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Abstract: This study used a wireless EEG system to investigate neural dynamics in preschoolers with
ADHD who exhibited varying cognitive proficiency pertaining to working memory and processing
speed abilities. Preschoolers with ADHD exhibiting high cognitive proficiency (ADHD-H, n = 24),
those with ADHD exhibiting low cognitive proficiency (ADHD-L, n = 18), and preschoolers with
typical development (TD, n = 31) underwent the Conners’ Kiddie Continuous Performance Test and
wireless EEG recording under different conditions (rest, slow-rate, and fast-rate task). In the slow-rate
task condition, compared with the TD group, the ADHD-H group manifested higher delta and lower
beta power in the central region, while the ADHD-L group manifested higher parietal delta power. In
the fast-rate task condition, in the parietal region, ADHD-L manifested higher delta power than those
in the other two groups (ADHD-H and TD); additionally, ADHD-L manifested higher theta as well
as lower alpha and beta power than those with ADHD-H. Unlike those in the TD group, the delta
power of both ADHD groups was enhanced in shifting from rest to task conditions. These findings
suggest that task-rate-related neural dynamics contain specific neural biomarkers to assist clinical
planning for ADHD in preschoolers with heterogeneous cognitive proficiency. The novel wireless
EEG system used was convenient and highly suitable for clinical application.

Keywords: ADHD; Conners Kiddie Continuous Performance Test (K-CPT); preschoolers; wireless
electroencephalography; cognitive proficiency

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is the most prevalent childhood-onset
neuropsychiatric disorder, the symptoms typically emerging early (at preschool age) and
persisting into adulthood [1–3]. In 2011, the American Academy of Pediatrics updated the
ADHD clinical practice guidelines, recommending clinicians evaluate for ADHD in all children
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from the ages of 4–5 years [4]. Identification of preschool children at risk for ADHD and
providing early intervention are imperative [3,5–7]. The diagnosis of preschool ADHD is
challenging due to the relative scarcity of clinical interviews and rating scales for preschoolers,
as well as the variable nature of structure across preschool settings, which makes them
unfavorable for multi-informant assessments [8,9]. To facilitate diagnosis, the continuous
performance test (CPT) and electroencephalography (EEG), which have the advantages of
safety, low price, quick preparation, wide availability, and convenience, can be used to directly
investigate individual performance on attention-demanding tasks [10–15].

Regarding the evaluation of a brain-based biomarker in neurodevelopmental dis-
orders, several criteria should be considered in terms of method, such as practicability,
time-efficiency of data acquisition, cost-effectiveness, and neurobiological interpretability,
which indicates the neural markers should be grounded in pathophysiological mecha-
nisms of atypical development [10]. EEG is increasingly viewed as the modality of interest
through which biomarkers for the characterization of neurodevelopmental disorders can be
identified [10–14,16,17]. Power spectral density (PSD) studies on ADHD have revealed one
consistent finding: individuals with ADHD manifest high absolute and relative theta power
and theta/beta ratio (TBR) in the frontocentral region of the brain at rest [11,12,14,16,18–20].
However, Clarks, et al. [21] proposed three distinct EEG clusters to define children with
ADHD, involving increased slow-wave activity and deficiencies in the fast wave, increased
high-amplitude theta with deficiencies in beta activity, and an excess of beta. Furthermore,
one meta-analysis, including nine studies with a total of 1253 children/adolescents with
ADHD and 517 without ADHD, concluded excessive TBR cannot be considered a reliable
diagnostic measure [22]. As for the other frequency power bands, studies have reported
that delta power is typically higher in individuals with ADHD than in healthy controls
(HCs) [12,17,21,23–25], whereas alpha and beta power are usually lower [12,16,17,21,23].

The cognitive proficiency index (CPI) in the Wechsler Preschool and Primary Scale of
Intelligence–Fourth Edition (WPPSI-IV) measures the child’s abilities in working memory
and processing speed, and provides an estimate of the efficiency with which cognitive
information is processed in learning, problem-solving, and higher-order reasoning [26].
Several studies have identified that school-aged children with ADHD show poorer perfor-
mance in working memory and processing speed than in perceptual and verbal functional
domains when compared with their peers of average intelligence [27–32]. Regarding
preschool children, the deficits in varied executive functioning, including inhibition control,
working memory, speed of processing, and planning/organization, may be general mark-
ers of ADHD [33–38]. However, ADHD appears to be characterized by neurobehavioral
heterogeneity both in preschool and school-age children; the subgroup of youths with
ADHD may perform at a high level (as high as their neurotypical counterparts) on related
tasks [32,34,39].

With regard to ADHD heterogeneity, most studies have used the subtypes outlined in
the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, or EEG profile clusters
for grouping, computing, and comparing the resting EEG band power of subpopulations
of children with ADHD [21,23,40–42]. To the best of our knowledge, few studies have
explored the neural dynamics of subgroups of preschoolers with ADHD according to
cognitive proficiency by manipulating task rate.

Most EEG studies on children with ADHD have used wet-electrode systems with
a stretch cap. In the present study, a wireless wearable EEG headset was used to quan-
tify brain dynamics during CPT. Subsequently, we investigated EEG profiles under rest,
slow-rate, and fast-rate task conditions among preschoolers with ADHD exhibiting high
cognitive proficiency (ADHD-H), those with ADHD exhibiting low cognitive proficiency
(ADHD-L), and those with typical development (TD). We hypothesized that EEG pro-
files during different conditions not only differentiated ADHD from TD but also reflected
ADHD heterogeneity, specifically the varying levels of cognitive proficiency. Furthermore,
the EEG profiles in the present study may contain specific neural biomarkers that can
assist clinical planning for preschoolers with ADHD. For instance, in some cases without
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complete neurocognitive evaluating data, the neural dynamics measured by the easy-to-use
system can provide clinicians with more information in diagnosis and treatment strategy.

2. Materials and Methods

Figure 1 illustrates the overall framework of the experiment, including subject evalua-
tion, clinical diagnosis, EEG recording, signal processing, and data statistical analysis.
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2.1. Participants

The participants comprised 73 preschoolers (aged 5–7 years), 42 of whom were diag-
nosed as having ADHD (34 boys and eight girls) and 31 of whom had TD (23 boys and eight
girls). All the ADHD diagnoses were determined and confirmed in the clinical setting by
the senior child and adolescent psychiatrists, based on the criteria of the DSM 5th Edition [1]
and multiple perspectives, such as clinical interviews, neuropsychological tests, behavioral
observations by qualified experienced psychologists in our institute, and behavioral rating
scales obtained from parents and teachers. Those who had a history of brain disorders
or any other neurological disorders, chromosomal or genetic disorders, autism spectrum
disorder, learning disorder, or any other mental disorder were excluded. The study was
implemented according to policies on human research and was approved by the Research
Ethics Committee of the Taiwan National Health Research Institutes (EC1070401-F). The
participants’ parents or guardians provided written informed consent to the academic use
of the test results.

2.2. Apparatus
2.2.1. Neuropsychological Measurements
Intelligence Quotient Test and Behavioral Rating Scales

Cognitive function was evaluated using the Taiwanese version of the Wechsler Preschool
and Primary Scale of Intelligence–Fourth Edition (WPPSI-IV) [43], which was administered
by qualified psychologists. We classified the participants with ADHD into groups with high
and low cognitive proficiency according to their cognitive proficiency index (CPI) scores on the
WPPSI-IV. Children with CPI scores of >85 and ≤85 were classified into the ADHD-H (n = 24)
and ADHD-L (n = 18) groups, respectively. Two versions of the Disruptive Behavior Disorders
Rating Scale (DBDRS) for parents and teachers [44] were used to evaluate ADHD symptoms.

Conners Kiddie Continuous Performance Test 2nd Edition

In this study, we used the 7.5-min Conners Kiddie Continuous Performance Test 2nd
Edition (K-CPT2) [45] to assess attention-related performance. As displayed in Figure 2,
the K-CPT2 involves 200 randomly presented trials divided into five blocks, each of which
contains two 20-trial sub-blocks involving fast-rate and slow-rate tasks (1.5- and 3-s inter-
stimulus interval [ISI], respectively). Superior to other commercial paradigms, the K-CPT
features varied time intervals between stimuli, presenting a greater challenge for the
subjects. At shorter ISIs, the stimuli occur and disappear quickly, and the subjects must
process information rapidly. At longer ISIs, the stimuli are more persistent and last longer,
but the subjects are required to maintain alertness and not let their attention wander.
Throughout the entire K-CPT procedure, subjects must adjust and respond well depending
on the varying task rate; that is, respond appropriately to the tasks with shorter and longer
ISIs. Usually, in the context of children with ADHD, the reaction times may be longer (e.g.,
inattentive type) or shorter (e.g., hyperactive type) compared to healthy controls (HCs) in
the shorter ISIs condition, while subjects may make more omission and commission errors
in the longer ISIs condition [46]. The responses were used to compute scores reflecting
various attention aspects.

The nine main standardized scores generated for each participant help assessors
interpret the nature of their attention problems (through different aspects). Standardized T
scores were defined as having a mean of 50 with a standard deviation (SD) of 10. Higher
scores generally imply worse performance, except in special cases, such as when the hit
reaction time (HRT) is measured. In these indexes, detectability (d’) indicates the ability of
a participating child to discriminate nontargets from targets. Omissions refer to missed
targets, and commissions signify incorrect responses to targets. Perseverations denote
responses that are made in less than 100 ms following the stimulus. HRT measures the
mean response speed of all nonperseverative responses over the entire test. The consistency
of response speed was demonstrated by HRT SD and variability. The HRT block change
computes the slope of the change in reaction time across five blocks of administration. The
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HRT ISI change refers to the slope of the change in reaction time between two ISIs; these
nine main scores are all defined clearly in the K-CPT2 manual [45].
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2.2.2. Wireless and Wearable EEG

The apparatus used was a novel eight-channel wearable and portable EEG system [47]
that consisted of a wireless EEG device and laptop computer (Figure 3). The wireless EEG
acquisition device used eight semi-dry electrodes called hygroscopic sponge electrode
sensors to record signals. The hygroscopic sponge sensors exhibited several superior
characteristics [46]. First, the skin-contacting part was made of a soft sponge, which
provided comfort during EEG acquisition. Second, the sensors worked with a small
amount of water rather than the complex skin preparation and gel application process used
in conventional wet-electrode systems. Third, the sensors can be assembled easily and
rapidly, and fit properly into the original device. Fourth, the signal quality is comparable to
that of NeuroScan, according to a study that revealed high average correlations of 90.03%
and 82.56% in two-second and ten-second temporal resolutions, respectively, and 97.18%
in frequency response [47]. In contrast to conventional wet-electrode systems, the users
were able to monitor and obtain an individual’s EEG data to develop a real-time detection
algorithm in a more natural and comfortable state during daily life. The aforementioned
advantages make the wireless wearable system suitable for clinical use, particularly for
young children.
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2.3. Procedure and EEG Recording

Figure 4 illustrates the EEG recording procedure. To establish baseline resting power,
resting-state EEG signals were recorded over 1 min with the participants’ eyes open.
Subsequently, an instructor informed the participants of the experimental rules and pro-
vided them with the opportunity to practice prior to the official initiation of the K-CPT2.
Raw EEG recording data were obtained from eight electrode sites on the scalp (Fp1, Fp2,
Fz, C3, C4, Pz, O1, and O2) according to the standard international 10/20 system at a
1000-Hz sampling rate. In the present study, the linked earlobes were used as reference
sites, and the impedance of each electrode was controlled below 100 k Ohm throughout
the EEG recording session. The scalp–electrode impedance of the sponge electrodes used
in our previous study [47] and the present study was higher (up to approximately 120 k
Ohm) than that in the conventional wet-electrode system (typically approximately 20 k
Ohm). However, in a circuit design containing an amplifier with an input impedance of
approximately 200 M Ohm, a scalp–electrode impedance of up to 200 k Ohm is allowed for
accurate signal acquisition with an approximate error rate of 0.1% [48].
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2.4. Data Preprocessing and Processing

We used MATLAB software (MathWorks, Natick, MA, USA) to preprocess and process
the EEG data. We extracted the data on rest- and task-related power for analysis. For
artifact removal, first, 0.5 Hz high-pass and 50 Hz low-pass basic finite impulse response
filters were applied to improve EEG signal quality. Second, EEG experts and the clinician
identified and eliminated the components corresponding to muscle artifacts related to
the participants’ restless movements during the experiment by independent component
analysis (ICA) [46,49], and the signals were processed using ICLabel in EEGLAB toolbox,
which provides automated independent component classification [50]. After the ICA
process, the components of brain signals related to artifacts including eyes and muscle
activities were eliminated. After the defective components were removed, the rest of
the components were back-projected, and no further detected residual muscle artifacts
related to fidgets remained in the data. These signals were used in further data analysis.
According to the sequences of ISIs within sub-blocks (Figure 2), we further divided the
task data into two epochs: 5 min of slow-task data comprising all segments with a 3-s
ISI, and 2.5 min of fast-task data comprising all segments with a 1.5-s ISI. Four frequency
bands were defined for spectral analyses: delta, theta, alpha, and beta (1–4, 4–8, 8–13, and
13–30 Hz, respectively). We determined the PSD of the EEG data using the short-time
Fourier transform spectrogram function in the MATLAB signal processing toolbox. We
analyzed the relative power, which was computed by dividing the absolute power in a
designated frequency band by the sum of all the measured frequency bands and then
multiplying the result by 100. Relative power is independent of bone thickness, skull
resistance, and impedance variability; in addition, relative power is a more discriminative
variable than absolute power in ADHD evaluation studies [51,52] (Figure 1).
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2.5. Statistical Analysis

The demographic and neuropsychological test data of the three groups were com-
pared using a one-way analysis of variance (ANOVA). Comparison analysis of categorical
variables (e.g., sex) was conducted using Fisher exact tests.

Regarding EEG data analysis, the PSD under separate independent conditions (rest,
slow-rate task, and fast-rate task) of two groups (all ADHD versus TD) as well as three
groups (ADHD-H versus ADHD-L versus TD) were also compared using an independent
t-test and a one-way ANOVA. To control type I error of possible false-positive results from
multiple comparisons and to prevent type II error or false-negative error, we reduced the
number of comparisons and spectral power was averaged by region as follows: prefrontal
(Fp1, Fp2), central (C3, C4), and occipital (O1, O2). The power of specific frequency bands
was compared in regions of interest (central and Pz). When at least 1 group showed statisti-
cally significant differences, pairwise comparisons were conducted. The false discovery
rate correction was used for these post hoc analyses, in which the p-values were multiplied
by the number of comparisons.

Additionally, to evaluate the group differences in alteration patterns in PSD under
different conditions, we performed a generalized estimating equation, with the condition
(rest, slow-rate task, and fast-rate task) as a within-subject factor and the group (ADHD-
H, ADHD-L, and TD) as a between-subject factor. We computed the average power of
specific frequency bands in all recording regions of the brain (prefrontal, Fz, central, Pz,
and occipital). All the analyses were performed using IBM SPSS Statistics for Windows,
version 22 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Neuropsychological Measurements

Table 1 presents the comparison of neuropsychological measurements between groups.
The mean full-scale intelligence quotient of the ADHD-L group was lower than that
of both the ADHD-H and TD groups (p = 0.019, p = 0.006, respectively); however, the
verbal comprehensive index did not differ among the groups, which confirmed that all
the participants completely comprehended the test instructions. CPI differed significantly
between groups; specifically, the ADHD-L group performed poorly compared with the TD
and ADHD-H groups (p < 0.001 for both).

Significant between-group differences were observed in the DBDRS and K-CPT2
scores. Regarding the DBDRS, the participants with ADHD-L were given higher scores
than those in the group with TD in the inattentive and hyperactive dimensions by both
parents (p = 0.001, p = 0.037, respectively) and teachers (all p < 0.001). The participants with
ADHD-H were given higher scores than those in the group with TD on the hyperactive
dimension by parents (p = 0.005) and on the inattentive and hyperactive dimension by
teachers (p < 0.001, p = 0.001, respectively). Regarding the K-CPT2, the ADHD-L group per-
formed poorly compared with both the TD and ADHD-H groups in detectability (p = 0.002,
p = 0.030, respectively), omission (p = 0.007, p = 0.016, respectively), HRT (p < 0.001 in
both), HRT SD (p = 0.001, p =0.042, respectively), and HRT ISI changes (p = 0.001, p = 0.028,
respectively) (Table 1 & Figure 5).
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Table 1. Demographic characteristics and K-CPT values of the participants.

Mean ± S.D. ADHD-H
(n = 24)

ADHD-L
(n = 18)

TD
(n = 31) p ADHD-H vs.

TD (p)
ADHD-L vs.

TD (p)
ADHD-H vs.
ADHD-L (p)

Age 67.21 ± 5.79 69.00 ± 6.80 67.81 ± 5.09 0.607

Sex (male:
female) 18:6 16:2 23:8 0.482

FSIQ 99.83 ± 12.24 87.94 ± 13.84 97.66 ± 14.06 0.015 * 0.558 0.019 * 0.006 **

VCI 99.88 ± 12.01 96.11 ± 14.07 98.34 ± 14.21 0.670 0.682 0.582 0.373

CPI 99.76 ± 9.90 75.55 ± 6.96 97.18 ± 13.38 <0.001 ** 0.465 <0.001 ** <0.001 **

DBRS-P-i 12.88 ± 3.89 14.89 ± 4.85 10.48 ± 4.68 0.005 ** 0.054 0.001 ** 0.154

DBRS-P-h 13.38 ± 5.51 12.50 ± 6.51 8.90 ± 5.34 0.012 * 0.005 ** 0.037 * 0.624

DBRS-T-i 13.92 ± 5.37 17.72 ± 4.28 8.47 ± 5.43 <0.001 ** <0.001 ** <0.001 * 0.021 *

DBRS-T-h 12.63 ± 5.88 14.00 ± 5.89 6.60 ± 7.24 <0.001 ** 0.001 ** <0.001 ** 0.499

d’ 50.00 ± 6.43 54.61 ± 7.92 48.39 ± 6.08 0.009 ** 0.378 0.002 ** 0.030 *

omission 48.58 ± 6.11 54.56 ± 9.26 48.13 ± 7.92 0.016 * 0.830 0.007 ** 0.016 *

commission 48.88 ± 7.74 52.61 ± 9.68 46.94 ± 7.94 0.078 0.395 0.025 * 0.155

perseveration 48.63 ± 5.34 49.89 ± 7.44 46.97 ± 3.83 0.179 0.262 0.072 0.455

HRT 54.58 ± 7.19 63.17 ± 7.31 55.32 ± 6.46 <0.001 ** 0.695 <0.001 ** <0.001 **

HRT SD 49.96 ± 6.05 54.78 ± 10.62 47.19 ± 6.13 0.004 ** 0.177 0.001 ** 0.042 *

variability 52.29 ± 10.15 51.22 ± 9.05 47.65 ± 6.70 0.116 0.049 * 0.162 0.689

HRT block
change 50.08 ± 6.46 51.11 ± 11.04 48.48 ± 5.80 0.428 0.442 0.247 0.666

HRT ISI
change 50.08 ± 6.59 55.67 ± 10.84 47.55 ± 7.03 0.004 * 0.248 0.001 ** 0.028 *

Significant differences are indicated in bold ** p < 0.01, * p < 0.05. K-CPT, Conners Kiddie Continuous Performance
Test; SD, standard deviation; ADHD, attention deficit hyperactivity disorder; ADHD-H, ADHD with high
cognitive proficiency; ADHD-L, ADHD with low cognitive proficiency; TD, typical development; FSIQ, full-scale
intelligence quotient; VCI, verbal comprehension index; CPI, cognitive proficiency index; DBDRS-P-i, Disruptive
Behavior Disorders Rating Scale parent version inattentiveness dimension; DBDRS-P-h, Disruptive Behavior
Disorders Rating Scale parent version hyperactivity dimension; DBDRS-T-i, Disruptive Behavior Disorders Rating
Scale teacher version inattentiveness dimension; DBDRS-T-h, Disruptive Behavior Disorders Rating Scale teacher
version hyperactivity dimension; d’, detectability; HRT, hit reaction time; ISI, interstimulus interval.
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3.2. Resting Relative Spectral Power

Resting relative spectral power did not differ between the groups (Supplementary
Table S1).

3.3. Slow-Task-Related Relative Spectral Power

The PSD on five brain regions in the slow-rate task condition of the two groups (all
ADHD versus TD) as well as the three groups (ADHD-H versus ADHD-L versus TD) were
compared (Supplementary Table S2). Table 2 and Figure 6 present the significant results
from the analysis of between-group differences in the slow-rate task-related PSD. The
ADHD-H group had significantly higher delta and lower beta values than the TD group in
the central region (p = 0.008, p = 0.018, respectively). The ADHD-L group had significantly
higher delta values than the TD group on the Pz electrode (p = 0.006).

Table 2. Between-group differences in the PSD of significant frequency bands under slow-rate
task conditions.

Mean SD Overall (p) ADHD-H vs.
TD (p)

ADHD-L vs.
TD (p)

ADHD-H vs.
ADHD-L (p)

Delta Ctrl ADHD-H 33.73 1.38 0.026 0.008 * 0.145 0.325

ADHD-L 33.33 1.16

TD 32.77 1.28

Pz ADHD-H 33.32 0.81 0.022 0.281 0.006 * 0.083

ADHD-L 33.97 1.31

TD 32.97 1.35

Alpha Pz ADHD-H 22.65 0.51 0.054 0.895 0.031 0.030

ADHD-L 22.30 0.45

TD 22.63 0.55

Beta Ctrl ADHD-H 15.60 1.72 0.059 0.018 * 0.340 0.233

ADHD-L 16.20 1.64

TD 16.66 1.48

Pz ADHD-H 15.96 1.28 0.101 0.286 0.034 0.267

ADHD-L 15.41 1.57

TD 16.41 1.73

* Significant differences are indicated in bold. p < 0.05, the p-value was adjusted using a false discovery rate
control. PSD, power spectral density, SD, standard deviation; ADHD, attention deficit hyperactivity disor-
der; ADHD-H, ADHD with high cognitive proficiency; ADHD-L, ADHD with low cognitive proficiency; TD,
typical development.
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3.4. Fast-Task-Related Relative Spectral Power

The PSD on five brain regions in the fast-rate task condition of the two groups (all
ADHD versus TD) as well as the three groups (ADHD-H versus ADHD-L versus TD)
were compared (Supplementary Table S3). Table 3 and Figure 6 present the significant
results from the analysis of between-group differences in the fast-rate task-related PSD.
A significance in which the ADHD-L group had a significantly higher value of delta and
trending lower values of beta on Pz than the TD group was observed (p = 0.011, p = 0.039,
respectively). Notably, the ADHD-L group had a higher value of delta and theta as well
as lower values of alpha and beta on Pz than the ADHD-H group (p = 0.011, p = 0.031,
p = 0.008, p = 0.002, respectively), which indicated apparent ADHD heterogeneity.

Table 3. Between-group differences in the PSD under significant frequency under fast-rate task conditions.

Mean SD Overall (p) ADHD-H vs.
TD (p)

ADHD-L vs.
TD (p)

ADHD-H vs.
ADHD-L (p)

Delta Pz ADHD-H 32.92 1.30 0.002 0.208 0.011 * 0.001 *
ADHD-L 34.27 0.96

TD 33.34 1.25
Theta Pz ADHD-H 27.95 1.09 0.090 0.154 0.327 0.031 *

ADHD-L 28.57 0.80
TD 28.30 0.79

Alpha Pz ADHD-H 22.76 0.79 0.030 0.195 0.102 0.008 *
ADHD-L 22.26 0.39

TD 22.55 0.50
Beta Pz ADHD-H 16.37 1.81 0.007 0.161 0.039 0.002 *

ADHD-L 14.90 0.66
TD 15.81 1.48

* Significant differences are indicated in bold. p < 0.05, the p-value was adjusted using a false discovery rate
control. PSD, power spectral density, SD, standard deviation; ADHD, attention deficit hyperactivity disor-
der; ADHD-H, ADHD with high cognitive proficiency; ADHD-L, ADHD with low cognitive proficiency; TD,
typical development.
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3.5. EEG Spectral Power Alterations of Groups under Three Conditions

Notably, the condition and group had a significant interaction effect (p = 0.027), and the
post hoc test indicated that the ADHD-L group experienced an enhancement in delta power
during the shift from the rest to the fast-rate task condition (p = 0.001). An enhancement in
delta power was observed in the ADHD-H group from rest to the slow-rate task conditions
(p =0.002). The aforementioned results were distinct from those obtained for the TD group,
which manifested no obvious differences in the alteration patterns. Figure 7 presents the
alteration patterns of the three groups under the three conditions.
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Figure 8 demonstrates the concept of the potential clinical application according to the
aforementioned findings of the present study.
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4. Discussion

To the best of our knowledge, this study is the first to construct a stepwise approach
to obtain EEG profiles in preschoolers with ADHD of varied cognitive proficiency by
using wireless EEG headsets under various task conditions; specifically, slow-rate and
fast-rate task conditions. First, we observed that slow-rate task-related neural dynamics
can distinguish ADHD (both ADHD-H and ADHD-L) from TD, which can facilitate clinical
diagnosis. Subsequently, fast-rate task-related neural dynamics reflect the heterogeneity in
the neurobehavioral functions (e.g., working memory and processing speed) of children
with ADHD. The total average delta power alteration patterns of the three groups were
distinct. The research results contribute to the understanding of task-related neural dy-
namics, particularly concerning preschool ADHD. The EEG profiles in the present study
may involve specific neural biomarkers that can assist clinical planning for preschoolers
with ADHD. As displayed in the Figure 8, in some cases in the absence of complete psycho-
logical tests due to individual factors, e.g., lack of time and poor cooperation of children,
clinicians may refer to the EEG profiles obtained from this easy-to-use and efficient system
to facilitate diagnosis.

Notably, differences in centroparietal delta power under the slow-rate task conditions
were observed between the two ADHD groups and the TD group, which is partially
inconsistent with the findings of previous studies that have indicated that the resting
frontocentral theta power and TBR of children with ADHD are different from those of their
TD peers [11,12,14,16]. This discrepancy can be attributed to between-study differences in
the ages of the groups and the EEG measurement conditions. Some studies have proposed
that an increase in the power of the delta band reflects the maturation lag of the brain in
young children with ADHD [51,53,54]. Furthermore, because brain attention dysfunction
is usually more evident during cognitive tasks, electrophysiological recordings conducted
during task conditions can act as discriminants for the diagnosis of ADHD [55]. Attention
functions involve several brain areas, and altered parietal activity in ADHD may indicate
abnormalities in the posterior visual attention system that affect performance monitoring,
attention reallocation, and visuospatial attention, as well as motor mapping within the
peripersonal space [56,57]. We infer that the K-CPT involves visual-input and motor-
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response tasks that require respondents’ visual attention. This phenomenon is completely
different from that observed in the resting condition. Parent behavioral training (PBT)
interventions show strong evidence of effectiveness in the treatment of preschoolers at risk
for ADHD [2,3,5,58]. On the basis of EEG profiles, PBT should involve slow task training,
such as delayed conditioning practice, for children with ADHD of various severities.

In the fast-rate task condition, compared with the ADHD-H group, the ADHD-L group
manifested a higher parietal delta and theta power as well as lower alpha and beta power.
These results imply ADHD heterogeneity and can be explained by the fact that children
with ADHD with low cognitive proficiency are less able to process rapidly presented stimuli
than children with ADHD with high cognitive proficiency. On the basis of the hypothe-
sis that ADHD results from neurodevelopmental or neurocognitive deficits, various early
interventions have been developed to target these presumed core deficits [3]. Specialists
have employed computer-driven, play-based, and exercise programs in early intervention to
enhance cognitive ability in young children with ADHD [3,59–64]. Therefore, according to
these EEG profiles, in addition to behavioral training, mental processing speed (particularly
on fast tasks) tailored to the individual should constitute a crucial component of cognitive
training for young children with ADHD of low cognitive proficiency [65].

In this study, both ADHD groups manifested an overall enhancement in delta power
in the shift from rest to task conditions. These results are in line with those of a study by
Rommel et al. [66], which reported the ADHD group showed an increase in delta power
from the rest to the task condition, and no significant change in delta power was seen in
the control group. Our findings suggest that preschoolers with ADHD with both high
and low cognitive proficiency have difficulty maintaining alertness and performing stable
executive functions during shifts to task conditions. The EEG alteration profiles indicate
that PBT should be performed through approaches such as practice repetition, strategy
guidance, and task prompting to enhance the ability of all children with ADHD, regardless
of cognitive proficiency, to adjust to task shifting.

In this present study, no significant differences in K-CPT and fast-rate EEG PSD values
were observed between the group with ADHD-H and TD. These findings are compatible
with Sjöwall’s finding [34], which indicated that a substantial proportion of preschool
children with ADHD did not have neuropsychological deficits in any domain. Furthermore,
some studies have reported that EEG-based classification failed for ADHD [42,67–69],
which also supported the evidence of heterogeneity in ADHD.

The wearable wireless semidry-electrode EEG recording system used in the present
study has none of the drawbacks of conventional wet-electrode EEG systems. Specialists
typically find it challenging to monitor the attention status of young children during task
performance due to poor compliance and unnatural situations. In our experiences using the
semidry-electrode system, children did not need to endure the lengthy preparation proce-
dure involved in wet-electrode systems (which exacerbates impatient and fidgety behavior
in children). Notably, the participants noted that wearing the system was comfortable,
similar to wearing stylish headphones. They also mentioned that the wire-less design made
task performance feel easy and free; thus, the adopted system promoted the cooperation
of the participants in the measurements. Most importantly, the data collected using the
adopted system are equivalent in quality to that produced by wet-electrode systems. In
summary, the adopted system is highly suitable for clinical use in young children.

The relatively small sample size used is a limitation of this study. Nevertheless, we
believe that our findings are clinically relevant to the understanding of the underlying
mechanisms of ADHD, particularly preschool ADHD, and can serve as a reference for
clinicians and researchers with regard to the potential neural biomarkers.

5. Conclusions

The EEG profiles in the present study suggest a stepwise approach; EEG dynamics in
the slow-rate task condition and in the shift from rest to the task conditions were disparate
in children with ADHD of both high and low cognitive proficiency, which assisted in
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distinguishing ADHD from TD. EEG dynamics under the fast-rate task conditions were
different between children with ADHD with high and low cognitive proficiency, which
revealed neurobehavioral heterogeneity in ADHD. The acquisition of EEG profiles by
employing the novel wireless system is convenient and efficient for clinical use in children.
These profiles can provide clinicians and researchers with information on potential neural
markers that aid in the planning of early interventions for preschool ADHD, including
individual training and educational programs. Future studies should attempt to use the
aforementioned system to measure brain activity and provide real-time neurofeedback
during game therapy according to the selected neural biomarkers. This system can also be
applied to the various attention-related tasks in which children engage, such as reading
and writing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12050731/s1, Table S1.1: Resting relative spectral power
between ADHD and TD; Table S1.2: Slow-rate task relative spectral power between ADHD and TD;
Table S1.3: Fast-rate task relative spectral power between ADHD and TD.
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