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Abstract

Bulk segregant analysis (BSA) using microarrays, and extreme array mapping (XAM) have recently been used to rapidly
identify genomic regions associated with phenotypes in multiple species. These experiments, however, require the
identification of single feature polymorphisms (SFP) between the cross parents for each new combination of genotypes,
which raises the cost of experiments. The availability of the genomic polymorphism data in Arabidopsis thaliana, coupled
with the efficient designs of Single Nucleotide Polymorphism (SNP) genotyping arrays removes the requirement for SFP
detection and lowers the per array cost, thereby lowering the overall cost per experiment. To demonstrate that these
approaches would be functional on SNP arrays and determine confidence intervals, we analyzed hybridizations of natural
accessions to the Arabidopsis ATSNPTILE array and simulated BSA or XAM given a variety of gene models, populations, and
bulk selection parameters. Our results show a striking degree of correlation between the genotyping output of both
methods, which suggests that the benefit of SFP genotyping in context of BSA can be had with the cheaper, more efficient
SNP arrays. As a final proof of concept, we hybridized the DNA from bulks of an F2 mapping population of a Sulfur and
Selenium ionomics mutant to both the Arabidopsis ATTILE1R and ATSNPTILE arrays, which produced almost identical
results. We have produced R scripts that prompt the user for the required parameters and perform the BSA analysis using
the ATSNPTILE1 array and have provided them as supplemental data files.
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Introduction

Mapping the causal allele or alleles for a particular trait is one of

the most common methods for learning about the genetic

processes underlying biological function. One method to rapidly

identify markers in a genomic region linked to a phenotype is Bulk

Segregant Analysis (BSA) [1]. BSA partitions a population from a

single cross into two pools, or bulks, according to a single trait, so

that each bulk contains individuals corresponding to a particular

phenotype or specific section of a phenotypic range. The method

uses marker measurements of pooled genomic DNA samples from

each bulk to measure correlation between marker and phenotype

and thereby designate a probable location for the gene based

on that correlation. BSA was first combined with microarray

genotyping in yeast using arrays designed for measuring mRNA

expression [2]. The technique allows for the parallel interrogation

of thousands of single feature polymorphisms (SFPs), i.e.

differences in the binding intensity to a particular oligonucleotide

probe between two different samples of genomic DNA. Later

studies showed the potential of BSA combined with SFP

genotyping arrays in successfully mapping genes to mutant

phenotypes in more complex genomes, such as Arabidopsis [3,4]

and the technique has been used to map mutants in several species

[5–10].

The microarray genotyping approach was later extended to

BSA-based investigations of quantitative traits where the pools

were selected from the extreme ends of phenotypes in a

continuously variable population. This process, called eXtreme

Array Mapping (XAM), has successfully mapped Quantitative

Trait Loci (QTL) in Arabidopsis and offers a time-efficient and

cost-effective method of discovering new QTL [11]. However,

SFP marker approaches require multiple parental hybridizations

for permutation testing to identify viable SFPs among the features

on a given array [3,11]. This method of identifying markers can be

expensive given the low percentage of features that qualify as

viable markers.

Recently, arrays that are designed to specifically probe known

single nucleotide polymorphisms (SNPs), using probes for both

alleles, have been developed for multiple species. SNP genotyping

eliminates the need to identify viable marker features via

permutation testing, relying instead on SNPs identified by genome

resequencing methods. In the case of Arabidopiss, a SNP array

was constructed with the ability to interrogate over 200,000 SNPs

and this array has been used to genotype over 1,000 natural
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accessions [12,13 and unpublished data from the Nordborg and

Borevitz labs]. These resources provide thousands of SNP markers

between almost any two lines of the thousands of Arabidopsis

(closely related lines will have fewer SNPs). In addition to this

advantage, recent reductions in feature redundancy of SNP

genotyping arrays have made SNP arrays more data and cost

efficient, reducing the number of features per SNP from up to 40

probes to only 4 probes [14]. Thus, the price and effort spent per

viable marker on a SNP genotyping array is significantly lower

than the price and effort spent on a SFP array, making SNP

genotyping a clear improvement over SFP genotyping for use with

BSA and XAM.

However, like SFP genotyping arrays, even after preprocessing,

SNP arrays produce a considerable amount of noise in their

intensity readings due to variation in probe binding strength,

random and nonspecific binding. This noise can blur both the

intensity and position of the peak signal that represents the

probable location of the mapped gene. In this study, we have

developed a platform for performing and simulating BSA and

XAM with microarrays in several gene models, using the preferred

SNP genotyping arrays for Arabidopsis. Our method is easily

adaptable for use with SNP arrays for other species.

Materials and Methods

Arrays
The Affymetrix 250K ATSNPTILE1 array interrogates

,250,000 SNPs in the Arabidopsis genome with Col-0 as a

reference genotype. Atwell et al. [12] genotyped 107 lines of

Arabidopsis with the 250K array to determine which SNPs were

polymorphic between two given lines to a high degree of

confidence, using quality ensuring measures such as multiple

prior data sets for sequence confirmation, the filtering of bad

arrays and bad SNPs using mismatch rates, and removing non-

binary SNPs. The Nordborg lab of USC, in collaboration with the

Borevitz lab of U. Chicago, has since increased the number of

genotyped accessions to approximately 1,000, using the same

measures to ensure quality; this data is publicly available at http://

walnut.usc.edu/2010. The ATTILE1R interrogates 1,683,620

unique genome locations with 25mer oligonucleotides distributed

across the Arabidopis genome at an average spacing of ,35 bp

[15].

Parent Sample Data
Li et al. hybridized the genomic DNA of parental lines of

Arabidopsis, including Col-0 and Kr-0, to 250K ATSNPTILE1

arrays [13]. For each SNP there are four signals: the sense and

antisense probe for the Col-0 genotype allele and the sense and

antisense probe for the alternate ecotype allele. We spatially

corrected these parent files [3], partitioned the data into sense and

antisense signals, and took the difference in signal intensity

between the reference allele probe and ecotype allele probe in both

the sense and antisense sets.

Simulations
We modified the method of Wolyn et al. [11] to produce

simulations of XAM using the 250K ATSNPTILE1 arrays. We

constructed simulations for populations of 100 RILs, 200 F2’s, and

1000 F2’s. We considered the same eight genetic models as Wolyn

et al. [11] Five models considered a single QTL with various

positions, additive effects, and dominance effects. Three models

considered two QTL simultaneously, including two unlinked with

minor additive effects, two linked in repulsion with major additive

effects, and two unlinked exhibiting epistasis. The method

accounted for variation due to differences in recombination, as

well as phenotypic variation for each model. In accounting for

phenotypic variation, we considered multiple measurements per

RIL (n = 3). Using these simulated phenotypes, we selected two

pools of plants representing the extreme 10 or 30% of phenotypic

variation.

Since our method of BSA lacks the scaling step of Wolyn et al.,

rather than apply a mean feature intensity to normal noise for

each probe, we took random selections of SNP intensity signals

from actual hybridizations of parental accessions in the parent

sample data. We randomly selected marker probe intensities from

the reference genotype parent hybridization (i.e. the Col-0 array)

and assigned them to the simulated genotypes that were

homozygous for the reference genotype. We then randomly

selected marker probe intensities in a hybridization from the

outcross ecotype (in our simulations, Kr-0) and assigned them to

the simulated genotypes homozygous for the outcross ecotype.

Finally, we took the probe-wise mean of the parent Col-0 and Kr-0

intensities, and after observing that the results were distributed

normally about zero, randomly selected these pseudo-F1 probe

values and assigned them to the simulated heterozygous loci,

thereby constructing a full simulation of SNP genotyping using our

sample parent data. Because of the high degree of correlation

between the sense and antisense probe signals, we used only the

sense signals to produce the simulated genotype.

We then calculated each pool’s mean signal intensity for each

probe, took the probe-wise difference between the mean signals,

and applied a loess smooth (span = 0.25). Essentially, we

performed BSA on the simulated SNP genotypes. For each

permutation, we recorded the smoothed data’s maximum signal

intensity and position of the maximum on each chromosome, as

well as the minimum and position of the minimum on each

chromosome.

We performed 1000 permutations for every combination of

population, gene model, and selection intensity. Like Wolyn et al.

we constructed horizontal thresholds for detection by considering

the 95th and 99th percentile of the sorted maximum and minimum

intensities on the unlinked chromosomes. These thresholds were

calculated for each gene model, were observed to be approxi-

mately equal within each population/selection intensity group,

then averaged for the final results. In gene models considering

QTL on a single chromosome, four chromosomes were considered

unlinked and used to construct thresholds, in models that

considered two QTL on separate chromosomes simultaneously,

the remaining three unlinked chromosomes were used to construct

thresholds. We recorded a simulation as a failure if the maximum

intensity on the linked chromosome(s) did not exceed our

calculated threshold. Finally, we established 95% confidence

intervals for the position on the peak signal at a modeled QTL by

recording the central width along the linked chromosome that

contained the maximum’s position in 950 of the 1000 simulations.

Full summary data from the simulations and R scripts are

available as supplemental files.

BSA with SNPs
For our 250K SNP array data for BSA, we measured the

elemental profile of 412 F2 plants from a cross between the Sulfur

and Selenium mutant 78730 (in the Col-0 background) and the

Ler-1 accession (Trays 1289–1290 and trays 1321–1323, data

available at www.ionomicshub.org). Leaves from the 31 highest

and 33 lowest S+Se accumulating plants (calculated as a

percentage of the Col-0 accumulation in the same growth tray)

were pooled and the genomic DNA was extracted using Qiagen

kits. The DNA was sent to the University of Chicago array facility
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for hybridization to 250K SNP arrays and the Purdue Genomics

Facility for hybridization to the ATTILE1R arrays. The CEL files

have been deposited at GEO under accession GSE25509. All

additional analysis was carried out using the R program (version

2.9.1) and the Bioconductor affy package (version 1.22.1). The

CEL files were read in and spatially corrected using scripts from

Borevitz et al. [3]. Using the data on polymorphism from the

Nordborg lab, we selected SNPs that were known to be

polymorphic between the two accessions. For both the sense and

antisense probes, we first calculated the differences in signal

intensity between the reference and alternate alleles for each SNP,

and then subtracted the differences in one array from the other.

After applying a loess smooth (span = 0.25), the magnitude of these

comparisons of differences indicated a difference in allele

frequency. To perform the method of BSA with microarrays

outlined in previous studies [2–5], we adapted the scripts written

Figure 1. Probe signal distributions. (Top) Histograms of the difference in allele signals (Col-0 allele probe – other allele probe) of sense strand
signals between the Col-0 and Kr-0 parent arrays for probe sets marked by the Atwell et al. [12] as polymorphic (markers) and not marked as
polymorphic (controls). (Bottom) Histograms of the allele signals from the parent arrays and the pseudo-F1 array constructed from the mean of the
parent arrays. The pseudo-F1 array signals are distributed about zero, as would be expected for an actual heterozygous plant.
doi:10.1371/journal.pone.0015993.g001
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PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e15993



by Borevitz et al. [3] and Wolyn et al. [11] to use our new SNP

comparisons of differences as markers for difference in allele

frequency. Data and R scripts are available at http://ars.usda.

gov/mwa/bsasnp, the scripts are available as Files S1 and S2.

Results and Discussion

Accession Sample Data
To investigate the signal strength and noise levels inherent in

the SNP platform, we analyzed hybridizations of genomic DNA

from natural inbred accessions. While the signal from an array

used for SFP measurements is simply the intensity of hybridiza-

tion to a single probe, the signal from a SNP array is the

difference in hybridization between the probe with allele 1 at the

central base and the probe with allele 2 at the central base. The

ATSNPTILE array was designed with reference to the Col-0

sequence, so each SNP set has probes for the Col-0 allele and the

alleles are compared so that preferential hybridization to the

Col-0 allele will result in a positive signal and preferential

hybridization to the other allele will result in a negative signal.

The signals from two different hybridizations produces the signal

that can be used for BSA or XAM mapping, and the parent

hybridizations represent the strongest possible signal (if both pools

were homozygous for the respective parent at a given genomic

region). For four different sets of accessions, we measured the

difference in hybridization at the marker probes, those predicted

by the Nordborg data set [12] to be polymorphic between the two

parent accessions, and the control probes, those where the

parents have the same allele and the difference should be ,0

(Figure 1 and Figures S1, S2, S3, S4, S5, S6, S7). Although there

Table 1. Results of simulations.

Population Type and Size 100 RILs 200 F2 1000 F2

Selection Intensity 10% 30% 10% 30% 10% 30%

Confidence Detection Thresholds

95% 1.18 0.7 0.58 0.34 0.27 0.15

99% 1.43 0.85 0.72 0.42 0.33 0.19

Model Effect Chromosome No. Position (cM) Failure Rate (%)

1 Major Additive Two 36 0.1 0 0 0 0 0

2 Major Dominant Two 36 0 0 0 0 0 0

3 Moderate Additive Two 36 12.5 4 10.4 3 0 0

4 Maj. Overdominance Two 36 94.5 95.9 95.2 95.4 95.1 94.7

5 Major Additive Two 2 0 0 0 0 0 0

6 Moderate Additive (unlinked) Two 36 20.1 10.4 14.7 5.5 0 0

6 Moderate Additive (unlinked) Five 41 17.4 7.7 12.2 4.4 0 0

7 Major Additive (linked in repulsion) Two 36 24.1 42.3 55.5 48.9 0.7 0.5

7 Major Additive (linked in repulsion) Two 56 29.8 45.1 58.5 52.6 0.9 0.2

8 Major Epistasis (unlinked) Two 36 31.5 17.9 55.4 63.4 3 11.9

8 Major Epistasis (unlinked) Five 41 32.6 15.7 58.7 65.3 3.9 12.3

Model Effect Chromosome No. Position (cM) 95% Confidence Interval (cM)

1 Major Additive Two 36 10.4 5.6 18.5 9.4 3.8 3.2

2 Major Dominant Two 36 11.2 5.4 20.5 14.4 4.3 3.6

3 Moderate Additive Two 36 55.2 32.9 63.6 45.3 9.2 5.8

4 Maj. Overdominance Two 36 83.0 83.0 83.0 83.0 83.0 83.0

5 Major Additive Two 2 6.2 3.1 10.8 6.4 2.0 0.4

6 Moderate Additive (unlinked) Two 36 60.1 52.4 66.1 61.0 10.2 6.7

6 Moderate Additive (unlinked) Five 41 71.7 43.8 73.5 57.1 9.2 6.4

7 Major Additive (linked in repulsion) Two 36 26.8 37.1 36.7 36.3 18.3 15.4

7 Major Additive (linked in repulsion) Two 56 30.1 29.4 28.8 28.5 22.7 16.1

8 Major Epistasis (unlinked) Two 36 77.2 58.2 83.0 83.0 42.6 71.3

8 Major Epistasis (unlinked) Five 41 98.0 76.2 98.0 98.0 46.4 79.8

(Top) The horizontal detection thresholds calculated by considering the minimum signal not exceeded by the unlinked chromosomes in 95 and 99% of the simulations.
(Middle) The rate of failure, as a percentage, for a linked chromosome to exceed the 95% threshold for detection constructed from the maximum and minimum values
on unlinked chromosomes.
(Bottom) The 95% confidence intervals constructed representing the central width of the chromosome that contained the peak in 950 of 1000 simulations. These data
represent the precision of the mapping technique for each model, population, and selection intensity.
doi:10.1371/journal.pone.0015993.t001

Bulk Segregant Analysis Using SNP Microarrays

PLoS ONE | www.plosone.org 4 January 2011 | Volume 6 | Issue 1 | e15993



are overlaps between the distributions of hybridization differences

of the control and marker probes (Fig. 1a) the peaks are clearly

separated. At most markers, therefore, large differences in

the allelic composition of BSA pools will be detectable, and

smoothing the signal over adjacent markers along a chromosome

should reduce false negative results due to low signal. To estimate

the signal from a heterozygote hybridization, we created a

pseudo-F1 array by taking the mean of two parent hybridizations

(Fig. 1b). The peak of the pseudo-F1 hybridization was centered

close to zero, as expected.

Simulations
In order to determine the feasibility of using the SNP array for

BSA and XAM mapping, we simulated mapping experiments

while varying the population (100 RILs, 200 and 1000 F2s) and

bulk pool size (10% or 30%) and the underlying genetic model

(eight models with either one or two loci varying in strength and

interaction) (Table 1). For each scenario, we performed 1000

permutations and recorded the maximum and minimum differ-

ence in signal intensity for each chromosome between the

simulated segregant pools, as well as the position of the maximum

and minimum, to develop thresholds for detection and confidence

intervals for position of the signal peak. Figure 2 illustrates the

results from a simulated population of 200 F2 plants with a major

additive QTL at the 36th centimorgan on chromosome 2, selecting

the extreme 10% of phenotypic variation as our bulks.

The results of our simulations exhibit the same patterns as the

results of the simulations of Wolyn et al. [11]. Single major QTL

were easily identified, with virtually no failures in any of the

populations, while larger populations were required to ensure

detection of all loci in more complex genetic models.

Two major loci linked in repulsion on the same chromosome

(model 7) require large populations in order to obtain the requisite

number of recombinations to separate them, while, as expected,

this method is not suited for overdominant loci. The other two

gene models exhibited relatively high failure rates and reduced

precision with smaller population sizes. Accordingly, if researchers

have any reason to believe that the trait under study is controlled

by more than a single loci, they should err on the side of

phenotyping more lines, and where complex genetic architecture is

suspected, consider other mapping techniques. The results for our

RIL populations tend to have a higher rate of failure and wider

interval of confidence (i.e. are less precise) than the XAM

simulations in Wolyn et al. [11], which can be attributed, at least

in part, to the fact that our simulations considered 100 RILs with

only 3 observations per RIL (n = 3), rather than 120 RILs with

n = 10 in Wolyn et al.. This choice of settings for the simulations

reflected experimental designs more likely for techniques such as

Figure 2. BSA using SNPs simulations. 100 simulations performed by selecting the extreme 10% of phenotypic variation for a population of 200
F2 plants with a major additive QTL at the 36th centimorgan on the second chromosome, shown in gray. The bold lines represent the average of the
100 simulations for each chromosome. The dashed horizontal orange and red lines represent the 95 and 99% confidence thresholds for detection,
respectively, established by the 1000 permutation simulations displayed in Table1. The black dashed vertical line represents the location of the
simulated QTL, with the neighboring blue dashed lines representing the boundaries of the 18.5 cM wide confidence interval formulated from our
simulations.
doi:10.1371/journal.pone.0015993.g002
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ionomics where phenotyping in large numbers is more difficult

than the hypocotyl length assay utilized in Wolyn et al.

BSA with SNPs
To test the SNP BSA method on real samples, we performed

BSA analysis on a population of F2 plants derived from a cross of

Ler-0 to the high Sulfur and Selenium ionomics mutant 78730 (an

EMS mutant in the Col-0 background). Lines were scored for their

percentage change in each element compared to Col-0 grown in

the same tray. 31 plants were identified as unambigiously mutant

and used as the mutant bulk, while 33 with the lowest Sulphur/

Selenium phenotype were used for the control pool. Genomic

DNA was isolated from both pools and hybridized to either the

ATTILE1R or ATSNPTILE arrays. BSA mapping was per-

formed according to the protocols of this paper (ATSNPTILE) or

the protocols of Borevitz et al [3] (using previosuly obtained

hybridizations of Col-0 and Ler-0. The BSA traces produced by

both methods are highly correlated (Fig. 3), indicating that the

methods are producing similar results, and identified a region

centered around 10 Mb on Chr 1 as the location of the causal

locus. PCR analysis of known Col-0/Ler-0 markers located

9.2 Mb and 11 Mb on Chr 1 confrimed the BSA predicted

location and fine mapping of the locus is ongoing. Given that the

cost of the ATSNPTILE array is ,1/2 that of the ATTILE1 (and

the older ATH1 array), and SNP mapping doesn’t require parent

hybs for marker detection, the SNP array is clearly the most

economical option. In an effort to make this analysis more

accessible to researchers with limited bioinformatics experience,

we have created scripts that query the user for appropriate

variables at the relevant steps which are available as supplemental

data files and at the website: http://ars.usda.gov/mwa/bsasnp.

The mapping performed on the 78730 mutant used a subset of the

available markers on both arrays: 30,000 SFP markers were used,

although, permutation testing suggests that 100,000 SFPs could be

used with a false discovery rate of 0.05. The SNP mapping used a

randomly selected set of 1/4th of the ,70,000 SNPs available in most

parent combinations, and only used the sense strand for the mapping.

These marker densities are ,10X what is needed for BSA or XAM

mapping of most RIL and F2 populations, but may be useful for

applications that require finer mapping, such as BSA mapping on

pools derived from lines with known breakpoints around a candidate

loci or mapping of break points in RIL lines [16,17].

Conclusions
Here we have demonstrated that the ATSNPTILE array is well

suited for BSA and XAM mapping and represents a low cost

alternative to the arrays previously used for SFP mapping. We

have performed simulations that demonstrate that this method can

easily detect the causal region when a trait is controlled by a single

loci, while more complex genetic scenarios will require larger

populations to ensure detection.

Supporting Information

Figure S1 Kr-0, antisense probe distributions. (Top)

Histograms of the antisense probe-wise difference in allele signals

Figure 3. BSA using SNPs vs. SFPs. A comparison of BSA with SFP genotyping vs. BSA with SNP genotyping using the same genomic DNA for
hybridization. A. The dashed line represents the detection threshold of 0.17 established by Borevitz et al. [3]. B The dashed lines represent the 95 and
99% confidence thresholds for detection established by our simulations.
doi:10.1371/journal.pone.0015993.g003
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between the Col-0 and Kr-0 parent arrays for probe sets marked

by the Atwell et al. [12] as polymorphic (markers) and not marked

as polymorphic (controls). (Bottom) Histograms of the allele signals

from the parent arrays and the pseudo-F1 array constructed from

the mean of the parent arrays.

(PDF)

Figure S2 Eden-1, antisense probe distributions. (Top)

Histograms of the antisense probe-wise difference in allele signals

between the Col-0 and Eden-1 parent arrays for probe sets marked

by the Atwell et al. [12] as polymorphic (markers) and not marked

as polymorphic (controls). (Bottom) Histograms of the allele signals

from the parent arrays and the pseudo-F1 array constructed from

the mean of the parent arrays.

(PDF)

Figure S3 Eden-1, sense probe distributions. (Top)

Histograms of the sense probe-wise difference in allele signals

between the Col-0 and Eden-1 parent arrays for probe sets marked

by the Atwell et al. [12] as polymorphic (markers) and not marked

as polymorphic (controls). (Bottom) Histograms of the allele signals

from the parent arrays and the pseudo-F1 array constructed from

the mean of the parent arrays.

(PDF)

Figure S4 Van-0, antisense probe distributions. (Top)

Histograms of the antisense probe-wise difference in allele signals

between the Col-0 and Van-0 parent arrays for probe sets marked

by the Atwell et al. [12] as polymorphic (markers) and not marked

as polymorphic (controls). (Bottom) Histograms of the allele signals

from the parent arrays and the pseudo-F1 array constructed from

the mean of the parent arrays.

(PDF)

Figure S5 Van-0, sense probe distributions. (Top) Histo-

grams of the sense probe-wise difference in allele signals between

the Col-0 and Van-0 parent arrays for probe sets marked by the

Atwell et al. [12] as polymorphic (markers) and not marked as

polymorphic (controls). (Bottom) Histograms of the allele signals

from the parent arrays and the pseudo-F1 array constructed from

the mean of the parent arrays.

(PDF)

Figure S6 Ler-1, antisense probe distributions. (Top)

Histograms of the antisense probe-wise difference in allele signals

between the Col-0 and Ler-1 parent arrays for probe sets marked

by the Atwell et al. [12] as polymorphic (markers) and not marked

as polymorphic (controls). (Bottom) Histograms of the allele signals

from the parent arrays and the pseudo-F1 array constructed from

the mean of the parent arrays.

(PDF)

Figure S7 Ler-1, sense probe distributions. (Top) Histo-

grams of the sense probe-wise difference in allele signals between

the Col-0 and Ler-1 parent arrays for probe sets marked by the

Atwell et al. [12] as polymorphic (markers) and not marked as

polymorphic (controls). (Bottom) Histograms of the allele signals

from the parent arrays and the pseudo-F1 array constructed from

the mean of the parent arrays.

(PDF)

File S1 BSA using SNPs supplies script. R script containing

the functions necessary to perform BSA using the ATSNPTILE1

array. This script supplies information for File S2. This is not the

script to open in order to perform BSA using the ATPSNPTILE1

array, but is needed for the process.

(TXT)

File S2 BSA using SNPs script. R script that contains first

instructions and relies on the information in File S1 to perform

BSA using the ATPSNPTILE1 array. This is the script to open to

perform our method.

(TXT)
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