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Identifying metastatic ability 
of prostate cancer cell lines using 
native fluorescence spectroscopy 
and machine learning methods
Jianpeng Xue1, Yang Pu2, Jason Smith3,4, Xin Gao5, Chun Wang6 & Binlin Wu3*

Metastasis is the leading cause of mortalities in cancer patients due to the spreading of cancer cells 
to various organs. Detecting cancer and identifying its metastatic potential at the early stage is 
important. This may be achieved based on the quantification of the key biomolecular components 
within tissues and cells using recent optical spectroscopic techniques. The aim of this study was to 
develop a noninvasive label-free optical biopsy technique to retrieve the characteristic molecular 
information for detecting different metastatic potentials of prostate cancer cells. Herein we report 
using native fluorescence (NFL) spectroscopy along with machine learning (ML) to differentiate 
prostate cancer cells with different metastatic abilities. The ML algorithms including principal 
component analysis (PCA) and nonnegative matrix factorization (NMF) were used for dimension 
reduction and feature detection. The characteristic component spectra were used to identify the 
key biomolecules that are correlated with metastatic potentials. The relative concentrations of the 
molecular spectral components were retrieved and used to classify the cancer cells with different 
metastatic potentials. A multi-class classification was performed using support vector machines 
(SVMs). The NFL spectral data were collected from three prostate cancer cell lines with different 
levels of metastatic potentials. The key biomolecules in the prostate cancer cells were identified to 
be tryptophan, reduced nicotinamide adenine dinucleotide (NADH) and hypothetically lactate as 
well. The cancer cells with different metastatic potentials were classified with high accuracy using the 
relative concentrations of the key molecular components. The results suggest that the changes in the 
relative concentrations of these key fluorophores retrieved from NFL spectra may present potential 
criteria for detecting prostate cancer cells of different metastatic abilities.

The ability to metastasize is a fateful characteristic of certain malignant tumors, which currently account for the 
majority of cancer-related deaths. One third of all people worldwide will be diagnosed with a form of cancer 
during their lifespan. Currently, one third of these diagnosed cases will result in death due to metastasis. How-
ever, only a few notable methods have been developed to measure the metastatic ability present in a variety of 
cancers. In particular, prostate cancer afflicts more men than any other form in the western world—ranking third 
in terms of mortality after lung cancer and colorectal cancer1. The detection of prostate cancer at an early stage is 
paramount for improving patient prognosis, as prostate cancer detected early has a significantly higher chance 
of successful treatment. One promising non-invasive method to diagnose cancers without removing tissue is 
based on optical spectroscopy, which was shown to be able to determine the state of tissue ex vivo2–5 as well as 
in vivo6–8 in previous studies. To characterize the properties of normal, benign, and malignant tissue and cells, 
one major focus in optical biopsy is measuring native fluorescence (NFL) spectra, which plays an important role 
in discrimination of cancerous tissue from normal tissue since the early studies of Alfano in 1980s2.
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It is widely acknowledged that the emission spectrum of a tissue/cell is a superposition of spectra of various 
salient fluorophores9–11. The main building-block fluorophores present in tissue include tryptophan, reduced 
nicotinamide adenine dinucleotide and its phosphorylated form [NAD(P)H], flavin adenine dinucleotide (FAD), 
collagen, and elastin. These molecules appear with different amounts and structure in tumor evolution and these 
changes can be revealed by NFL spectra2–5.

Tryptophan is an essential amino acid. It cannot be produced by cells and must be supplied in the diet. 
Tryptophan is needed for protein synthesis. It is transported via large amino acid transporter system (LAT1/
CD98) into the cells, where it is degraded to kynurenine by the enzyme indoleamine-2,3-dioxygenase12,13. Many 
studies have shown that the degradation of tryptophan is a mechanism that tumors select to achieve immune 
escape12–15. The failure of immune system control on the growth of tumor cells leads to the fast development 
of a tumor12,13,16. Since there are more large amino acid transporters on the cell membrane of aggressive cancer 
cells, tryptophan can be taken up more efficiently in such cells than others from the surrounding environment.

Tryptophan is required for T lymphocyte effector functions17,18. The T cells in immune system are particu-
larly susceptible to low tryptophan concentrations, which results in energy and apoptosis so that cancer cells 
can escape from the immune detection and survive12,13. Moreover, a pair of receptor and ligand proteins, PD-1 
receptor on T cells and PD-L1/2 on cancer cells, have been observed to permit cancer cells to escape the immune 
system when PD-1 receptor is activated in low tryptophan environment. When the PD-1 binds to PD-L1/2, it sup-
presses the T cell activity, causing T cell apoptosis. These interactions help cancer cells escape from the immune 
detection and develop toward increasingly aggressive forms. Therefore, direct monitoring of the tryptophan 
level in cells/tissue can be used to investigate the immune escaping ability of the cancer cells and the metastasis 
ability of prostate and other cancer cells with low, mild and high aggressiveness.

We use NADH to denote both NADH and NADPH, since (a) the emission spectra from NADH and NADPH 
are identical19, and (b) the cellular content and fluorescence quantum yield of NADH are higher than that of 
NADPH, therefore we expect that our results mostly indicated the concentration of NADH20. NADH is the prin-
cipal electron donor in cellular metabolism. The nicotinamide adenine dinucleotide (NAD+), a natural coenzyme, 
regulates immune responses and creates homeostasis via a novel signaling pathway13,21. Interestingly, quinolinic 
acid, which is a neurotoxic catabolite of the kynurenine pathway, is the major pathway for the de novo NAD+ 
synthesis. More importantly, the immunoregulatory properties of NAD+ are strongly related to the overexpres-
sion of tryptophan hydroxylase 1 (Tph1).

Quantification of the key biomolecular components within tissues/cells may present potential criteria for 
cancer detection and classification. Since the fluorescence signal is a mixed signal due to multiple fluorophores 
and the spectrum possesses high dimensional data, it is important to unmix the NFL spectra and reduce the 
dimension so that key components in the signal can be retrieved and analyzed. The measurement of the oxida-
tion state of pyridine nucleotide [NAD(P)H] and the relative concentrations of other fluorophores is possible by 
decomposing the cellular spectral signal into individual fluorophores22. To unmix the NFL data, and retrieve the 
spectra and relative concentrations of the components of our interest, algorithms such as principal component 
analysis (PCA)23–25 and nonnegative matrix factorization (NMF)5,24,26 have been used.

In this study, the native fluorescence spectra of low metastatic (LNCaP), moderately metastatic (DU145), and 
advanced metastatic (PC-3) human prostate cell lines27,28 were studied using the selected excitation wavelength 
of 300 nm to investigate the key molecules such as tryptophan and NADH.

The basis spectra of these key fluorophores were obtained along with their relative concentrations, which 
were subsequently used to classify the samples using support vector machines (SVMs)29. Our study provides a 
possible diagnosis method based on the changes of relative concentrations of tryptophan and NADH in cells 
which indicate the metastasis competence and the risk levels of cancer in patients.

This study was focused on the classification of prostate cell lines with different metastatic ability based on NFL 
and machine learning. The purpose was to detect invasiveness (metastatic potential) of prostate cancer cell lines, 
and find a quantitative relationship between the metastatic potential and the molecular information revealed 
by fluorescence spectroscopy. We first used PCA for linear unmixing. The component spectra and the relative 
concentrations retrieved by PCA may include negative values and cannot be attributed to particular fluorophores. 
Besides PCA, we also used NMF, which can potentially retrieve components for individual fluorophores due to 
the nonnegativity constraint.

Samples and methods
Sample preparation and cell lines.  DU145 (ATCC, Virginia) cells were cultured in DMEM medium 
(Sigma, Missouri), supplemented with 10% fetal bovine serum (FBS) (Thermo Scientific, Massachusetts), 25 
units/mL penicillin, and 25 mg/mL streptomycin (Sigma, Missouri). The LNCaP (ATCC, Virginia) cells were 
cultured in RPMI 1640 medium with 2 mM l-glutamine and 10% FBS. The PC-3 (ATCC, Virginia) cells were 
cultured in F-12K Medium (Sigma, Missouri) with 10% FBS. All cell lines were incubated under 5% CO2 atmos-
phere at 37 °C. The cells were harvested at more than 95% cell confluence. The 0.25% trypsin-ethylenediamine-
tetraacetic acid (EDTA) (Sigma, Missouri) were used to treat the cell for less than 1 min. Then 5 mL cell culture 
media were used to wash the cells away from the bottom of the flask. The solutions were centrifuged at 2000 
revolutions per minute (rpm) for 5 min. The supernatant with remaining trypsin were aspirated. The cells were 
resuspended with 5 mL phosphate buffered saline (PBS, Sigma, Missouri), and centrifuged again. The superna-
tant (almost all the solution) was removed. The remaining centrifuged cells were resuspended to ∼3.6 × 106 cells/
mL with PBS. The cells were then transferred to a quartz cuvette (NSG Precision Cells, New York) with inner 
dimension of 1 cm × 1 cm × 4 cm for the subsequent fluorescence experiments. The cell suspensions were vor-
texed to mix evenly before each measurement. After the experiments, the rate of living cells was estimated using 
trypan blue solution (Sigma, Missouri).
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Experimental parameters and data acquisition.  In this study, a Fluorolog-3 spectrofluorometer sys-
tem (HORIBA Scientific, Piscataway, New Jersey) was used to measure the NFL spectra of the cells. The excita-
tion light was set to be 300 nm with 0.5 μW power deposition and 5 nm spectral slit, and used to shine on sam-
ples with a spot size of ~ 3 mm × 1 mm. The scan speed was set to be 300 nm per minute with each scan taking 
less than 1 min. The fluorescence signal with a spectral resolution of ~ 1 nm was collected in the range of 320 nm 
and 580 nm. To examine the amount of the background fluorescence, the emission spectrum of the supernatant 
from cell samples was also measured in the quartz cuvette. The intensity of the fluorescence signal at 340 nm 
measured from the supernatant was only 0.1 to 1.5% of that collected from cell samples. This background spec-
trum was deducted from the spectra for the cell samples before subsequent analysis. The excitation wavelength 
of 300 nm was selected because it was shown to be an optimal wavelength to collect both tryptophan and NADH 
fluorescence signals30. Especially, tryptophan showed a quantum yield (QY) of 0.2 to 0.35, higher than the other 
fluorophores in cells and tissue30.

Analytic methodology.  The spectral data were first analyzed using PCA and NMF to unmix the fluo-
rescence signals to reduce data dimensionality and acquire valuable features. PCA is a matrix decomposition 
technique which finds the uncorrelated orthogonal components (principal components or PCs) which account 
for the largest variances in the data. Usually, the PCs do not directly correspond to the basis spectra of the key 
fluorophores, but are instead linear combinations of them. The PCs are found as eigenvectors for an eigenvalue 
equation of the covariance matrix of the spectral data matrix. In the matrix form, Xmxn = Wmxr × Hrxn, where X is 
the input data matrix of dimension m wavelength values by n spectra, W is the matrix containing r basis spectra 
(PC loadings), and H is the corresponding weight matrix (PC scores). In practice, the eigenvectors can be found 
by singular value decomposition (SVD) of mean-centered data matrix X’. In matrix form, X’ = UΣVT, where U 
and V are orthonormal left and right singular vectors respectively, and Σ is a diagonal matrix containing singular 
values. If W = U, H can be found by projecting data matrix X onto the PCs in W, i.e., H = WTX. The PC scores in 
H are then used for potential classification.

NMF has been widely used within various fields of facial recognition26, imaging31,32, and time-series33. The 
approach has also been employed for biomolecular spectral decomposition5,24. Unlike PCA, NMF only uses 
nonnegativity constraints and is thus particularly well-positioned to retrieve the individual basis spectra for 
the key fluorophores34. Using this non-negative technique on an inherently positive spectral dataset has been 
shown to allow for the extraction of intrinsic fluorescence spectra5,35. NMF allows for the choice of internal 
dimensionality (r-value) for the solution matrix pair. The best-performing choice in r-value has been shown to 
be problem-specific. The problem that NMF attempts to solve is a multiplicative reconstruction of a given input 
matrix by minimizing the Frobenius norm, reaching a convergence in the process. This is shown mathematically 
as Xmxn = Wmxr x Hrxn, with ||X − WH||F < t, where t notates some threshold value. To find W and H, the values of 
W and H are initialized randomly, and updated using a certain algorithm such as a multiplicative update rule or 
alternating least squares26,34. Thus, non-unique convergence is inherent. Therefore, Tikhonov regularization is 
commonly used to achieve convergence. Once convergence has been reached, matrix W is the resultant “feature 
matrix” containing r characteristic spectra that allow it to re-represent the spectra within the input matrix X using 
various weights contained in matrix H. Since the update condition turns every negative value to zero, the obtained 
matrix W has increased sparsity and resultant columns which give interpretable extracted spectral information.

Once the weights (scores) are obtained using either PCA or NMF, support vector machines (SVMs) are used 
to classify the spectra based on the weights in H. SVMs are widely used in classification problems to determine 
the boundary (commonly referred to as a hyperplane) that results in the largest separation between classes based 
on the closest data points which are called support vectors (SVs). Both linear and Gaussian radial basis function 
(RBF) kernels were employed.

To avoid bias in the classification, leave-one-out cross-validation (LOOCV)36,37 was used with SVM. LOOCV 
is a widely used technique for validation of discriminative performance. LOOCV begins by discarding a data 
point from the set. It then fits an SVM separation boundary using the remaining data and subsequently deter-
mines whether the previously left-out data point would be correctly grouped using the newly defined SVM 
separation. This process is iterated through every data point and provides an overall performance accuracy. This 
method provides a more robust evaluation of the classifier.

To further investigate the above models including PCA-SVM and NMF-SVM, the optimal number ropt of 
the most relevant components for classification, which is considered a hyperparameter, was also evaluated. The 
process for hyperparameter optimization is similar to feature selection. To find ropt, a nested leave-one-out cross 
validation (LOOCV) method37–40 was used to evaluate this hyperparameter. The internal LOOCV was used 
to evaluate this parameter. To avoid bias in the decomposition, the decomposition was performed only on the 
training set in the internal LOOCV to find the component loadings during hyperparameter optimization. The 
component loadings were then used to find a set of component scores for the test set in the internal LOOCV 
for validation. The optimal value of the hyperparameter was determined based on the highest accuracy37. Once 
the optimal hyperparameter was found, the final evaluation was then performed using the external LOOCV. 
Similarly, new component loadings were found using the training set in the external LOOCV and used to find 
new component scores for the test set in the external LOOCV for final evaluation.

The performance of a two-class classification was evaluated using statistical measures such as sensitivity, 
specificity and accuracy41. A receiver operating characteristic (ROC) curve was used as another method to 
evaluate the performance of the model. The ROC curve was plotted as Sensitivity vs. 1-Specificity by varying the 
discrimination threshold for the binary classifier42. The area under the ROC curve, referred to as AUROC was 
used as a statistical measure to describe the predictive performance of the model43,44. For multi-class classification 
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with more than two classes involved, accuracy for classifying each class and an overall accuracy were used to 
evaluate the performance of the classification.

Experimental results
The viability of all the three cell samples used in this study were ~ 98% before spectral measurements using the 
cells in a quartz cuvette. This study was focused on the efficacy of the technique. Therefore, we require the optical 
signal be reliable and not change significantly during the signal integration. This was confirmed in the repeated 
measurements (data not shown here).

A total of 24, 17 and 23 NFL spectra were collected from the LNCaP, DU145 and PC-3 cell samples respec-
tively by using 300 nm excitation. The average spectra of these acquisitions with error bounds are shown in 
Fig. 1a. For all three groups, the strongest fluorescence peak is located at ~ 340 nm, which is the characteristic 
emission peak of tryptophan. Because of high fluorescence intensity from PC-3 much stronger than the other 
two samples, a second plot is given in Fig. 1b with PC-3 removed to provide a higher clarity for the other two cell 
types. As observed in these two plots, a peak at ~ 465 nm is prominent in the DU145 spectra as well as in PC-3, 
which is considered to mainly contributed by NADH. It should be noted that across all wavelengths, the average 
fluorescence intensity collected from LNCaP is observed to be of lowest value, followed by DU145 and PC-3.

PCA and NMF were then utilized to determine the effectiveness of NFL for distinguishing metastatic poten-
tials among different prostate cells. A 2D SVM boundary was first tested based on the first two components to 
classify between the LNCaP group and the other two (lowest risk vs. two highest) groups as well as between the 
PC-3 group and the remaining groups (highest risk vs. two lowest).

The first two basis spectra retrieved by PCA and a scatter plot of the weights with trained SVM classifiers 
are shown in Fig. 2a,b, respectively. The variances for the first two PCs contribute 99.97% of the total variance.

Figure 2a illustrates that the first two PCs are mainly attributed to tryptophan (~ 340 nm) and NADH 
(~ 465 nm) fluorescent signals. As illustrated by Fig. 2b, classification using these PCs, especially the first PC, pro-
vides strong evidence for their effectivity in prostate cell line discrimination. Since PCA allows for the existence of 
negative values, the 2nd PC possesses both a positive tryptophan peak and a broad negative peak above ~ 370 nm. 
The broad negative peak contains a peak about 460 nm which is attributed to NADH, along with a shoulder 
at ~ 400 nm which may be attributed to lactate45. More insightful understanding needs be obtained to confirm 
the source of this peak. Although the spectra of the fluorophores in cells are not expected to be exactly the same 
as those for the corresponding pure chemicals, we collected and show the fluorescence spectra of the aqueous 
solution of the chemicals in Fig. 3 below for comparison with the retrieved component spectra. The spectra in 
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Figure 1.   Average and error bounds of raw NFL spectra from (a) all three cell lines and (b) DU145 and PC-3.
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Figure 2.   (a) Overlay of the first two extracted PCs. (b) Scatterplot of the first two PC scores for each NFL 
spectrum. The solid line separates the least advanced cell line (LNCaP) from the more advanced (DU145 and 
PC-3) and the dashed line shows the SVM boundary between the cell line possessing highest aggression (PC-3) 
and the two lowest (LNCaP and DU145). (c) The corresponding ROC curves for classifications with LOOCV.
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Fig. 3 are normalized to the spectra maxima, and consistent with literature data with emission maxima shown 
around ~ 360 nm, ~ 395 nm, ~ 460 nm for the three chemicals of tryptophan, lactate and NADH, respectively.

The SVM classifier was further evaluated with LOOCV. The corresponding ROC curves are shown in Fig. 2c. 
The resulting values of sensitivity, specificity, accuracy and AUROC are shown in Table 1.

A multi-class SVM classification was also performed for PC1 and PC2 using a Gaussian kernel25. The classi-
fier trained using all data is shown in Fig. 4. The LOOCV sensitivity, specificity, and accuracy were found to be 
100.0%, 94.1%, and 100.0%, along with a total accuracy of 98.4%.

To further evaluate the model, the optimal number of PCs, ropt, as a hyperparameter was evaluated using 
multi-class classification by SVM and a nested LOOCV. The ropt value for PCA-SVM was found to be 3 based 
on the maximum accuracy. The external LOOCV was used for a final evaluation. The classification accuracies 
for all the cell types were found to be 95.8%, 100%, and 100% for LNCaP, DU145 and PC-3 respectively. A total 
accuracy was found to be 98.4%.

The other multivariate analysis method tested in this study was NMF. An overlay plot of the first two NMF-
extracted nonnegative components (NCs) i.e., feature spectra is shown in Fig. 5a. In the initial analysis, r-value 
of 2 was used. As shown in Fig. 2a, the 1st NMF spectral feature shows a strong similarity with the fluorescent 
emission profile of tryptophan10. The NADH peak about 460 nm is not prominent. The 2nd NMF feature spec-
trum shows a NADH peak along with a peak at ~ 400 nm, which again might be due to lactate. Due to the inher-
ent non-negativity of NFL spectra, the resulting feature spectra obtained by utilizing the positively-constrained 
technique, NMF, are more easily interpretable than with PCA. Figure 5b indicates both the relative concentrations 
of tryptophan and NADH and/or lactate (NADH/ lactate) increasing with the aggressiveness of the cancer cells.

Table 2 illustrates the LOOCV sensitivity, specificity and overall accuracy based on the two NCs. The LOOCV 
ROC curves are shown in Fig. 5c.

Similarly, a multi-class SVM classification was also performed with a Gaussian kernel using NC1 and NC2, as 
shown in Fig. 6. The LOOCV sensitivity, specificity, and accuracy were found to be 100.0%, 94.1%, and 100.0%, 
along with a total accuracy of 98.4%.
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Figure 3.   Fluorescence spectra of aqueous solutions of the three fluorophores.

Table 1.   Cross-validated sensitivity, specificity, accuracy and AUROC for LOOCV SVM using PCA.

(PCA) Classifiers Sensitivity (%) Specificity (%) Accuracy (%) AUROC

Least aggressive vs. rest (LNCaP vs. DU145&PC-3) 97.4 100.0 98.4 0.986

Most aggressive vs. rest (PC-3 vs. LNCaP&DU145) 100.0 100.0 100.0 1.0
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Figure 4.   A multi-class SVM classification.
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The optimal number of NCs, ropt was also evaluated using multi-class classification by SVM with a nested 
LOOCV. For simplicity, for any r-value used in NMF, all the r NCs will be then used for classification. The ropt 
value for NMF-SVM was found to be 2. The classification accuracies based on the final evaluation in the external 
LOOCV were found to be identical to those above based on NMF without cross validation, i.e., 100.0%, 94.1%, 
100.0%, and 98.4% for LNCaP, DU145, PC-3 and overall accuracy respectively.

The multi-class SVM classification with LOOCV for the two models based on PCA and NMF are summarized 
in Table 3 for comparison, where “PCA, SVM-LOOCV” means PCA was performed on the whole dataset and 
LOOCV was only used with SVM, while “PCA&SVM-LOOCV” means both PCA and SVM were performed 
on the training set in the cross-validation loops, as explained in detail above. Same is true for the classifier labels 
with NMF in the table.
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Figure 5.   (a) Overlay of the first two extracted NMF feature spectra (solid and dashed corresponding to 1st and 
2nd respectively). (b) Scatterplot of the corresponding NMF-related weight values for each NFL spectrum. The 
solid line separates the least advanced cell line (LNCaP) from the more advanced (DU145 and PC-3) and the 
dashed line shows the SVM boundary between the cell line possessing highest aggression (PC-3) and the two 
lowest (LNCaP and DU145). (c) The corresponding ROC curves for classification with LOOCV.

Table 2.   Cross-validated sensitivity, specificity, accuracy and AUROC for LOOCV SVM using NMF.

(NMF) Classifiers Sensitivity (%) Specificity (%) Accuracy (%) AUROC

Least aggressive vs. rest (LNCaP vs. DU145&PC-3) 97.4 100.0 98.4 0.992

Most aggressive vs. rest (PC-3 vs. LNCaP&DU145) 100.0 100.0 100.0 1.0
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Figure 6.   A multi-class SVM classification.

Table 3.   Cross-validated sensitivity and specificity values obtained from NFL classification using NMF.

Classifiers Accuracy (%) (LNCaP) Accuracy (%) (DU145) Accuracy (%) (PC-3) Accuracy (%) Overall

PCA, SVM-LOOCV 100.0 94.1 100.0 98.4

PCA&SVM-LOOCV 95.8 100.0 100.0 98.4

NMF, SVM-LOOCV 100.0 94.1 100.0 98.4

NMF&SVM-LOOCV 100.0 94.1 100.0 98.4
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Table 3 shows the performances of the classification of cells with different metastatic potentials based on these 
two methods are almost identical. But the NCs retrieved by NMF are better interpretable. The relative concen-
trations of tryptophan and NADH/lactate indicated by NC1 and NC2 are plotted in Fig. 7, which clearly shows 
an increase in both components with the aggressiveness of the cancer cells. It is evident that errors also increase 
with the relative concentrations of the NCs across the cell lines. We hypothesize that this may be attributed to 
the increased inhomogeneity with increasing malignancy or aggressiveness of the cancer cells.

Summary and discussion
In this study, PC-3, DU145 and LNCaP cell lines were investigated using native fluorescence spectroscopy. 
Though all three cell lines used are prostate cancer cells, they are different cell lines with differences in biological 
characteristics27,28. LNCaP cells are androgen-sensitive human prostate adenocarcinoma cells. DU145 cells are not 
hormone-sensitive and do not express prostate-specific antigen (PSA). PC-3 cells do not respond to androgens 
either, as well as to glucocorticoids or fibroblast growth factors.

All data were collected under the same experimental conditions and the raw data was analyzed to distinguish 
the cell types without normalization. It was assumed that the absolute signal levels directly reflected chemical 
concentrations. However, what we presented in the paper was still relative concentrations of the fluorophores 
among samples. We did not directly compare fluorescence signals between cells and homogeneous solutions to 
retrieve absolute molar concentrations of the fluorophores. The local environment of the fluorophores is not the 
same between live cells and homogeneous solutions, and the fluorescence properties of the molecules may not 
be the same. Therefore, usually they cannot be compared directly to retrieve the absolute concentrations of the 
fluorophores46. This will be further verified during future investigation.

The spectral data were analyzed using machine learning based analysis methods PCA-SVM and NMF-SVM. 
In particular, multivariate analysis methods PCA and NMF were used to unmix the signal, reduce the data 
dimension, and detect spectral features. SVMs were used to classify different types of cell lines. This study pro-
vided further evidence for the potential of the NFL technique to discriminate among cancerous prostate cells 
of different metastatic ability with high accuracy. Classification between the most aggressive group (PC-3) with 
the other groups (LNCaP and DU145) was perfect for all methods illustrated herein. Results also showed that 
the accuracy for distinguishing the three different types of the cell samples using the two analytic methods was 
almost identical. A large sample size may provide a better comparison between the methods. But the two basis 
spectra and the coefficients obtained by NMF are more interpretable, and may be interpreted as the estimated 
fluorescence spectra of cell intrinsic biomolecules such as tryptophan, NADH and probably lactate, and their 
corresponding relative concentrations. Indeed, the relative concentrations of these biochemicals in PC-3 seemed 
to be much higher than those of DU145 and LNCaP, with the latter two being observed as significantly closer 
to each other (Fig. 7).

In this study, using a multi-class (three-class) classification, we found classifiers to separate every class from 
other two classes. The data and results of this study showed a direct relationship between the metastatic poten-
tial of the prostate cancer cells and the relative concentrations of the key biomolecules such as tryptophan and 
NADH retrieved from the NFL spectra.

The androgen receptor (AR) plays a critical role in the metastasis of prostate cancer cells, but its mechanism 
remains unknown47. LNCaP cells are androgen-sensitive, while DU145 and PC-3 cells are not28. But based on 
NFL spectral analysis, the difference between LNCaP and DU145 is small, while the difference between PC-3 
and the combined group of LNCaP and DU145 is much larger, as evident in Figs. 3, 4, 5, and 6. Therefore, the 
classification of metastatic ability of the cells in our results cannot be entirely explained by hormone sensitive-
ness. Even though understanding the mechanism of metastatic potential of prostate cancer cells are related to 
this study, the main purpose of this paper is to report a technique that may be used to detect cells with different 
metastatic potential.

Tryptophan is the main source of fluorescence signal in tissues and cells when excited at ~ 300 nm35,48,49. 
The emission peak of tryptophan in aqueous solution was shown to be at about ~ 350 nm50,51. This is consist-
ent with our own observation in Fig. 3. Protein bound tryptophan has also been extensively studied in the 
literature52,53. The emission peak wavelength of tryptophan in protein is sensitive to its local environment and 
ranges from ~ 308to ~ 355 nm53,54. In the results of this study, the peak assigned to NADH is usually mixed 
with another peak (shoulder) around ~ 400 nm, which we proposed to assign to lactate. Lactate is another key 
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Figure 7.   Relative concentrations of tryptophan and NADH/Lactate in three types of cells based on NC scores.
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molecule that is involved in carcinogenesis55,56. Due to the Warburg effect, which is considered to be a hallmark 
of cancer, cancer cells show high rates of glycolysis in the hypoxia condition or even with oxygen55,56. Higher 
rates of glucose metabolism through anaerobic glycolysis leads to a higher rate of L-Lactate release in cancer 
cells compared to normal cells57,58.

In this study, the relative concentrations of tryptophan and NADH/lactate were found to correlate with the 
metastatic ability of the cancer cells. They may provide the criteria for prediction of tumor metastasis. Further, 
the combination of NFL spectroscopy and machine learning based analysis illustrates a high degree of capa-
bility for evaluation of tumor metastasis. NFL has the potential to be an alternative optical tool for medical 
armamentarium59. Compared to other techniques for detection of metastatic potential of cancer cells such as 
those by Paidi et al.60 and Bendau et al.61, the NFL technique can not only be used for measurements with cells 
in vitro and fresh tissue specimens ex vivo, but also for in vivo measurements. Since it does not involve spatial 
scanning (mapping), it works faster than those that require mapping60,61, and can potentially be implemented 
for real-time diagnosis during surgery.

Since we only used three cell lines, whether or not the above-mentioned correlation between the relative 
concentrations of the key fluorophores and the metastatic potential of the cell lines universally exists for other 
prostate cell lines needs to be further verified. Future studies will continue to collect more data using different 
cell lines, obtain more insightful understanding of the spectra, and further test the fluorescence spectroscopic 
measurements using other excitation wavelengths.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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