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Abstract

Aim: To develop an effective oral vaccine against the very virulent infectious

bursal disease virus (vvIBDV), we generated two recombinant Lactobacillus

plantarum strains (pPG612-VP2/LP and pPG612-T7g10-VP2/LP, which carried

the T7g10 translational enhancer) that displayed the VP2 protein on the

surface, and compared the humoral and cellular immune responses against

vvIBDV in chickens.

Methods and Results: We genetically engineered the L. plantarum strains

pPG612-VP2/LP and pPG612-T7g10-VP2/LP constitutively expressing the VP2

protein of vvIBDV. We found that the T7g10 enhancer efficiently upregulates

VP2 expression in pPG612-T7g10-VP2/LP. Orally administered, pPG612-

T7g10-VP2/LP exhibited significant levels of protection (87�5%) against

vvIBDV in chickens, indicating improved immunogenicity. Chickens in the

pPG612-T7g10-VP2/LP group produced higher levels of interferons (IFN-c)
and interleukins (IL-2 and IL-4) than those in the pPG612-VP2/LP group.

CD8+ and CD4+ lymphocyte counts indicated greater stimulation in the

pPG612-T7g10-VP2/LP group (13�3 and 21�0% respectively) than in the

pPG612-VP2/LP group (10�4 and 14�0% respectively). Thus, pPG612-T7g10-

VP2/LP could induce strong humoral and cellular immune responses against

vvIBDV.

Conclusions: The recombinant L. plantarum that expresses pPG612-T7g10-

VP2 is a promising candidate for oral vaccine development against vvIBDV.

Significance and Impact of the Study: The recombinant Lactobacillus delivery

system provides a promising strategy for vaccine development against vvIBDV

in chickens.

Introduction

In the poultry industry, infectious bursal disease virus

(IBDV) is a key source of economic losses and may be

responsible for almost 30–60% of mortality in young

chickens (Berg 2000). IBDV mainly suppresses immunity

by the severe destruction of B lymphocytes in the bursa

of Fabricius (BF), thereby reducing the effect of vaccines.

IBDV has been classified into two serotypes, serotype I

found in chickens, and serotype II found in turkeys.

IBDV belongs to the genus Avibirnavirus of the family

Birnaviridae that are nonenveloped, icosahedral double-

stranded RNA viruses enclosing two segments, A and B

(Azad et al. 1985). The short segment B (2�8 kb) com-

prises viral protein 1 (VP1, ‘an RNA-dependent RNA

polymerase’; 97 kDa; Macreadie and Azad 1993), while
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segment A (3�17 kb) encodes the major components of

the virus and contains two partially overlapping open

reading frames (ORFs; Spies et al. 1989; Kibenge et al.

1991). The first ORF encodes the nonstructural viral pro-

tein VP5 (17 kDa) and the second ORF encodes a

polyprotein precursor (pVP2–VP4–VP3, 110 kDa) that

can be trans-cleaved by VP4 (28 kDa) to release pVP2

(512 residues, 54�4 kDa) and VP3 (32 kDa) (Lejal et al.

2000). The puromycin-sensitive aminopeptidase (PurSA)

and VP4 cleave pVP2 at its C-terminus to produce the

transitional pVP2 (452 residues) (Irigoyen et al. 2012).

pVP2 is further cleaved to produce the mature VP2 (441

residues) (Saugar et al. 2005; Irigoyen et al. 2009). VP2

(206 to 350 aa residues) is encoded by the hypervariable

region (HVR) of IBDV and is responsible for antigenic

variation (Vakharia et al. 1994). In addition to homolo-

gous recombination in segments, mutations in the HVR

of VP2 and genetic reassortment events are also responsi-

ble for the variation in IBDV (Islam et al. 2001; Wei

et al. 2006; He et al. 2009).

Replication of IBDV is promoted by chondroitin sul-

phate N-acetylgalactosaminyltransferase-2 (CSGalNAcT2),

a type II transmembrane protein, which is located in the

Golgi apparatus and aids viral glycosylation (Zhang et al.

2015). The structural VP2 protein in IBDV is considered

a significant host-protective antigen. Indeed, vaccination

with VP2 was able to induce protection against IBDV

(Fahey et al. 1989). VP2 consists of at least two neutraliz-

ing epitopes and assists in the activation of virus-neutra-

lizing antibodies in chickens to protect them from

vvIBDV. In addition, antigenic variation, tissue-culture

adaptation, and viral virulence are all associated with

VP2 (Brandt et al. 2001).

The bacterial surface display of foreign proteins has

gained attention in several fields of science, particularly

in the development of vaccines (Samuelson et al. 2002;

Lee et al. 2005; Rutherford and Mourez 2006). Narita

et al. (2006) documented increased expression of the

active forms of proteins on the surface of Escherichia coli

by using the surface display expression system (HCE-

PgsA) and the Geobacillus toebi-derived HCE promoter

that drives highly constitutive expression (Poo et al.

2002). Due to the evolution of new strain variants, the

traditional practice of using inactivated or attenuated vac-

cines has become less effective in controlling IBDV. How-

ever, compared to traditional vaccines, the recombinant

vaccines adopted against IBDV have successfully mini-

mized the risk of induction of bursal pathology or the

reversal to virulence. In addition, recombinant vaccines

are also helpful in providing protection against multiple

infectious agents, reducing stress in vaccinated birds, and

decreasing labour and vaccination costs (Mahgoub 2012).

Thus, recombinant vaccines offer several advantages to

the poultry industry, where vaccination is practiced

extensively. IBDV recombinant vaccines with VP2 pro-

teins have been developed using different methods and

expression systems. However, whole bacterial cell vaccines

are considered to have better immunogenicity than that

of intracellular secreted antigens (Stover et al. 1993;

Grode et al. 2002; Lee et al. 2005).

Lactobacilli are attractive vaccine candidates because

they have been successfully used as hosts for bacterial and

viral antigen expression and can induce immune

responses by oral administration (Maassen et al. 1999;

Grangette et al. 2001; Reveneau et al. 2002; Scheppler

et al. 2002; Ho et al. 2005; Ma et al. 2018). In addition,

lactobacilli have demonstrated intrinsic adjuvant activity

(Perdig�on et al. 2001; Ogawa et al. 2005; Yu et al. 2017).

Lactobacillus strains serve as live bacterial vehicles and

can colonize the intestinal tract (Medina and Guzm�an

2001). Oral vaccination has been proven to be an effec-

tive way to achieve better colonization of bacteria and

successful diffusion within the systemic circulation (Mes-

tecky 1987; Mcghee et al. 1992). Additionally, oral immu-

nization induced both humoral and cellular immune

responses (Li et al. 2010). In the present study, we inves-

tigated a novel recombinant Lactobacillus delivery system

against vvIBDV. The pPG612 vector, containing a surface

display expression system (HCE-PgsA), was used to con-

struct recombinant vectors expressing VP2 protein on the

surface of the bacteria with or without the translational

enhancer T7g10 (Olins and Rangwala 1989); these vectors

were named pPG612-T7g10-VP2 and pPG612-VP2

respectively. We compared the humoral and cellular

immune responses induced by pPG612-VP2 and pPG612-

T7g10-VP2 vectors in chickens. To date, the HCE-PgsA

system and T7g10 enhancer-based vaccine strategy has

not been reported for vvIBDV. To our knowledge, this is

the first study investigating the humoral and cellular

immune responses of chicken immunized with pPG612-

VP2/LP and pPG612-T7g10-VP2/LP as well as the

immunogenicity of a Lactobacillus system expressing the

vvIBDV-VP2 protein.

Materials and methods

Virus and experimental animals

The VP2 gene was amplified from a very virulent IBDV

DB11 strain isolated by our laboratory in 2013. DB11

was propagated in 9-day-old-specific, pathogen-free (SPF)

embryonated chicken eggs, and the virus was harvested

72 h postinfection. The Reed and Muench method was

adopted to measure the 50% embryo infectious dose

(EID50) of virus suspension (Muench 1938). A total of 40

SPF chickens were taken from the Harbin Veterinary
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Research Institute in China and kept in germicidal/an-

tiseptic experimental cages with free access to feed and

water.

Bacterial species and plasmids

Lactobacillus plantarum was used as an expression system

and was successfully electrotransformed with genetically

engineered surface expression vectors (i) pPG612-HCE-

PgsA-VP2-rrnBT1T2 (pPG612-VP2) and (ii) pPG612-

HCE-T7g10-PgsA-VP2-rrnBT1T2 (pPG612-T7g10-VP2),

consisting of the VP2 gene, a HCE promoter, a T7g10

enhancer, a PgsA anchor, and a chloramphenicol (Cm)

antibiotic resistance gene (Fig. S1 and Table S1). The two

engineered plasmids were constructed from a pPG612

shuttle expression vector comprising a HCE promoter, a

PgsA anchor and a chloramphenicol antibiotic resistance

gene. Vector construction and electroporation were car-

ried out as described previously by Iram et al. (2016).

Evaluation of VP2 protein expression by

immunofluorescence and Western blot

VP2 protein surface expression in pPG612/LP (negative

control), pPG612-VP2/LP and pPG612-T7g10-VP2/LP

vectors were evaluated using immunofluorescence as

described previously (Min et al. 2012). Briefly, trans-

formants were grown in DeMan-Rogosa-Sharpe (MRS)

medium (Sigma, St Louis, MO, USA) containing

5 lg ml�1 Chloramphenicol (Cm) at 37°C for 20 h.

The cells were harvested by centrifugation at 5000 g

for 5 min at 4°C, and the cell pellets were washed

three times with phosphate-buffered saline (19 PBS).

The pellets were resuspended with 5 lg ml�1 of the

chicken anti-VP2 monoclonal primary antibody (pre-

pared in our laboratory) and incubated for 1 h at

37°C. Next, cells were harvested and washed three

times with sterile PBS plus 0�05% Tween 20 (PBST).

Samples were then incubated with 2 lg ml�1 of FITC-

conjugated goat anti-mouse secondary antibody (Invi-

trogen, Life Technologies, Carlsbad, CA, USA) for 1 h

at 37°C in the absence of light, and after another

round of washing, stained with 40,60-diamidino-2-phe-

nylindole (DAPI) (Invitrogen) for 20 min at 4°C. Sam-

ples were rewashed three times, resuspended in 500 ll
PBS and analysed under a laser confocal microscope

(Leica, Wetzlar, Germany).

SDS-PAGE and Western blot was used to further

confirm the VP2 protein expression of pPG612-VP2/LP

and pPG612-T7g10-VP2/LP. The recombinants were

grown in MRS medium containing Cm overnight at

37°C, then cells were harvested following centrifugation

at 12 000 g for 2 min. Sterile PBS was used to wash the

cells twice, which were then incubated at 37°C with

10 mg ml�1 lysozyme for 60 min. Lysed cells were

washed two more times, and pellets were incubated for

10 min with 2% SDS loading buffer in a boiling water

bath. The proteins were separated on 15% SDS-PAGE

to examine protein expression, and then confirmed by

Western blot, following transfer to a polyvinylidene flu-

oride (PVDF) membrane for 70 min at 50 A. The

blocking of the membrane was performed overnight at

4°C with 5% skimmed milk and then washed three

times with sterile PBS for 10 min each. Next, the

immunoblot membrane was probed for 2 h at 37°C
with the chicken anti-VP2 monoclonal primary antibody

(5 lg ml�1). The PVDF membrane was then washed

three times and incubated with 2 lg ml�1 HRP-conju-

gated goat anti-mouse IgG (Takara, Tokyo, Japan) as a

secondary antibody for 2 h at 37°C. Anti-GAPDH anti-

body (Sigma) was used as a loading control. The target

protein was visualized using a chemiluminescent sub-

strate reagent (Pierce, Rockford, IL) according to the

manufacturer’s instructions.

Immunization

In this study, 40 chickens were used for the immuniza-

tion trial. SPF chickens were randomly arranged into

groups A (pPG612-VP2/LP), B (pPG612-T7g10-VP2/

LP), C (pPG612/LP), D (PBS) and E (unchallenged

control) comprising eight chickens per group. All ani-

mals were isolated from feed and water for 4 h before

vaccination. Bacterial cells containing pPG612-VP2/LP,

pPG612-T7g10-VP2/LP and pPG612/LP were harvested

by centrifugation. The cell pellets were washed once

using sterile PBS and resuspended in sterile PBS at a

concentration of 109 colony-forming units (CFU) per

ml. A total of three vaccinations were administered to

each animal. The first oral vaccination at a dosage of

1 ml was achieved by oral gavage to 8-day-old chickens

for three consecutive days. The second booster vaccina-

tion was administered when the chickens were 20, 21

and 22 days old. The third booster vaccination was

administered to 33-, 34- and 35-day-old chickens. Blood

was collected from wing veins at 0 10 22 35 and 44

days after the first oral vaccination. Then, chickens were

orally challenged with 500 ll vvIBDV strain DB11 at

the 50% embryo infectious dose (106 EID50) at 10 days

after the last immunization. Daily observation of clinical

signs and mortality were recorded for 7 days postchal-

lenge, and the protection rate of the vaccine was evalu-

ated. The surviving chickens were euthanized, and the

vaccine protection rate in both surviving and dead

chickens was calculated by gross examination of the BF.

Blood, spleen and bursa samples were collected from
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the surviving chickens for testing the humoral and cel-

lular immune responses.

Determination of anti-IBDV-specific IgG antibodies by

ELISA

Serum was separated from collected blood samples and

preserved at �20°C for evaluation of IgG antibody titres.

Antigen–antibody complexes were observed using a com-

mercially prepared antigen-coated ELISA Kit (IDEXX,

Laboratories, Westbrook, ME). The serum anti-IBDV

antibody titre of each sample was evaluated twice. A posi-

tive (diluted chicken anti-IBDV serum) and negative (di-

luted chicken serum nonreactive to IBDV) control was

provided with the kit, and the ELISA procedure was fol-

lowed according to manufacturer’s instructions. Serum

anti-IBDV samples were diluted at 1 : 500 with the sam-

ple diluent provided with the kit. Diluted samples

(100 ll) were dispensed into appropriate ELISA plate

wells (viral antigen coated) and incubated for 30 min

(�2 min) at 22°C. The solution was then removed, and

each well was washed five times with approximately

350 ll of distilled water. Plates were prevented from dry-

ing between plate washings and before the addition of

the next reagent. After the final wash, plates were tapped

onto absorbent material to get rid of any residual fluid.

Next, 100 ll of the conjugate (goat anti-chicken: HRPO

conjugate) was dispensed into each well and incubated

for 30 min (�2 min) at 22°C. After another round of

washing, 100 ll of tetramethylbenzidine substrate solu-

tion was added into each well and incubated for 15 min

(�1 min) at 18–26°C. Stop solution (100 ll) was dis-

pensed into each well to stop the reaction. The presence

of vvIBDV antibodies was determined by comparing the

absorbance A (650 nm) of the unknown sample to the

positive control mean. The positive control was standard-

ized and represented a significant IBDV antibody level in

chicken serum. The relative level of antibodies in the

sample was determined by calculating the sample-to-posi-

tive (S/P) ratio according to kit instructions, and results

with S/P >0�20 were considered positive. The log10 IBDV

antibody titre was calculated to illustrate the antibody

response. The following equation related the S/P at a

1 : 500 dilution to an endpoint titre: log10 titre = 1�09
(log10 S/P) + 3�36.

CD4+, CD8+ and cytokine detection

The cellular immune response was evaluated after chal-

lenging the chickens with IBDV. Our objective was to

compare the effects of different recombinant Lactobacillus

strains (pPG612-VP2/LP and pPG612-T7g10-VP2/LP) on

T-cell responses upon viral attack. Direct flow cytometry

was used to identify lymphocyte responses. Splenic cells

stimulated with IBDV were purified as previously

described (Kim et al. 2000). The cell suspension was

adjusted to a concentration of 2 9 106 cells and then

incubated with 5 lg ml�1 mouse anti-chicken CD4+
(ab25420), and CD8+ (ab24899) monoclonal antibodies

(Abcam Inc., Cambridge, MA) at 4°C for 30 min. Cells

were washed three times by centrifugation at 400 g for 5

min. Cells were resuspended in 500 ll of cold PBS con-

taining 10% FCS and 1% sodium azide, and the cells

were analysed using a flow cytometer. In addition, levels

of cytokines, including chicken interleukin 2 (IL-2), inter-

leukin 4 (IL-4) and interferon (IFN-c), in the serum were

detected using a TBD ELISA Kit (Tianjin Haoyang Bio-

logical Manufacture Co., Ltd, Tianjin, China). The con-

centrations of IL-2, IL-4 and IFN-c were then determined

by comparing the optical density (OD) of the samples to

a standard curve. The OD of the samples was measured

at 450 nm with an automatic ELISA reader (EIX 800

Bio-Tek Instruments, Highland Park, IL, USA).

Statistical analysis

Data were statistically analysed by one-way ANOVA (Mah-

mood et al. 2007), using GRAPHPAD PRISM ver. 5.0 soft-

ware. A P-value of less than 0�05 was considered

statistically significant.

Results

Expression of the PgsA-VP2 protein

Laser confocal microscopy was used to confirm the sur-

face expression of VP2 on recombinant Lactobacillus

pPG612-VP2/LP (pPG612-HCE-PgsA-VP2-rrnBT1T2/LP)

and pPG612-T7g10-VP2/LP (pPG612-HCE-T7g10-PgsA-

VP2-rrnBT1T2/LP). pPG612-VP2/LP and pPG612-T7g10-

VP2/LP treated with FITC-conjugated goat anti-mouse

antibody with DAPI were evident through green fluores-

cence emission on the cell surface. There was no green

fluorescence detected on the surface of the pPG612/LP

(Fig. 1). The SDS-PAGE and western blot assays were

used to identify recombinant Lactobacillus expressing the

surface-displayed VP2 protein using a highly active con-

stitutive promoter. Protein expression was determined

from lysed cell pellets of pPG612-VP2/LP and pPG612-

T7g10-VP2/LP cultured for 24 h. A PgsA anchor-VP2

fusion protein of approximately 90 kDa size (45 kDa of

the PgsA anchor and 44 kDa of VP2 protein) was

detected in both recombinant Lactobacillus strains and

compared to the positive control (pPG612-VP2/Lacto-

bacillus casei 393). The highest level of VP2 protein was

expressed in pPG612-T7g10-VP2/LP followed by the
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pPG612-VP2/LP strain, and no expression was observed

in the pP612/LP (Fig. 2). These results confirmed the

successful expression of the VP2 protein on the bacterial

surface and proved that T7g10 was able to enhance VP2

protein expression.

Stimulation of humoral immune response

vvIBDV-VP2 antibodies were measured to evaluate the

humoral immune response and level of protection pro-

vided. Serum samples were collected on days 0, 10, 22,

35 and 44 following the first oral vaccination and anal-

ysed through ELISA (Fig. 3). The chickens that received

pPG612-VP2/LP and pPG612-T7g10-VP2/LP showed

detectable antibody levels from day 10 (P < 0�01) that

considerably increased with time to day 44. At 35 and

44 days after the first oral vaccination, significantly

higher levels of specific IBDV-VP2 antibodies were

induced in chickens orally immunized with pPG612-

T7g10-VP2/LP in comparison with the pPG612-VP2/LP

group (P < 0�05).
The chickens were challenged with 500 ll (106

EID50) vvIBDV strain DB11 to evaluate the protection

rate of the vaccine. The protection rate in chickens of

group B (pPG612-T7g10-VP2/LP) was 87�5% while that

in group A (pPG612-VP2/LP) was 75% (Table 1). As

expected, no significant IBDV antibodies were detected

in the pPG612/LP and PBS group. Furthermore, the

protection rates in these groups were 37�5 and 0%,

respectively, and these chickens showed clinical signs

like swollen BF, watery diarrhoea, depression, dehydra-

tion and bursal atrophy. In addition, moderate bursal

atrophy was observed in the vaccinated groups when

compared to the pPG612/LP group. The titre of IBDV

antibodies after the challenge was significantly different

(P < 0�01) in vaccinated groups immunized with

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

DAPI

2 µm 2 µm 2 µm

2 µm 2 µm 2 µm

2 µm 2 µm 2 µm

2 µm 2 µm 2 µm

Negative control

Positive control

pPG612-VP2/LP

pPG612-T7g10-VP2/LP

FITC Merge

Figure 1 Confocal laser scanning microscopic detection of surface expression of VP2 protein. Our results illustrate that there is a green fluores-

cent signal on the cell surface of strains pPG612-VP2/LP, pPG612-T7g10-VP2/LP and positive control but no signals on negative control (pPG612/

LP), indicating that the protein of interest is expressed and displayed successfully on the surface of recombinant Lactobacillus. a, b, c: pPG612/LP

(negative control); d, e, f: pPG612-VP2/Lactobacillus casei 393 (positive control); g, h, i: pPG612-VP2/LP; j, k, l: pPG612-T7g10-VP2/LP. [Colour

figure can be viewed at wileyonlinelibrary.com]
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pPG612-T7g10-VP2/LP and pPG612-VP2/LP when com-

pared to the pPG612/LP group (Fig. 3). These out-

comes confirmed the improved immunogenicity of

pPG612-T7g10-VP2/LP against vvIBDV in chickens and

showed 100% survival rate after vvIBDV challenge

(Fig. 4).

Lymphocyte proliferation

Spleen samples were taken after vvIBDV infection from

immunized and unimmunized animals to assess the cell-

mediated immune response of the chickens. The lympho-

cyte response of splenic cells stained with anti-CD4+ and

CD8+ was analysed (Fig. 5a). The cellular immune

response in the entire vaccinated groups was significantly

higher (P < 0�01) compared to that in the negative con-

trol group. pPG612-T7g10-VP2/LP showed a higher pro-

duction of CD8+ and CD4+ cells (13�3 and 21�0%
respectively) compared to pPG612-VP2/LP (10�4 and

14�0% respectively). Among these, the production of

CD4+ cells was significantly higher (P < 0�01) in

pPG612-T7g10-VP2/LP compared to pPG612-VP2/LP. In

both groups, CD4+ cells were stimulated to a greater

extent than CD8+ cells (Fig. 5b).

Cytokine levels

IL-2, IL-4 and IFN-c cytokine levels in the experimen-

tal chickens were evaluated from serum samples using

the TBD ELISA kit. Higher levels of IFN-c, IL-2 and

IL-4 were detected in groups A and B than in groups

C and D (Fig. 6). Groups A and B exhibited the same

trend in cytokine production: IFN-c > IL-2 ˃ IL-4,

although group A cytokine production of IFN-c, IL-2

and IL-4 was lower than that in group B; among the

three cytokines, the expression of IFN-c was signifi-

cant higher (P < 0�01) in group B (pPG612-T7g10-

VP2/LP) than in group A (pPG612-VP2/LP). Since we

observed a low concentration of Th2 cytokines (IL-4),

expression analysis of Th1/Th2 cytokines supports that

vvIBDV induced an immune response via the Th1

pathway.
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Figure 2 Western blot analysis of the expression of recombinant PgsA anchor-VP2 protein (90 kDa) in pPG612-VP2/LP and pPG612-T7g10-VP2/

LP groups. Negative control: pPG612/LP; positive control: pPG612-VP2/Lactobacillus casei 393. The expression levels were normalized to that of

GAPDH as an internal control.
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Figure 3 Log10 IBDV antibody titre of different groups immunized with various vaccines. Eight-day-old chickens vaccinated orally with 1 ml of

109 CFU per ml PBS, Negative control (pPG612/LP), pPG612-VP2/LP or pPG612-T7g10-VP2/LP. Antibodies were detected in serum collected at 0,

10, 22, 35 and 44 days following the first oral vaccination. Titres were calculated by comparing the absorbance (A650) values of the unknown

sample to that of the positive control sample. **P < 0�01 vs pPG612/LP, #P < 0�05 vs pPG612-VP2/LP group. ( ) 0 DPI; ( ) 10 DPI; ( ) 22 DPI;

( ) 35 DPI; ( ) 44 DPI. [Colour figure can be viewed at wileyonlinelibrary.com]
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Discussion

Broiler production on a commercial level is still facing

serious problems due to IBDV. Vaccines available in the

market show partial defence against virulent and highly

virulent IBDV strains. Previously, several studies have

reported that DNA-based vaccines successfully induced

cellular and humoral immune responses against patho-

gens (Kodihalli et al. 1999; Fan et al. 2002; Serezani et al.

2002). Deoxyribonucleic acid vaccines against IBDV that

employed the VP2 protein have been shown to induce

antibody production, but the expression and protection

conferred have been found to vary (Becht et al. 1988). In

the current study, we evaluated the immune response to

VP2 protein expressed on the surface of bacteria using

the HCE-PgsA system, since higher immunological

responses have been reported from surface-displayed anti-

gens compared with intracellularly secreted antigens

(Stover et al. 1993; Jong-Soo et al. 2000; Grode et al.

2002). Lee et al. (2006) reported both systemic and

mucosal immune responses against acute respiratory syn-

drome-associated coronavirus with the S antigen (SARS-

CoV S) using the PgsA system in the L. casei expression

system. OprF (a dominant outer membrane protein of

Pseudomonas aeruginosa), FadL (an outer membrane pro-

tein involved in the transport of long-chain fatty acids in

E. coli) and PgsA have all been used as anchor proteins

(Poo et al. 2002; Lee et al. 2004, 2005), but PgsA has

been shown to be a better anchor for lactic acid bacteria.

However, to date, no candidate vaccine against vvIBDV

has been developed using the HCE-PgsA system. There-

fore, we tested the PgsA gene product as an anchor for

the surface display of antigens. The HCE-PgsA system

has been used in vaccine development against tumours

and influenza viruses, showing positive results. However,

it has been reported that the HCE-PgsA system expresses

low levels of recombinant protein (Poo et al. 2006).

Therefore, we introduced an extra-ribosomal binding site

(RBS) T7g10 (enhancer) in the HCE-PgsA system and

compared VP2 protein expression and protection against

vvIBDV in the presence and absence of this enhancer.

This synthetic sequence was derived from gene 10 of bac-

teriophage T7 called ‘Epsilon’ (enhancer of protein syn-

thesis initiation) (Olins and Rangwala 1989). It has been

reported that this sequence can improve the expression of

poorly expressed heterologous genes. Studies have proven

that the efficacy of gene 10 is due to the presence of a

nine-base sequence upstream of the Shine–Dalgarno
region. It has been documented that T7g10-derived RBS

displays 40-fold greater expression than the typical RBS.

Mammalian, plant and bacterial proteins have been

expressed at high levels by the construction of a plasmid

vector with a T7g10 leader sequence (Olins et al. 1988).

Table 1 Protection rate against IBDV challenge in each group of chickens

Groups Vaccines (given at 8 days old) Dose B/B ratio (mean � SD)* Survival rate† (%) Protection rate‡ (%)

A pPG612-VP2/LP 109 CFU 3�15 � 0�43§ 8/8 (100) 6/8 (75)

B pPG612-T7g10-VP2/LP 109 CFU 4�06 � 0�41¶ 8/8 (100) 7/8 (87�5)
C pPG612/LP 109 CFU 1�68 � 0�11 3/8 (37�5) 3/8 (37�5)
D PBS 1 ml 1�53 � 0�08 0/8 (0) 0/8 (0)

E Unchallenged control N/A 3�88 � 0�54§ 8/8 (100) N/A

N/A, group for B/B ratio comparison and not considered for protection.

IBDV, infectious bursal disease virus; PBS, phosphate-buffered saline; SD, standard deviation.

*Bursal/body weight ratio was calculated as (bursa weight)/(body weight) 9 1000.

†Survival rate was calculated as the number of chickens that survived viral challenge/total number of chickens per group.

‡Protection rate was calculated as the number of protected chicken/total number of chicken in each group.

§P < 0�01 vs pPG612/LP group.

¶P < 0�05 vs pPG612-VP2/LP group.
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Figure 4 Survival rates of chickens were observed from day (D) 1 to

7 days postchallenge with vvIBDV. Survival rates were calculated by

dividing the number of chickens that survived by the total number of

chickens per group (n = 8). ( ) PBS; ( ) Negative control; ( )

pPG612-VP2/LP; ( ) pPG612-T7g10-VP2/LP. [Colour figure can be

viewed at wileyonlinelibrary.com]
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To express the antigenic protein on the surface of bac-

teria, antigenic proteins should be fused with an anchor

protein that is naturally expressed on the surface of the

bacteria. Therefore, we constructed two recombinant sur-

face-displayed expression vectors, pPG612-VP2 and

pPG612-T7g10-VP2, expressed in L. plantarum. In this

study, indirect immunofluorescence confirmed VP2 pro-

tein expression on the surface of the recombinant bacte-

ria. We used the translational enhancer T7g10 to enhance

the constitutive protein expression of the vector. Expres-

sion analysis by Western blot indicated that pPG612-

T7g10-VP2/LP expressed higher levels of VP2 protein

when compared to pPG612-VP2/LP and pPG612/LP.

Immunogenicity studies were performed after the

expression of VP2 protein on the surface of L. plantarum

had been confirmed. Antibody levels in sera and produc-

tion of cytokines were measured to evaluate the immune

responses of the chickens.

It has been reported that antibody levels determine pro-

tection against vvIBDV in chickens (Berg 2000). In this

study, we determined that the recombinant Lactobacillus

delivery system induces a strong antibody response in

both the pPG612-VP2/LP- and pPG612-T7g10-VP2/LP-

treated groups. Moreover, the immune response to

pPG612-T7g10-VP2/LP was significantly higher

(P < 0�05) than to pPG612-VP2/LP. We also determined

the bursal/body weight ratio (B/B ratio), survival and pro-

tective rates against IBDV challenge. The B/B ratios of the

pPG612-VP2/LP and pPG612-T7g10-VP2/LP groups were

both significantly higher than that of the pPG612/LP

group (P < 0�01), and the value of the pPG612-T7g10-

VP2/L group was significantly higher than that of the

pPG612-VP2/L group (P < 0�05). Although the protection

rate of the pPG612-T7g10-VP2/LP group was higher than

that of the pPG612-VP2/LP group (87�5 vs 75%), no sig-

nificant difference was found between the two groups,

which may be caused by the small sample size in this

study. It has been proven that not only the humoral

immune response but also the cellular immune response

mediated by T cells plays a significant role in the control

of vvIBDV infection (Rautenschlein et al. 2002). During

the IBDV replication phase, CD4+ and CD8+ T cells show

an influx into the BF (the site of virus replication) and

other adjacent lymphoid organs such as the caecal tonsils

and the spleen (Sharma et al. 1989; Kim et al. 1999,

2000). We examined the effect of vaccination on T-cell

responses upon viral attack, showing that the number of T

cells significantly increased after virus infection. Cyclos-

porin A treatment was responsible for reducing circulating

T cells and was involved in T-cell mitogenesis, which in

Figure 5 CD4+ and CD8+ T cells identified by flow cytometry. Lymphocyte proliferation was identified from splenic cells stained with anti-CD4+

and CD8+ antibodies. CD4+ and CD8+ T cells were sorted based on expression and activation with anti-CD4+ and CD8+ antibodies. Q1: CD8+;

Q4: CD4+. Negative control = pPG612/LP (a). **P < 0�01 vs pPG612/LP, ##P < 0�01 vs pPG612-VP2/LP group (b). ( ) CD8; ( ) CD4. [Colour

figure can be viewed at wileyonlinelibrary.com]
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Figure 6 Concentrations of IFN-c, IL-2 and

IL-4 in serum samples of chickens vaccinated

with pPG612-VP2/LP, pPG612-T7g10-VP2/LP

were detected by ELISA. Negative control:

pPG612/LP; phosphate-buffered saline: PBS.

Values were calculated by comparing the OD

of samples to the standard curve. **P < 0�01
and ***P < 0�001 vs pPG612/LP, ##P < 0�01
vs pPG612-VP2/LP group. ( ) IFN-c; ( ) IL-4;

( ) IL-2. [Colour figure can be viewed at

wileyonlinelibrary.com]
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turn was responsible for viral burden in the bursae of

IBDV-infected chickens (Kim et al. 2000). T cell-mediated

responses have a significant role in viral clearance and are

involved in the recovery from viral infection (Kim et al.

2000). The cell-mediated immune system activates macro-

phages and natural killer cells in response to an antigen

(Lukacs and Kurlander 1989; Harty and Bevan 1992). In

IBDV-infected chickens, there was an increase in the num-

ber of intrabursal T cells, while the bursae of uninfected

chickens had very few resident T cells (Khan and Hashi-

moto 1996; L€utticken 1997; Kim et al. 1999, 2000). Our

results indicate that T7g10 may be responsible for the

increased expression of the VP2 protein, thereby increas-

ing antibody production that in turn produces a strong

humoral immune response and subsequently maximum

protection from viral challenge. Furthermore, a greater

amount of VP2 stimulates the cell-mediated immune

response, which shows a better CD4+ and CD8+ T-cell

response. CD8+ T cells are cytotoxic T cells which are

involved in the lysis of virally infected cells, tumour cells

and allografts, and play a crucial role in the immune

response (Sharma et al. 1989). Upon activation, helper

CD4+ T cells function as “middlemen” and trigger secre-

tion and proliferation of various cytokines.

Cytokine production regulates host responses. Th1 cells

are responsible for the secretion of IFN-c and IL-2

cytokines and are involved in effective cell-mediated

immunity leading to the successful elimination of intra-

cellular pathogens (Kunzendorf et al. 1998). Th2 cells are

involved in the control of certain parasitic infections

through the production of cytokines such as IL-4, IL-5

and IL-13 (Avery et al. 2004). The bursa of virally

infected chickens is involved in the activation of T cells

and upregulates the expression of other cytokine genes

such as IL-1b, IL-6 and IFN-c (Eldaghayes et al. 2006).

Cellular immune responses mediated by cytokines against

vvIBDV in chickens are poorly illustrated and have not

yet been broadly studied. In our study, higher concentra-

tions of IFN-c, IL-2 and IL-4 cytokines were detected in

pPG612-T7g10-VP2/LP compared to pPG612-VP2/LP;

among these, concentrations of IFN-c in pPG612-T7g10-

VP2/LP were significantly higher (P < 0�01) compared to

pPG612-VP2/LP. IBDV-infected chickens had upregulated

gamma interferon gene expression in spleen and bursal

cells compared to virus-free chickens (Khan and Hashi-

moto 1996; L€utticken 1997). It has been documented that

IL-2 has a significant role in regulating the function and

development of T cells (Malek 2003). In mice, targeted

deletion in the IL-2 gene has been shown to affect multi-

ple target organs thus supporting that IL-2 plays a role in

immunodeficiency and fatal autoimmune inflammatory

disease (Schorle and Hunig 1991; K€undig et al. 1993;

Sadlack et al. 1993).

Th1 or Th2 cytokine production in vaccinated chickens

is the outcome of an adaptive immune response. Th2

cytokines direct B cells to produce the anti-allergen IgE,

and they also inhibit Th1 cell function and prevent the

production of IL-2 and IFN-c that are crucial for the

development of cytotoxic T cells (Berg 2000). IL-4 is a

multifunctional pleiotropic cytokine involved in apoptosis

and gene expression in various cells including lympho-

cytes, macrophages and fibroblasts, as well as epithelial

and endothelial cells. Investigation of IL-4 is required for

the understanding of the Th2 phenotype of lymphocytes

and for regulating cell proliferation (Luzina et al. 2012).

Among the three cytokines studied, we observed low pro-

duction of the Th2 cytokine IL-2, and the highest expres-

sion of the Th1 cytokine IFN-g. The expression analysis

of Th1 and Th2 cytokines indicated that this recombinant

Lactobacillus delivery system induces an immune response

via the Th1 pathway.

To conclude, our results demonstrated that VP2

protein was expressed on the surface of bacteria

using the HCE-PgsA system and proved that the

T7g10 enhancer improved the level of VP2 expression

and induced a greater immune response against

vvIBDV. Therefore, bacteria are better recognized by

the immune system when antigens are expressed on

its surface rather than intracellularly (Lee et al.

2006). To the best of our knowledge, this HCE-PgsA

and T7g10 enhancer-based vaccine strategy has not

been previously reported for vvIBDV. Our results

indicate that this recombinant Lactobacillus delivery

system was more successful than has been previously

achieved, demonstrating a 100% survival rate and

being suitable for administration (Wu et al. 2007;

Park et al. 2009; Arnold et al. 2012; He et al. 2018).

Considerably less bursal atrophy was observed com-

pared to other DNA vaccines (Kapczynski et al. 2003;

Haygreen et al. 2006; Hsieh et al. 2007), which indi-

cates that this strategy provides more protection

from the virus. These results taken together demon-

strate that this recombinant Lactobacillus delivery sys-

tem is immunogenic and can confer protection

against vvIBDV in chickens.
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