutations cause the loss of ZIP13 func-

tion and SCD-EDS, and our findings may suggest potential therapies

for treating this disease.

Results

The level of ZIP13G64D protein is decreased in cultured cells

To characterize the pathogenic ZIP13G64D protein, in which a

glycine at amino acid position 64 (G64), located within TM1, is

replaced by aspartic acid (Fig 1A), we first introduced ZIP13WT-

and ZIP13G64D-expressing plasmids into 293T cells. While ZIP13WT

increased the Metallothionein 1 (MT1) gene expression (Fig 1B)

reflecting an increased intracellular Zn level (Supplementary Fig

S1), ZIP13G64D did not, even though the ZIP13G64D and ZIP13WT

transcript levels were equivalent (Fig 1C). In addition, the ZIP13

protein was barely detected by the anti-ZIP13 antibody ab-A1

(Fig 1D) in transiently ZIP13G64D-expressing 293T cells (Fig 1E).

Similar results were obtained in HeLa cells stably expressing

ZIP13G64D (Supplementary Fig S2A). These findings suggested that

the ZIP13G64D protein was unstable, resulting in an imbalance of

intracellular Zn homeostasis.

The G64D mutation affects the stability of the ZIP13 protein

We previously identified the signal peptide (SP) of the ZIP13

protein (Fig 1D) (Bin et al, 2011). SP is cleaved to yield the

“mature” protein, that is, the functional protein with the correct

intracellular distribution. To determine whether the G64D muta-

tion affects the level of the mature ZIP13 or the SP-uncleaved

“immature” protein, we generated two anti-ZIP13 antibodies: one

against a synthetic peptide corresponding to an internal sequence

(amino acids 23–35) in human ZIP13, proximal to the signal pepti-

dase complex (SPC) cleavage site (ab-A1) and another against

amino acids 184–201 of mouse ZIP13 (ab-A2) (Figs 1D and 2A).

When the lysates of 293T cells expressing N-terminally 3xFLAG-

tagged wild-type ZIP13 (Fig 2A) were immunoprecipitated using

anti-FLAG antibody, separated by SDS–PAGE, and subjected to

silver staining, two unique bands were observed with molecular

weights between 29 and 47 kDa (band-A and band-B) (Fig 2B,

left). In contrast, when cells expressing mutant ZIP13 (F-G64D)

were treated similarly, band-B was severely decreased while band-

A remained (Fig 2B, left). Western blot using an anti-FLAG anti-

body revealed that band-A contained FLAG and was therefore the

SP-uncleaved, immature ZIP13 protein (Fig 2B, middle). Band-B

was recognized in the F-WT sample by ab-A1 (Fig 2B, right), but

not by the anti-FLAG antibody (Fig 2B, middle), indicating that it

was the SP-cleaved, mature ZIP13WT protein. No bands were

detected by the ab-A1 antibody in the F-G64D sample (Fig 2B,

right), indicating that the SP-cleaved ZIP13G64D mature protein

was specifically decreased in the cells. Western blot with the

ab-A2 antibody revealed band-B at a lower position, most likely

corresponding to the SP-cleaved, mature ZIP13 protein (Fig 2C,

middle), and the amount of band-B yielded by the expression plas-

mid for F-G64D was markedly decreased (Fig 2C, middle). Further-

more, when the lysates from cells expressing a C-terminally V5

epitope-tagged ZIP13 (ZIP13-V5) (Fig 2D) were subjected to

Western blot with an anti-V5 antibody, the V5-tagged mutant

(G64D-V5) levels were lower (Fig 2E and Supplementary Fig S2A),

similar to the results with F-G64D (Fig 2B). While immunoprecipi-

tation analysis showed the same two bands in both the wild-type

(WT-V5) and G64D-V5 samples (Fig 2E, band-A and band-B), the
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G64D-V5-expressing cells contained a reduced amount of band-B,

indicating that the expression of SP-cleaved G64D mature protein

was greatly reduced in these cells.

Since ZIP13 protein forms a homo-dimer (Bin et al, 2011) and

the G87R mutation in the zinc transporter ZnT2 is reported to

cause neonatal zinc deficiency due to a dominant-negative effect

on its homo-dimerization (Lasry et al, 2012), we next examined

whether the G64D mutation affects the oligomeric state of the

ZIP13 protein. Blue native-PAGE analysis of lysates from F-ZIP13-

expressing 293T cells showed a lower expression of F-G64D than

F-WT, but the F-G64D apparently still formed dimers similar to

F-WT (Fig 2F). We further evaluated the monomer–monomer

interaction between ZIP13G64D proteins in 293T cells that were co-

transfected with plasmids encoding F-G64D and G64D-V5,

followed by immunoprecipitation with anti-FLAG or anti-V5 anti-

bodies. Western blotting analysis clearly showed that F-G64D and

G64D-V5 formed a complex (Fig 2G). Taken together, these results

indicated that the loss of function of the G64D mutation was

mainly attributable to a large reduction in the quantity of the

mature ZIP13 protein, rather than to a disruption in ZIP13’s abil-

ity to form a complex due to a change in its biochemical charac-

teristics.
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Figure 1. ZIP13 with the pathogenic G64D mutation shows a decreased protein expression level.

A Location of the G64D mutation in ZIP13. Asterisk (*) indicates the G64D mutation.
B Metallothionein 1 (MT1) expression. 293T cells transfected with the indicated DNA constructs were treated with 50 lM ZnSO4 for 6 h, and then, the MT1 mRNA

expression level was analyzed by RT-qPCR. Data are representative of three experiments and shown as mean � s.e.m. (*P = 0.037). ZIP14WT was included as a
positive control.

C ZIP13 transcript levels in 293T cells expressing wild-type or G64D mutant ZIP13. 293T cells were transfected with plasmids for ZIP13WT or ZIP13G64D. Twenty-four
hours later, RT–PCR was performed using primers for the indicated genes (Fukada et al, 2008).

D Schematic diagram showing the recognition sites of anti-ZIP13 antibodies. Asterisk (*) indicates the G64D mutation. SP, signal peptide; SPC, signal peptidase complex;
ab-A1 and ab-A2 indicate anti-ZIP13 antibodies that recognize amino acids 23–35 of human ZIP13 and 184–201 of mouse ZIP13, respectively.

E ZIP13 protein levels in 293T cells expressing wild-type and G64D mutant ZIP13. Cell lysates were analyzed by Western blot (IB) using the ab-A1 antibody.

Source data are available online for this figure.
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Proteasome-dependent pathways are involved in the
degradation of ZIP13G64D protein

Given that the expression level of ZIP13G64D protein but not its

mRNA was reduced, it was likely that a protein degradation

pathway was involved. To address this possibility, we expressed

ZIP13-V5 (Fig 2D) in 293T cells, followed by treatment with

MG132, an inhibitor of proteasome-dependent degradation path-

ways, or bafilomycin, an inhibitor of lysosome-dependent degrada-

tion pathways (Lee & Goldberg, 1998; Ishidoh & Kominami, 2002).
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Figure 2. The pathogenic G64D mutation affects the stability of the SP-cleaved mature ZIP13 protein.

A Schematic diagram of the N-terminally 3xFLAG-tagged ZIP13 protein (F-ZIP13). Asterisk (*) indicates the G64D mutation. SP, signal peptide; SPC, signal peptidase
complex; ab-A1 and ab-A2: anti-ZIP13 antibodies.

B Protein expression of F-ZIP13 in 293T cells. N-terminally 3xFLAG-tagged wild-type (F-WT) and G64D mutant (F-G64D) ZIP13 proteins were immunoprecipitated (IP)
with an anti-FLAG antibody, and then, the immunoprecipitates were analyzed by silver staining and Western blot using an anti-FLAG or anti-ZIP13 (ab-A1) antibody.
IgH, heavy chain of IgG; IgL, light chain of IgG; A: SP-uncleaved immature ZIP13 protein; B: SP-cleaved mature ZIP13 protein.

C SP-cleaved mature ZIP13 protein was detected by ab-A2. A: SP-uncleaved immature ZIP13 protein; B: SP-cleaved mature ZIP13 protein.
D Schematic diagram of the C-terminally V5 epitope-tagged ZIP13 protein (ZIP13-V5).
E Protein expression of ZIP13-V5 in 293T cells. V5 epitope-tagged wild-type or G64D mutant ZIP13 protein (WT-V5 or G64D-V5) was immunoprecipitated using an anti-

V5 antibody, and then, the immunoprecipitate was analyzed by Western blot using an anti-V5 antibody. A: SP-uncleaved immature ZIP13 protein; B: SP-cleaved
mature ZIP13 protein.

F Dimer formation assay. The dimer formation of ZIP13 was analyzed by blue native-PAGE using the lysates of 293T cells expressing F-WT or F-G64D.
G Monomer–monomer interaction assay. 293T cells were co-transfected with expression plasmids for F-G64D and G64D-V5 ZIP13, followed by immunoprecipitation

with the indicated antibodies. Western blotting analysis was performed with either an anti-V5 or anti-FLAG antibody.

Source data are available online for this figure.

ª 2014 The Authors EMBO Molecular Medicine Vol 6 | No 8 | 2014

Bum-Ho Bin et al Pathogenic mechanism by ZIP13 mutants EMBO Molecular Medicine

1031



The cells were then lysed by a detergent-containing buffer, and the

lysates were separated into soluble and insoluble fractions by brief

centrifugation and subjected to Western blotting analysis. The

protein level of G64D-V5 in the NP40-detergent-soluble fraction was

lower than that of WT-V5 (Fig 3A, left), similar to the result using

non-tagged ZIP13s (Fig 1E). While bafilomycin had no apparent

effect on the protein expression patterns, MG132 preferentially

increased the amount of WT-V5 and G64D-V5 protein in the NP40-

detergent-insoluble fraction, which contained numerous ubiquitinat-

ed proteins, and in which the level of G64D-V5 was greater than that

of WT-V5 (Fig 3A, right). These findings indicated that ZIP13 is

normally degraded by a proteasome-dependent pathway and that

the G64D mutation alters the protein’s properties so that more of it

accumulates in the detergent-insoluble fraction.

To confirm that the ZIP13G64D protein was degraded via a protea-

some-dependent pathway, we repeated the experiment using a

different cell line. HeLa cell lines stably expressing WT-V5 or G64D-

V5 were established by blasticidin selection. Clones containing simi-

lar amounts of transfected cDNA were selected by monitoring their

internal ribosome entry site (IRES)-driven human CD8 expression

(Fig 3B, lower, and Supplementary Fig S2C), then treated with the

proteasome inhibitor MG132. Western blotting analysis showed that

MG132 treatment led to an increase in the G64D-V5 protein over

time (Fig 3B, upper), accumulating it most likely in the Golgi

(Fig 3C), where ZIP13 is normally localized (Fukada et al, 2008).

Furthermore, treatment with lactacystin, another proteasome inhibi-

tor, upregulated the G64D-V5 protein expression (Fig 3D). The

ZIP13 homodimers were also increased when MG132 was applied

(Supplementary Fig S3). These findings suggested that the G64D

protein enters a proteasome-dependent degradation pathway.

Amino acid alignment showed that ZIP family members share a

small and neutral amino acid at the site corresponding to the 64th

position of ZIP13 (Fig 3E). To determine how the amino acid

composition at this position affects protein stability, we next substi-

tuted different amino acids at the 64th position, using a variety of

approaches. Replacement of G64 with an amino acid containing a

small side chain, such as alanine (G64A), cysteine (G64C), or serine

(G64S), caused little change in the protein expression level from that

of wild-type ZIP13 (Fig 3F). However, the replacement with an

amino acid containing a large side chain, isoleucine (G64I) or

leucine (G64L), or with the basic amino acid arginine (G64R) signifi-

cantly reduced the protein level, although not to the same extent as

with aspartic acid, an acidic amino acid (G64D) (Fig 3F). We thus

hypothesized that the acidic side chain in G64D interferes with the

stability of the ZIP13 protein. To address this possibility, we

replaced G64 with another acidic amino acid, glutamic acid (G64E),

and observed a severe decrease in the ZIP13G64E protein level,

comparable to ZIP13G64D (Fig 3F and G). Notably, the transcript

levels of these mutants were all comparable to that of wild type

(Supplementary Fig S4A), and MG132 treatment caused ZIP13G64E

protein to be recovered in the insoluble fraction, similar to

ZIP13G64D protein (Fig 3G). The replacement of G64 with asparagine

(G64N) or glutamine (G64Q) also reduced the protein level, but to a

lesser extent than G64D (Fig 3H), while the transcription level was

similar to wild-type cells (Supplementary Fig S4B). Based on these

findings, we concluded that a small and neutral amino acid at the

64th position is critical for the stability of the ZIP13 protein. The

replacement of G64 with an amino acid having a large or basic side

chain caused its protein level to decrease, and acidity at the 64th

position was fatal to the ZIP13 protein, leading to its clearance by

the proteasome-dependent (20S proteasome-independent: Supple-

mentary Fig S5) degradation pathway.

Pathogenic ZIP13 proteins are degraded by the ubiquitination-
dependent pathway

To determine whether the ZIP13G64D protein was ubiquitinated, 6 ×

histidine-tagged mono-ubiquitin was co-expressed with ZIP13WT-V5

or ZIP13G64D-V5 in 293T cells; then, the ubiquitin-containing

proteins were purified using Ni-NTA agarose under denaturing

conditions. Ubiquitinated ZIP13WT or ZIP13G64D protein was

elevated in the MG132-treated samples (Supplementary Fig S6).

Consistent with this finding, cotreatment with PYR-41 (a ubiquitin-

activating enzyme E1 inhibitor) and the protein synthesis inhibitor

cyclohexamide (CHX) suppressed the decrease in mutant ZIP13

protein expression in HeLa cells (Fig 4A). In addition, we noted

an increase in the slowly migrating ubiquitinated wild-type

ZIP13 protein after MG132 treatment (Fig 4B, left) and that the

Figure 3. ZIP13G64D protein is readily degraded by a proteasome-dependent mechanism.

A Proteasome inhibitor treatments. 293T cells were transfected with WT-V5 or G64D-V5 ZIP13 and treated with 10 lM MG132 or 1 lM bafilomycin for 6 h. Cells were
lysed in 1% NP-40 and then separated into soluble and insoluble fractions. Western blotting analysis was performed with an anti-V5 or anti-ubiquitin antibody.

B HeLa cells expressing WT-V5 or G64D-V5 (Supplementary Fig S2A) were treated with 10 lM MG132 for the indicated periods. (Upper) Total cell lysates were analyzed
by Western blot using an anti-V5 antibody. (Lower) The hCD8 levels indicate the amount of transfected plasmid DNA (pMX-WT-IRES-hCD8 or pMX-G64D-IRES-hCD8).
Cells were analyzed by flow cytometry using APC-conjugated anti-hCD8 antibody. Histograms were gated on hCD8-positive cells.

C Confocal images of ZIP13. HeLa cells stably expressing the indicated proteins were treated with or without MG132. Nuclei (blue), ZIP13 (green), Golgi (red), and actin
(magenta) were stained with DAPI, anti-V5 antibody, anti-GM130 antibody, and Phalloidin, respectively.

D HeLa cells stably expressing the indicated proteins were treated with proteasome inhibitors 10 lM MG132 or 1 lM lactacystin for 6 h, followed by Western blot of
whole-cell lysates using an anti-V5 antibody.

E Location of pathogenic mutations in TM1. Amino acid alignment of the TM1 of human ZIP family members. Red: hydrophobic amino acids; blue: acidic amino acids;
magenta: basic amino acids; green: hydrophilic amino acids. AE (G340D): amino acid substitution in ZIP4 of AE patients; SCD-EDS (G64D): amino acid substitution in
ZIP13 of SCD-EDS patients.

F The 64th amino acid influences ZIP13 protein stability. C-terminally V5-tagged ZIP13 expression plasmids with a mutation at position 64 were transfected into 293T
cells and analyzed by Western blot using an anti-V5 antibody.

G Mutant ZIP13 constructs with an acidic amino acid at position 64. 293T cells were transfected with C-terminally V5-tagged ZIP13 expression plasmids, treated with
MG132, lysed in NP-40, separated into soluble and insoluble fractions, and analyzed using an anti-V5 antibody.

H Mutant ZIP13 constructs in which glycine 64 was replaced with asparagine (G64N) or glutamine (G64Q). Total cell lysates were analyzed by Western blot using an
anti-V5 antibody.

Source data are available online for this figure.
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ubiquitinated/non-ubiquitinated G64D protein ratio was signifi-

cantly higher than that of wild type (Fig 4B, right). These findings

suggested that the wild-type ZIP13 protein is turned over by the

ubiquitin proteasome pathway, but the G64D mutant is more exten-

sively degraded by this pathway.

Next, we investigated whether these results were applicable to

cells from SCD-EDS patients. We first generated the monoclonal

anti-human ZIP13 antibody 35B11 clone using the “liposome

immunization” system and the three-step screening method (Hino

et al, 2013). This method is useful for producing antibodies that

recognize the tertiary structure of a membrane protein with high

affinity (Hino et al, 2013). The 35B11 clone was confirmed to bind

the purified ZIP13 protein, assessed by surface plasmon resonance

(SPR) experiments (Fig 4C). Sensorgrams fitted to a 1:1 binding
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model using the Biacore T200 Evaluation Software yielded the

following average kinetic constants: ka, 1.34 � 0.04 × 104 M�1 s�1;

kd, 2.59 � 0.3 × 10�4 s�1; KD, 19.3 � 2.7 nM. Flow cytometric

analyses using 35B11 demonstrated that the level of ZIP13G64D

protein was significantly reduced compared to ZIP13WT protein in

HeLa stable lines (Supplementary Fig S7), confirming that this anti-

body was also useful for detecting the cellular ZIP13 proteins. We

next prepared primary cultured fibroblasts from the biopsies of

healthy donors and SCD-EDS patients who expressed the ZIP13G64D

protein and compared the ZIP13 protein levels. Consistent with the

results in cell lines, the expression level of ZIP13 protein was

decreased in the cells from patients compared to those from healthy
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Figure 4. ZIP13G64D protein is degraded by a ubiquitination-dependent pathway.

A Treatment with PYR-41, a ubiquitin E1 inhibitor, suppressed the downregulation of ZIP13G64D protein in the presence of cycloheximide (CHX). HeLa cells stably
expressing WT-V5 or G64D-V5 were treated with 10 lM MG132 or 10 lM PYR-41 together with CHX for the indicated times. Total cell lysates were subjected to
Western blotting analysis with an anti-V5 antibody. Right panel shows the relative expression levels of ZIP13 proteins. Data are representative of two independent
experiments.

B HeLa cells stably expressing WT-V5 or G64D-V5 (Supplementary Fig S2A) were treated with 10 lM MG132 for 6 h. The cell lysates were analyzed by Western blot
using an anti-V5 antibody. The ubiquitinated/non-ubiquitinated G64D protein ratio was upregulated compared to that of wild type (right panel). Data are shown as
mean � s.e.m. (*P = 0.036).

C Single cycle kinetic analysis of ZIP13 protein binding to the amine-coupled antibody 35B11 on a Biacore sensor tip. Solution-phase ZIP13-35B11 binding was
measured by surface plasmon resonance (BIAcore). A representative BIAcore sensorgram shows the response over time (resonance units [RU]) during the binding of
purified recombinant human ZIP13 protein to immobilized 35B11 antibodies. Purified human ZIP13 protein at concentrations of 25, 50, 100, 200, and 400 nM was
added at 0, 190, 380, 570, and 760 s, respectively. The graph is representative of four independent experiments.

D Intracellular flow cytometric analysis of the endogenous ZIP13 expression in a healthy female donor or female SCD-EDS patient. Cultured primary human fibroblasts
were treated with DMSO or 10 lM MG132 for 6 h. After fixation and permeabilization, the cells were stained with the monoclonal antibody 35B11, followed by goat
anti-mouse Alexa 488. Data are representative of two independent experiments. Similar results were obtained in a healthy male donor and male SCD-EDS patient.

Source data are available online for this figure.
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donors (Fig 4D, blue line versus dotted line). Importantly, MG132

treatment of the SCD-EDS patient cells increased the total ZIP13G64D

protein expression to the level of healthy donors (Fig 4D, red line

versus dotted line), indicating that the pathogenic G64D mutation of

ZIP13 in SCD-EDS patients causes degradation of the functional

protein by the proteasome-dependent pathway.

We also studied the effect on protein levels of another ZIP13

mutation (Giunta et al, 2008), in which three amino acids (phenyl-

alanine–leucine–alanine: FLA) in TM3 are deleted as the result

of a frame shift (ZIP13DFLA, Fig 5A and B). The ZIP13DFLA

protein expression was also reduced although it was more

unstable than the ZIP13DG64D protein, and failed to increase the

intracellular Zn level in 293T cells and in HeLa cells stably intro-

duced with its expression plasmid (Fig 5C–G, Supplementary Figs

S1 and S2). Moreover, ZIP13DFLA protein was readily restored

after MG132 treatment (Fig 5F), indicating that it was degraded

by the proteasome-dependent pathway as well as the ZIP13G64D

protein.
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Figure 5. ZIP13DFLA protein is degraded by a proteasome-dependent pathway.

A Location of the DFLA mutation (deletion of phenylalanine–leucine–alanine in TM3) in ZIP13.
B Amino acid alignment of the TM3 of human ZIP family members. Amino acids conserved in all of the indicated zinc transporters (*), conserved substitutions (:), semi-

conserved substitutions (.). Red: hydrophobic amino acids; blue: acidic amino acids; magenta: basic amino acids; green: hydrophilic amino acids.
C Protein expression level of G64D-V5 in 293T stable lines. The cell lysates of two representative clones stably expressing WT-V5 or the G64D-V5 mutant were analyzed

by Western blot using an anti-V5 antibody.
D Protein expression level of DFLA-V5 in 293T stable lines. The cell lysates of two representative clones stably expressing WT-V5 or the DFLA-V5 mutant were analyzed

by Western blot using an anti-V5 antibody.
E The hCD8 expression levels in 293T stable lines, as an indicator of the amount of transfected plasmid DNA (pMX-WT-IRES-hCD8, pMX-G64D-IRES-hCD8, or pMX-

DFLA-IRES-hCD8). Two representative clones stably expressing WT-V5 or the G64D-V5 or DFLA-V5 mutant were analyzed by flow cytometry using an APC-conjugated
anti-hCD8 antibody. Histograms were gated on hCD8-positive cells.

F Recovery of mutant ZIP13 protein expression by MG132 treatment. Representative 293T clones stably expressing WT-V5 (#1), G64D-V5 (#1), or DFLA-V5 (#2), were
treated with 10 lM MG132 for the indicated times, followed by Western blotting analysis with an anti-V5 antibody.

G Posttranslational degradation of mutant ZIP13 proteins. HeLa clones stably expressing WT-V5, G64D-V5, or DFLA-V5 were treated with 10 lM CHX for the indicated
times. Total cell lysates were analyzed by Western blot using an anti-V5 antibody (upper). Right graph shows the relative expression level of ZIP13 proteins over time.
Data are representative of three independent experiments.

H Protein expression level of the SCD-EDS pathogenic mutants in human fibroblasts in the presence of bortezomib. Human dermal fibroblasts transiently expressing
ZIP13 mutants were treated with 10 nM bortezomib for 6 h, followed by Western blotting analysis using an anti-V5 antibody.

Source data are available online for this figure.
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Bortezomib is a therapeutic proteasome inhibitor that acts by

reversibly binding to the catalytic site of the 26S proteasome

(Teicher et al, 1999; Lightcap et al, 2000). Using the human dermal

fibroblast and 293T cells, we found that bortezomib restored the

ZIP13G64D and ZIP13DFLA mutant protein levels (Fig 5H and Supple-

mentary Fig S8A and B), accompanied by normalization of the intra-

cellular Zn level (Supplementary Fig S8C) as the MG132 treatment

does (Supplementary Fig S9). These observations suggested that 26S

proteasome inhibitors could restore the impaired intracellular Zn

homeostasis by the ZIP13 mutants; thus, the manipulation of 26S

proteasome activity by inhibitory compounds might be a therapeutic

approach for SCD-EDS caused by pathogenic mutant ZIP13 proteins.

VCP is involved in the degradation of the mutant ZIP13 proteins

To further elucidate the molecular mechanisms involved in normal

and pathogenic ZIP13 homeostasis, we isolated ZIP13-associated

molecules by immunoprecipitation. Of these, we identified VCP/

Cdc48/p97 by mass spectrometric analysis (Fig 6A). VCP belongs to

the AAA superfamily, which mediates multiple functions, including

the ubiquitination-dependent proteasome system (Ye et al, 2001,

2004; Richly et al, 2005). In addition to ZIP13WT, VCP bound to and

co-localized with the mutant ZIP13G64D protein (Fig 6A–C). Intrigu-

ingly, more VCP was associated with ZIP13G64D than with ZIP13WT

(Fig 6B, lower), indicating that the VCP protein might preferentially

interact with the pathogenic ZIP13G64D protein. To understand

VCP’s role in the degradation of the mutant ZIP13 protein, we

knocked down VCP by siRNAs or suppressed its function by

expressing a dominant-negative form of VCP. VCP siRNAs

reduced the protein level of the endogenous VCP (Fig 6D,

middle) and restored the protein level of ZIP13G64D (Fig 6D, upper).

Furthermore, the ectopic expression of dominant-negative VCP,

F-VCPE305Q/E578Q, restored the protein level of ZIP13G64D (Fig 6E). In

addition, a VCP inhibitor DBeQ (Chou et al, 2011) could suppress
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Figure 6. The mutant ZIP13 protein is degraded through a VCP-dependent mechanism.

A Identification of VCP/Cdc48/p97 as a ZIP13-associating protein. Whole-cell lysates from 293T cells transfected with FLAG-tagged ZIP13 were immunoprecipitated with
an anti-FLAG antibody, followed by SDS–PAGE and silver staining. Unique bands were cut out and analyzed by TOF/MASS to identify the proteins. A protein band near
88 kDa was determined to be VCP/Cdc48/p97. VCP was also detected by Western blot using an anti-VCP antibody (lower). IgH: heavy chain of IgG; IgL: light chain of
IgG; A: SP-uncleaved immature ZIP13 protein; B: SP-cleaved mature ZIP13 protein.

B VCP binds to ZIP13. Whole-cell lysates from 293T cells transfected with expression plasmids for V5-tagged ZIP13 proteins were immunoprecipitated with an anti-V5
antibody, followed by SDS–PAGE. VCP and ZIP13 proteins were detected by Western blot using anti-VCP and anti-V5 antibodies, respectively. The VCP/ZIP13 ratio was
analyzed using ImageJ software (http://rsbweb.nih.gov/ij/download.html) (bottom).

C Confocal images of VCP in HeLa cells stably expressing G64D-V5. VCP (green) and G64D-V5 (red) were stained with anti-V5 and anti-VCP antibodies, respectively.
D Effect of VCP siRNA on the protein expression of G64D-V5 in HeLa cells. VCP siRNA was transfected into HeLa cells stably expressing G64D-V5. Seventy-two hours

posttransfection, the cells were harvested and subjected to Western blotting analysis using anti-V5 or anti-VCP antibodies.
E Effect of a dominant-negative form of VCP on the protein expression of G64D-V5 in HeLa cells. 3xFLAG-tagged wild-type VCPWT and dominant-negative VCPE305Q/E578Q

were transfected into HeLa cells stably expressing G64D-V5. Twenty-four hours later, the cells were lysed and then subjected to Western blotting analysis with anti-
V5 or anti-FLAG antibodies.

F Effect of a VCP inhibitor, DBeQ on the protein expression of G64D-V5 in HeLa cells. HeLa cells stably expressing WT-V5 or G64D-V5 were treated with 10 lM MG132
or 10 lM DBeQ together with CHX for the indicated times. The cell lysates were subjected to Western blotting analysis with an anti-V5 antibody. Right graph shows
the relative expression level of ZIP13 proteins. Data are representative of two independent experiments.

Source data are available online for this figure.

EMBO Molecular Medicine Vol 6 | No 8 | 2014 ª 2014 The Authors

EMBO Molecular Medicine Pathogenic mechanism by ZIP13 mutants Bum-Ho Bin et al

1036

http://rsbweb.nih.gov/ij/download.html


the decay of the ZIP13G64D protein (Fig 6F). These findings

suggested that the VCP-linked proteasome-dependent pathway is

involved in the normal steady-state turnover of wild-type ZIP13 and

is critical for the clearance of the pathogenic mutant ZIP13 protein.

Discussion

In the present study, we investigated the molecular pathogenic basis

of the mutant ZIP13 proteins ZIP13G64D and ZIP13DFLA, which are

responsible for SCD-EDS, to determine how these mutations lead to

the loss of ZIP13 function. We demonstrated that the degradation of

functional ZIP13 proteins by the VCP-linked ubiquitin proteasome

pathway is the major pathogenic consequence of these mutations

and that the resultant disturbance of intracellular Zn homeostasis

can cause SCD-EDS (Fig 7).

In both the ZIP13G64D and ZIP13DFLA proteins, the pathogenic

mutation occurs in a TM domain (Fukada et al, 2008; Giunta et al,

2008). TM domains are generally composed of hydrophobic amino

acids, which interact with lipids and often form a helix (Singer &

Nicolson, 1972). The Gly-X-X-Gly motif, a well-known motif found

in helices, plays a critical role in helix-helix packing (Dohan &

Carrasco, 2003; Kim et al, 2004; Munter et al, 2010). In this motif,

the first and last glycine can be replaced by another amino acid with

a small side chain (alanine, serine, or cysteine) (Dohan & Carrasco,

2003; Kim et al, 2004; Munter et al, 2010). In the case of ZIP13G64D,

we demonstrated that replacing glycine 64, which is within a Ser-X-

X-Gly motif, with a bulky amino acid with a large side chain (leu-

cine, isoleucine, glutamic acid, or arginine) reduced the protein

expression level, but replacement with alanine, serine, or cysteine

did not (Fig 3F), revealing that an amino acid with a small side

chain at position 64 is important for ZIP13’s protein stability. In the

proton-coupled folate transporter (PCFT), a Gly-X-X-Gly motif is

proposed to provide conformational flexibility due to the lack of a

side chain and was shown to be involved in PCFT’s stability (Zhao

et al, 2012). In our study, only the substitution of glycine 64 with an

acidic amino acid, glutamic acid (G64E mutation), reduced the

mutant ZIP13 protein level as severely as the G64D mutation,

indicating that not only the size of the side chain, but also its nega-

tive charge may be important for the loss of G64D function. Reports

on another Zn-imbalance disorder, AE, reveal a variety of mutations

in the human ZIP4 gene from these patients (Andrews, 2008). These

mutations include G340D, G384R, G643R, and L382P in Gly-X-X-Gly

motif-like and leucine zipper-like regions; of these, G384R, G643R,

and L382P reduce the protein level, although the mechanism under-

lying this decrease is not fully known (Wang et al, 2002). Intrigu-

ingly, the improper posttranslational modification of ZIP4’s

N-terminal ectodomain is observed in some cases (Kambe &

Andrews, 2009). When Zn is deficient, the N-terminal ectodomain

of the mouse ZIP4 protein is cleaved, and the resulting protein accu-

mulates on the plasma membrane to up-regulate Zn import. The

G340D, G384R, and G643R mutants of ZIP4 show decreased ectodo-

main cleavage in response to Zn deficiency. In contrast to ZIP4,

ZIP13 does not possess an ectodomain cleavage site at its N-termi-

nus (Kambe & Andrews, 2009; Bin et al, 2011), implying that a

mutation in ZIP13’s Gly-X-X-Gly motif induces loss of function by a

mechanism distinct from that elicited by ZIP4 mutations. The

G340D ZIP4 mutation in AE patients occurs in a Gly-X-X-Gly motif

in TM1, comparable to the G64 position in ZIP13 (Fig 3E), consis-

tent with the importance of this motif in ZIP family members. Our

finding that the FLA deletion in TM3 caused the rapid proteasome-

dependent degradation of ZIP13 (Fig 5 and Supplementary Fig S2)

suggests that SCD-EDS by the FLA deletion is also initially caused

by a reduction in functional ZIP13 protein (Jeong et al, 2012).

Our biochemical analyses demonstrated that the pathogenic

mutations caused the ZIP13 protein to be unstable and enter a

proteasome-dependent degradation pathway (Figs 3, 4, 5, 6 and 7).

In the case of ZIP4, elevated Zn promotes the endocytosis and

degradation of the ZIP4 protein. In this process, lysines near the

histidine-rich cluster between TM3 and TM4 of ZIP4 are modified

by ubiquitination (Mao et al, 2007). We detected ubiquitinated

ZIP13 protein (Fig 4B), although ZIP13 does not contain a typical

histidine-rich cluster between TM3 and TM4, nor any other histidine

clusters (Bin et al, 2011). We also found that VCP associates with

either wild-type or mutant ZIP13 proteins, even though it preferen-

tially interacts with the mutant ZIP13, suggesting that the VCP–

ZIP13 interaction is important for both the normal steady-state turn-

over of wild-type ZIP13 and the clearance of ZIP13 proteins contain-

ing critical mutations (Fig 6). VCP was originally identified as a

valosin-containing protein in pigs (Koller & Brownstein, 1987) and

has roles in nucleus reformation, membrane fusion, protein quality

control, autophagy, and other cellular processes (Latterich et al,

1995; Bukau et al, 2006; Ramadan et al, 2007; Buchan et al, 2013).

VCP may mediate the retro-translocation of ZIP13 from the

membrane into the cytosol before or after ZIP13’s ubiquitination,

along with various chaperones and ubiquitin-binding proteins that

help deliver it to the proteasome for degradation (Ye et al, 2001,

2004; Richly et al, 2005). In addition to VCP, heat-shock proteins

may be involved, because we found that the treatment of 17AAG,

an HSP90 inhibitor, also restored the expression level of ZIP13G64D

protein (Supplementary Fig S10), supporting the idea that various

molecules take part in ZIP13’s degradation. The precise mechanism

for ZIP13’s degradation awaits future studies, but clues may lie in

the identification of proteins that bind the extra/intracellular loops

of ZIP13. Although mutated proteins sometimes induce ER stress

before being degraded (Vidal et al, 2011), the expression level of

Fast degradation

Mutations in ZIP13

VCP, Ubiquitination, Proteasome, etc.

SCD-EDS

Imbalance of cellular Zn homeostasis

Figure 7. Pathogenic mutations in ZIP13 result in its rapid reduction
and zinc imbalance, leading to SCD-EDS.
Pathogenic mutations cause the mutant ZIP13 proteins to enter the VCP-
linked ubiquitin proteasome degradation pathway, resulting in reduced
protein expression levels and imbalance of cellular Zn homeostasis.
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ER-stress-responsive molecules was comparable between the cells

expressing ZIP13WT and the pathogenic mutants (Supplementary Fig

S11), indicating that ER stress might not significantly participate in

the pathogenic process of mutant ZIP13 proteins.

Importantly, our results lend credence to the potential use of

proteasome inhibitors in clinical investigations of SCD-EDS and its

therapeutics (Figs 3, 4, 5, and Supplementary Figs S8 and S9). We

also found that VCP inhibitor improved the protein level of the

pathogenic ZIP13 mutants (Fig 6F), further supporting the thera-

peutic potential of compounds targeted to proteasome pathways.

Cystic fibrosis is a genetic disease caused by mutations in the cystic

fibrosis transmembrane conductance regulator (CFTR). Ninety

percent of the patients have a DF508 mutation, which prevents

proper folding and processing of the CFTR protein; as a result, little

of the mutant protein reaches the cell surface (Rommens et al,

1988; Riordan et al, 1989; Ward et al, 1995). Much research has

focused on elucidating the folding, trafficking, and degradation

properties of CFTR pathogenic mutants, and on developing drugs

that are either “potentiators” of CFTR itself or “correctors” of its

degradation pathway (Wang et al, 2008; Becq, 2010; Gee et al,

2011). VX-809 is the latest CFTR drug. It was obtained from a

screen as a compound that reduces degradation of the DF508
mutant protein and increases CFTR accumulation on the cell

surface and is currently in clinical trials (Van Goor et al, 2011).

Another mutation, G551D, which accounts for about 5% of the

cystic fibrosis patients, does not affect the protein’s trafficking, but

prohibits proper channel gating. Kalydeco (VX-770) was developed

to treat cystic fibrosis patients carrying the G551D mutation (Van

Goor et al, 2009; Accurso et al, 2010). It acts as a “potentiator” to

open the gate of CFTR for proper chloride transport (Rowe & Verk-

man, 2013). In the case of SCD-EDS patients, therapeutic strategies

analogous to those used to treat cystic fibrosis, as either molecular

“potentiators” or “correctors”, may be effective depending on the

functional consequences of the mutation. Moreover, we cannot

exclude the possible involvement of another degradation pathway

or translational defects of the ZIP13 mutants as a consequence of

the mutation, given that the ZIP13DFLA protein level recovered

much more than the ZIP13G64D protein level after MG132 treatment

(Fig 5F and H) although the ZIP13DFLA protein was more unstable

than the ZIP13G64D protein (Fig 5G). Future investigations of the

molecular details underlying the degradation of G64D and DFLA
mutants, and of the protein structure and homeostasis of ZIP13, will

provide a framework to develop potential treatments for SCD-EDS

and for the related metabolic diseases since ZIP13 is also implicated

in adipose and muscle tissues homeostasis (Fukada et al, 2008). In

this regard, mutant ZIP13 gene knock-in mice could be useful

animal models to develop therapeutics for SCD-EDS, and the devel-

opment of Zn transport assay system using proteoliposomes with

purified ZIP13 proteins may also facilitate further understandings of

the physio-pathogenesis of ZIP13.

Taken together, we have gained insight into the mechanism

underlying the loss of function of ZIP13 mutants in SCD-EDS

patients (Fig 7). This mechanism involves the disruption of Zn regu-

lation through a reduction of the ZIP13 protein level via the VCP-

linked ubiquitin and proteasome-dependent degradation pathway.

We found that conserved amino acid(s) in TMs are critical for the

stability of ZIP13 protein, and compounds that inhibit protein degra-

dation are potential therapeutics for SCD-EDS. Further exploration

of the pathogenic mechanism of SCD-EDS will reveal new avenues

for clinical interventions.

Materials and Methods

Cell culture and compounds

293T, HeLa, HT1080, and the human dermal fibroblast (Lonza)

were maintained in DMEM+GlutaMAX medium (Gibco) with 10%

FBS and antibiotics at 37°C. To construct stable cell lines, plasmids

were transfected using Lipofectamine 2000 (Invitrogen), and cells

were selected with 100 lg/mL HygroGold (Invivogen) for 293T cells

and 10–50 lg/mL blasticidin (Invivogen) for HeLa cells. To monitor

the amount of transfected plasmid, the cDNAs of ZIP13 and its

mutants were subcloned into pMX-IRES-hCD8 (Yamasaki et al,

2006). Bafilomycin (Sigma), MG132 (Sigma), lactacystin (Enzo Life

Sciences), PYR-41 (Sigma), DBeQ (Sigma), bortezomib (Cell Signal-

ing), and cycloheximide (Sigma) were dissolved in DMSO.

Plasmid constructs

FLAG-tagged ZIP13 and V5-tagged ZIP13 were constructed as previ-

ously described (Fukada et al, 2008; Bin et al, 2011). Plasmids used

for the ubiquitination analysis were kind gifts from Drs. Takashi

Tanaka and Chin Ha Jung. The plasmid encoding a dominant-

negative form of VCP (E305Q/E578Q) (Shirogane et al, 1999) was

reconstructed into p3xFLAG-Myc-CMV-26 (Sigma). The various G64

mutants were constructed using the EZchangeTM Site-directed Muta-

genesis kit (Enzynomics) with designated primers (Supplementary

Table S1) as described by the manufacturer. The reporter vector

pGL4.12-MT-264/+42 contained the mouse MT-1 promoter was a

gift from Dr. Tomoki Kimura (Kimura et al, 2008).

Western blotting analysis

Cells were collected in 1% NP-40 containing 0.05 M Tris–HCl, pH

7.5, 0.15 M NaCl, and 0.01 M MgCl2. After centrifugation at

15,000 × g for 5 min, the supernatant was collected and analyzed as

the soluble fraction. The pellet was re-suspended in 1% SDS

containing 0.05 M Tris–HCl, pH 7.5, 0.15 M NaCl, and 0.01 M

MgCl2 and analyzed as the insoluble fraction. Those fractions were

boiled for 5 min in SDS–PAGE sample buffer containing 0.125 M

Tris–HCl, pH 6.8, 20% glycerol, 4% SDS, 10% 2-mercaptoethanol,

and 0.004% bromophenol blue and loaded onto a 5–20% or

10–20% polyacrylamide gradient gel. The ER stress antibody

sampler kit was obtained from Cell Signaling Technology. Blue

native-PAGE was performed as previously described (Bin et al,

2011). Anti-V5 (Invitrogen), anti-tubulin (Santa Cruz), anti-ubiquiti-

nated proteins (Biomol), anti-FLAG (Sigma), and anti-VCP (Abcam)

antibodies, and an anti-ER stress antibody sampler kit (Cell Signal-

ing) were used for protein detection.

Quantitative Real-time PCR

cDNA was synthesized using ReverTra Ace (Toyobo). The mRNA

levels of ZIP13 were analyzed as previously reported (Bin et al,

2011). The mRNA levels of CHOP and BIP were analyzed using the
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TaqMan Gene Expression Assay following the manufacturer’s

instructions (Applied Biosystems).

Generation of anti-ZIP13 antibodies

The ab-A1 and ab-A2 anti-ZIP13 antibodies were generated in rabbits

against synthetic peptides corresponding to amino acids 23–35 of

human ZIP13 for ab-A1, and 184–201 of mouse ZIP13 for ab-A2

(Fukada et al, 2008). The monoclonal antibody 35B11 was produced

using the method of Hino and others (Hino et al, 2012, 2013).

Briefly, purified ZIP13 (Bin et al, 2011) was reconstituted into phos-

pholipid vesicles consisting of egg L-a-phosphatidylcholine and Lipid

A (Sigma) as an adjuvant. The antibodies were screened by ELISA

and dot blot analyses, as described previously (Hino et al, 2013).

Biacore

The binding affinity of 35B11 (IgG2a) for ZIP13 was tested by SPR

spectroscopy using a Biacore T200 analyzer (GE Healthcare). A

monoclonal anti-mouse Fcc fragment-specific antibody was immobi-

lized on a sensor chip (CM5), and the culture media after hybridoma

cell cultivation were then loaded. Antibodies in the supernatant

were tightly trapped by the anti-Fc antibody. The running buffer

was 0.02 M HEPES (pH 7.4), 0.15 M NaCl, and 0.04% dodecyl-b-D-
maltopyranoside (DDM). Purified ZIP13 protein in 0.04% DDM was

then passed over the surface. Analyte concentrations were calcu-

lated using the absorbance at 280 nm with the theoretical extinction

coefficients.

Confocal microscopy

Cells were seeded onto glass coverslips in 35-mm glass dishes

(Iwaki) overnight and were treated with or without 10 lM MG132

for 6 h. The cells were then fixed with 4% paraformaldehyde in PBS.

For immunostaining, the cells were made permeable with BD Perm/

Wash buffer containing antibodies and 1% BSA. Fluorescence was

detected with an inverted spectral Confocal Scanning system, TCS

SP2 AOBS (Leica), with an oil immersion 63× objective. Images were

processed with Adobe Photoshop CS3 version 10.0. DAPI (Molecular

Probes), anti-V5 antibody (Invitrogen), anti-GM130 antibody

(clone35, BD Transduction Laboratories), and Alexa Fluor635 phal-

loidin (Molecular Probes) were used to visualize nuclei, ZIP13, Golgi,

and actin, respectively. Alexa Fluor546 goat anti-mouse IgG F(ab’)2

fragment was used for the secondary staining of GM130.

Flow cytometric analysis

Cells were fixed and permeabilized with cytofix/cytoperm reagent

(BD Biosciences) for 15 min at room temperature. After washing

with Perm/Wash buffer, the cells were blocked with 0.5% BSA

containing Perm/Wash buffer for 30 min at room temperature. The

cells were then stained with 20 lg/ml anti-ZIP13 antibody (clone

35B11) in 0.5% BSA containing perm/wash buffer for 1 h at room

temperature, washed extensively with Perm/Wash buffer, and then

further incubated with goat anti-mouse Alexa 488 (Molecular

Probes) for 1 h at room temperature. After more extensive washing

with Perm/Wash buffer, the cells were subjected to flow cytometric

analysis.

Immunoprecipitation and mass spectrometry

Cells were disrupted in 1% NP-40 lysis buffer containing 0.05 M

Tris–HCl, pH 7.5, 0.15 M NaCl, and 0.01 M MgCl2, and the cell

debris was removed by centrifugation at 15,000 × g for 5 min. After

incubation with an anti-V5 or anti-FLAG antibody for 3–4 h, the

immune complexes were pulled down with protein G (GE Health-

care) for 2–3 h and then washed with 0.05% NP-40 lysis buffer. The

complexes were dissociated in 1% SDS–PAGE sample buffer and

subjected to SDS–PAGE and silver staining. Single bands were cut

out and analyzed by mass spectrometry, and VCP (NP_009057.1)

was identified.

Ni-NTA purification

For Ni-NTA purification, cells were harvested into a denaturing lysis

buffer (0.05 M Tris–HCl and 6 M GuHCl, adjusted to pH 8.0 using

NaOH). The cell debris was disrupted by sonication, and Ni-NTA

agarose was added. The mixture was then incubated for over 2 h.

The Ni-NTA agarose was washed with 0.05 M Tris–HCl and 8 M

urea, pH 6.3, and the proteins were eluted into 0.05 M Tris–HCl and

8 M urea, pH 4.5.

siRNA transfection

Cells were transiently transfected with 100 pM siRNA (Genolution)

using Lipofectamine RNAimax (Invitrogen), according to the manu-

facturer’s instructions. VCP-targeting siRNAs were constructed

using the human VCP mRNA sequence at nucleotides 599–619

(TGTAGGGTATGATGACATTG) or 480–500 (TAACCTTCGTGTAC

GCCTA). PA28-targeting siRNAs were constructed using the

published human PA28 mRNA sequence (GAAUCAAUAUGUC

ACUCUAUU) or (UCUGAAGGAACCAAUCUUAUU) (Chen et al,

2007).

Measurement of Zn level

Zn fluorescence staining was performed with slight modification

(Taniguchi et al, 2013). 293T cells were treated with 10 nM bortezo-

mib for 6 h. Afterwards, they were incubated with 1 lM FluoZin-3

for 30 min, and then with 10 lM Zn pyrithione for 10 min. The cells

were washed with PBS and fixed with 4% paraformaldehyde in

PBS. Fluorescence was detected with an inverted fluorescence imag-

ing system, EVOS f1 (AMG). To quantify the cellular Zn level,

1 × 106–107 cells were subjected to a modified acid deproteinizing

method (Nomoto, 1987) and then analyzed by inductively coupled

plasma-atomic emission spectrometry (ICP-AES).

Patient cells

Written informed consents were obtained from the subjects. The

study was approved by ethics committees of participating institu-

tions.

Statistical analysis

The two-tailed Student’s t-test was used to analyze the difference

between two groups.
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Supplementary information for this article is available online:
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