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RIFS: a randomly restarted 
incremental feature selection 
algorithm
Yuting Ye, Ruochi Zhang, Weiwei Zheng, Shuai Liu & Fengfeng Zhou   

The advent of big data era has imposed both running time and learning efficiency challenges for 
the machine learning researchers. Biomedical OMIC research is one of these big data areas and has 
changed the biomedical research drastically. But the high cost of data production and difficulty in 
participant recruitment introduce the paradigm of “large p small n” into the biomedical research. 
Feature selection is usually employed to reduce the high number of biomedical features, so that a 
stable data-independent classification or regression model may be achieved. This study randomly 
changes the first element of the widely-used incremental feature selection (IFS) strategy and selects 
the best feature subset that may be ranked low by the statistical association evaluation algorithms, 
e.g. t-test. The hypothesis is that two low-ranked features may be orchestrated to achieve a good 
classification performance. The proposed Randomly re-started Incremental Feature Selection (RIFS) 
algorithm demonstrates both higher classification accuracy and smaller feature number than the 
existing algorithms. RIFS also outperforms the existing methylomic diagnosis model for the prostate 
malignancy with a larger accuracy and a lower number of transcriptomic features.

Modern biological technologies are rapidly revolutionized and improved in the recent years, and the biological 
OMIC data has been accumulated at an accelerated speed1. Human complex disease like cancers and cardiovas-
cular diseases are known to be associated with more than one genetic factor2,3 and the classic single-factor cor-
relation analysis tends to detect statistically significant factors4. So the existing complex disease diagnosis panels 
usually use the genetic information of multiple genes5,6.

The development of a disease diagnosis panel relies on the efficiency of the feature selection technologies7. 
A biological OMIC technology generates thousands or even millions of data entries for a single sample, but a 
biomedical project seldom recruited more than 1,000 samples due to various limitations, e.g. cost and patient 
availability8. The biomarker screening procedure may generate the overfit models due to the paradigm of “large 
p, small n”, where p and n are the numbers of features and samples, respectively9,10. Besides the aforementioned 
statistical reason, biomedical research results also show that not all the genes are biologically involved in a given 
disease onset and development processes11.

It is a computationally infeasible task to find a global optimal feature subset within a reasonable period12, 
and the existing feature selection algorithms may be roughly grouped as filter and wrapper approximate algo-
rithms13,14. A filter algorithm evaluates each feature’s association with the class label using a statistical signifi-
cance measurement15. Many biomedical biomarker were screened by the filter algorithms due to their linear time 
requirement, and sometimes is the only choice for large datasets like SNP and methylation polymorphisms16,17. 
But a filter algorithm only ranks the features by single-feature associations with the class labels, and the user is 
responsible for choosing the number of top-ranked features18. A wrapper algorithm evaluates each heuristically 
selected feature subset using a classification algorithm and tends to achieve better classification performance than 
the filters since a wrapper algorithm directly optimizes the target classification algorithm. A wrapper usually runs 
much slower than a filter algorithm, due to its consideration of inter-feature relationships19.

This study proposed a modified incremental feature selection strategy for the filter algorithms. An Incremental 
Feature Selection (IFS) algorithm evaluates the classification performance of the top-k-ranked features iter-
atively for k ∈ (1, 2, …, n), where n is the total number of features. IFS usually stops at the first observation 
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of performance decrease13,20. This study proposes an IFS strategy by selecting features incrementally from a 
randomly-chosen starting feature and output the best solution from multiple Randomly re-started IFS (RIFS) 
procedures. The comparison with the existing filters and wrappers demonstrates that RIFS outperforms them by 
both higher classification accuracies and smaller feature numbers.

Material and Methods
Binary classification problem.  This study evaluates a feature subset using the binary classification per-
formance. A binary classification problem has two groups of samples, i.e. the Positive (P) and Negative (N) sam-
ples13,21. P and N are also used to denote the numbers of positive and negative samples. The binary classification 
problem is the simplest classification model, and usually a heuristic rule was employed to find the solution. And 
this is also the most widely adopted problem setting for biomedical researchers, e.g. disease versus control sam-
ples in the Genome-Wide Association Study (GWAS)22, and the samples of two phenotypes in the clinical survival 
analysis23, etc.

Two groups of feature selection algorithms.  This study compares the proposed algorithm with two 
major groups of feature selection algorithms, i.e. filters and wrappers24–26. Three filters, i.e. T-test based ranking 
(Trank)27, false positive classification rate (FPR)28, and Wilcoxon-test based ranking (Wrank)29, are evaluated 
when they select the same numbers of features as to the proposed algorithm in this study. Wrappers can directly 
recommend a list of features without the user-determined number of features30. Three wrappers, i.e. Lasso, 
Random Forest (RF) and Ridge Regression (Ridge), were compared with RIFS in this study. So this study investi-
gated both the classification performances and the numbers of features for these feature selection algorithms. Two 
of the algorithms, Trank and Wrank, are from the Python scipy package, and all the other algorithms are from the 
Python scikit-learn package. Wrapper algorithms may achieve differently using different parameters. We assume 
that the default parameters of a wrapper algorithm should work well in most cases. To carry out a fair comparison, 
the RIFS’s parameters were optimized over four datasets ALL1/ALL2/ALL3/ALL4, and this study conducted the 
comprehensive comparison between RIFS and the existing algorithms on all the 17 transcriptome datasets. The 
Lasso parameter Alpha was set to 0.1. All the other parameters of feature selection algorithms utilized the default 
values.

Performance measurements.  A binary classification algorithm optimizes the parameters of a model 
and predicts that a new sample belongs to the positive (P) or negative (N) group. The sizes of the positive 
and negative groups are denoted as P and N, respectively. A positive sample is defined as a true positive 
or false negative one if it is predicted as positive or negative. And a negative sample is defined as a false 
positive or a true negative if its prediction is positive or negative. The numbers of true positives, false 
negatives, false positives and true negatives are denoted as TP, FN, FP and TN, respectively. The binary 
classification performance is evaluated by the following measurements, as similar in13. This study defines 
sensitivity (Sn) and specificity (Sp) as the percentages of correctly predicted positive and negative sam-
ples, i.e. Sn = TP/(TP + FN) and Sp = TN/(TN + FP). The overall accuracy is defined as Acc = (TP + TN)/
(TP + FN + TN + FP). F-score is also known as F-measure or F1-score and has been widely used to evaluate 
the performance of a binary classification model31. F-score is defined as 2 × (Precision × Sn)/(Precision + Sn), 
and Precision = TP/(TP + FP).

ID Dataset Samples Features Summary

1 DLBCL 77 7,129 DLBCL (58) vs follicular lymphoma (19)

2 Pros 102 12,625 prostate cancer (52) vs control (50)

3 Colon 62 2,000 colon cancer (40) vs normal (22)

4 Leuk 72 7,129 ALL (47) vs AML (25)

5 Mye 173 12,625 presence (137) vs absence (36) of focallesions of bone

6 ALL1 128 12,625 B-cell (95) vs T-cell (33) ALL

7 ALL2 100 12,625 ALL with (65) vs without (35) relapse

8 ALL3 125 12,625 ALL with (24) vs without (101) multidrug resistance

9 ALL4 93 12,625 ALL with (26) and without (67) the t(9;22) chromosome translocation

10 CNS 60 7,129 medulloblastoma survivors (39) vs treatment failures (21)

11 Lym 45 4,026 germinalcentre (22) vs activated B-like DLBCL (23)

12 Adeno 36 7,457 colon adenocarcinoma (18) vs normal (18)

13 Gas 65 22,645 gastric cancer (29) vs non-malignants (36)

14 Gas1 144 22,283 non-cardia gastric cancer (72) vs normal (72)

15 Gas2 124 22,283 cardia gastric cancer (62) vs normal (62)

16 T1D 101 54,675 T1D (57) vs control (44)

17 Stroke 40 54,675 ischemic stroke (20) vs control (20)

Table 1.  Summary information of the 17 binary classification datasets. Datasets 1–15 are the cancer 
transcriptomes, while the last two are transcriptome datasets of type I diabetes and stroke, respectively.



www.nature.com/scientificreports/

3SCienTifiC REPOrTS | 7: 13013  | DOI:10.1038/s41598-017-13259-6

Five representative classification algorithms were evaluated on the datasets, and the maximal accuracy 
achieved by these five algorithms on a given feature subset of a dataset was defined as the maximal accuracy 
mAcc. Support Vector Machine (SVM) is a popular binary classification algorithm. K Nearest Neighbors 
(KNN) algorithm is an intuitive distance-based classification algorithm. Decision Tree (DTree) will generate an 
easy-to-interpret classifier. And Naïve Bayesian classifier (NBayes) assumes that all the features are independent 
to each other. Logistic Regression (LR) trains a linear classification function, which may suggest the weights of 
the chosen features.

All the algorithms were tested under two major Python releases, i.e. 2.7.13 and 3.6.0.

Biomedical datasets.  Data pre-processing is one of the most important steps for a data modeling problem. 
This study focused on the feature selection problem, and only checked the datasets for the issue of missing data. 
A feature was excluded from further analysis if it has missing data for some samples.

The proposed algorithm in this study was compared with the existing algorithms using 17 datasets, as similar 
in14. Each of the 17 datasets has two class labels, i.e. a binary classification problem. Six transcriptome datasets, i.e. 
DLBCL32, Pros33, ALL34, CNS35, Lym36 and Adeno37, were publicly available at the Broad Institute Genome Data 
Analysis Center. The two datasets Colon38 and Leuk39 were provided in the R/Bioconductor packages colonCA 
and golubEsets, respectively. The dataset ALL modeled as four binary classification datasets, i.e. ALL1/ALL2/
ALL3/ALL4, based on different phenotype annotations, as described in Table 1. Five more recent datasets, i.e. 
Mye (accession: GDS531)40, Gas (accession: GSE37023)41, Gas1/Gas2 (accession: GSE29272)42, T1D (accession: 
GSE35725)43 and Stroke (accession: GSE22255)44, were publicly available at the NCBI Gene Expression Omnibus 
(GEO) database. The raw data from the NCBI GEO database was normalized into the gene expression matrix with 
the default parameters of the RMA algorithm45, and all the other datasets were downloaded as the normalized 
data matrix.

A recent study proposed that methylomes outperformed transcriptomic profiles in separating prostate can-
cers from the control samples46. We demonstrated that a good choice of transcriptomic features might also 
achieve a similarly good classification model compared with methylomes. The dataset GSE55599 was down-
loaded from the Gene Expression Omnibus (GEO) database47. The binary classification problem worked on the 
32 prostate carcinoma samples and 10 benign prostatic hyperplasia samples. Each sample has 47,231 probesets, 
i.e. features.

RIFS, a randomly re-started incremental feature selection algorithm.  The incremental feature 
selection algorithm was modified to have a start position k and the consecutive performance decreasing cutoff D, 
which was denoted as the algorithm sIFS(k, D). For a binary classification problem with n features and m samples, 
the features are ranked based on their association significance with the binary class labels. A feature’s association 
significance with the class label is calculated by the statistical significance P value of the t-test27. Features are 
denoted as fi, i ∈ {1, 2, …, n}, based on their ranks. The algorithm will consecutively add the next element to the 
feature subset until the binary classification accuracy decreases consecutively D times. The pseudo-code of the 
algorithm sIFS(k, D) is shown as follows.

The Randomly re-started Incremental Feature Selection (RIFS) algorithm is proposed based on the unit algo-
rithm sIFS(k, D). Our hypothesis is that a summarization of multiple sIFS(k, D) algorithms may generate a feature 
subset with better classification accuracy than the classical algorithms sIFS(1, 1). The pseudo-code of RIFS was 
shown as follows.
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Randomly seeded k-fold cross validation.  A k-fold cross validation (KFCV) strategy is utilized to cal-
culate the overall classification performance. The dataset was randomly split into k folds and used each fold to 
validate the model trained from the rest of k−1 folds. Given a binary classification dataset with positive and 
negative samples in the subsets P and N, respectively, KFCV randomly splits P and N into k equally-sized subsets, 
respectively. P = {P1, P2, …, Pk} and N = {N1, N2, …, Nk}. Iteratively, Pi ∪ Ni is selected as the testing dataset, and 
the other samples are used as the training data for a given classification algorithm. The classification performance 
measurements Sn, Sp and Acc are calculated based on this round of iteration.

RIFS selects features using the incremental rule from the given starting feature, and only the feature subset 
with the best classification performance will be kept for further analysis. Due to that different data splitting will 
generate different classification performances, multiple random seeds will be employed to produce KFCV cal-
culations. The classification performance measurements are averaged over all the rounds of KFCV experiments. 
To eliminate the effects of over-fitting and random splitting, this study carried out 20 random runs of 10-fold 
cross-validation and chose the classification accuracy maximized over five classifiers, i.e. SVM, KNN, DTree, 
NBayes, and LR.

Experimental procedure.  RIFS was compared with two major classes of feature selection algorithms, i.e. 
three filters and three wrappers. The performance measurement was calculated using 10-fold cross-validation, 
and the classification accuracy was the maximum value mAcc of the five classification algorithms, i.e. SVM, KNN, 
DTree, NBayes and LR. The detailed procedure was illustrated in Fig. 1.

All the experiments were carried out in an Inspur Gene Server G100, with 256GB memory, 28 Intel Xeon® 
CPU cores (2.4 GHz), and 30TB RISC1 disk space.

Results and Discussion
Two optimization rules for the IFS strategy.  This study proposes two hypothetical modifications of the 
Incremental Feature Selection (IFS) strategy13,20,48 based on the experiment data, as shown in Fig. 2. The optimi-
zation goal is to maximize the binary classification accuracy using the selected feature subset. The classification 
performance in this demonstration step was calculated by one round of 10-fold cross validation.

Randomly re-start the IFS strategy.  We generalize the classical version of IFS as the IFS(i), which chooses a 
subset of consecutively ranked features starting from the rank i. Our hypothesis is that there may exist a feature 
subset IFS(i) with a classification accuracy better than IFS(0). This hypothesis is supported by the two examples in 
Fig. 2(a). The two features with the ranks 31 and 32 achieved 79.5% in the overall accuracy for the dataset ALL2, 
better than 77.0% in accuracy for the top two ranked features by IFS(0), as shown in Fig. 2. The four features with 
the ranks 443, 444, 445 and 446 outperformed the top four ranked features by 1.3% in accuracy for the dataset 
ALL3. Their statistical significances measured in P-values are 0.036990, 0.036994, 0.037100 and 0.037105 for these 
four low-ranked features, respectively. So the IFS strategy may be improved by the randomly re-starting rule.

Stop at one decrease does not work well.  We also observe that a big increase in the classification performance may 
be achieved by adding two consecutively ranked features, even when there is a decrease by adding the first one. 
For example, the feature screening process IFS(37) got the first accuracy decrease (1.5%) for the dataset Colon 
when adding the fourth feature (ranked 40). But IFS(37) achieved an increase (1.4%) in accuracy even compared 
with the situation before adding the fourth feature, as shown in Fig. 2(b). Another case was the feature screening 
process IFS(757) for the dataset T1D, as in Fig. 2(c). The integration of the third feature decreased the accuracy 
by 1.3%, but the next feature (ranked 760) increased the accuracy by 5.4%, which was also higher than the two 
consecutively ranked features 757 and 758 by 4.1% in accuracy. So the stop strategy of IFS(i) needs to tolerate at 
least one accuracy decrease.
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How many starting points are enough for most datasets?  We investigated the best number of start-
ing points for RIFS using the four datasets, ALL1/ALL2/ALL3/ALL4, as shown in Fig. 2(d). RIFS was set to 
stop if three consecutive tries do not increase the classification performances. Five choices of the numbers of 
starting points were evaluated, i.e. pStartingPercentage = 15%, 25%, 35%, 45%, 55% of the total feature number, 
respectively. The classification performance in this parameter optimization step was calculated by one round of 
10-fold cross validation. The classification algorithms achieved 100% in mAcc for all the six values of the param-
eter pStartingPercentage on the dataset ALL1. It seems that the dataset ALL1 is easy to separate, and some other 
algorithms also achieved 100% in mAcc, as demonstrated in14. The measurement mAcc for the dataset ALL2 was 
improved from 79.5–80.6% when the parameter pStartingPercentage increased from 15–55%, and the maximum 
value 80.6% was achieved after pStartingPercentage = 45%. The measurement mAcc remained 88.3% for all differ-
ent values of pStartingPercentage for the dataset ALL3. And the best mAcc = 94.9% was achieved after pStarting-
Percentage = 45%. So the default value 45% was set for the parameter pStartingPercentage.

How much tolerance for consecutive performance decreases is enough?  A greedy feature selec-
tion algorithm tends to stop when the optimization goal decreases during the feature screening process, e.g. the 
classical IFS strategy. Our hypothesis is that after a minor decrease in the classification performance, adding the 
next feature may achieve a much better overall performance improvement.

We evaluated the RIFS stopping criteria pStoppingDepth = 1, 2, 3, 4 and 5, i.e. RIFS stops when pStoppingDepth 
consecutive performance decreases are detected. The four datasets ALL1/ALL2/ALL3/ALL4 were chosen for the 
evaluation. The parameter pStartingPercentage was set to 10%, 20%, 30%, 40% and 50%, and the performance 
measurement is mAcc by the 10-fold cross validation strategy. The classification performance in this parame-
ter optimization step was calculated by one round of 10-fold cross validation. Figure 3 demonstrated that RIFS 
achieved the best mAcc when pStoppingDepth reached 4 for all the four datasets using the 5 values of pStartingPer-
centage. So the experimental data supported our hypothesis that it may not be the best choice to stop immediately 
after one performance decrease was detected. And the default value of pStoppingDepth was chosen as 4.

A comprehensive evaluation of RIFS with the default parameter values pStartingPercentage = 45% and 
pStoppingDepth = 4 was carried out for all the 17 transcriptome datasets, as shown in Fig. 4. The classification 
performance in the following comparative analysis steps was calculated by 20 random rounds of 10-fold cross 
validation. RIFS achieved at least 0.804 in mAcc for these datasets, and even achieved 1.000 in mAcc for 6 out of 
the 17 datasets. The following sections will compare RIFS with the existing feature selection algorithms by the 
performance measurement mAcc.

Figure 1.  Experimental setting of this work. 17 datasets were chosen to compare RIFS with three filters and 
three wrappers, and the classification performances were calculated using 10-fold cross-validations.
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Comparison with filters on the 17 transcriptomes.  RIFS with the default parameter values pStarting-
Percentage = 45% and pStoppingDepth = 4 was compared with the filter algorithms. A filter algorithm assumes 
that features are independent to each other, and evaluates the association of a feature with the class label inde-
pendently. So users need to determine how many features will be chosen, after all the features are evaluated and 
ranked by the filter algorithm. In order to conduct a fair comparison, if RIFS selects k features, this study selects 
the same number k of top-ranked features evaluated by a filter. 10-fold cross-validation strategy was employed 
to calculate the binary classification performances of RIFS and the three filter algorithms, i.e. Trank, FPR, and 
Wrank. RIFS improves the feature selection procedure based on a filter algorithm, so it is anticipatable that RIFS 
outperforms the filter algorithms.

RIFS performed the best compared with the three filter algorithms on all the 17 datasets, as shown in Fig. 5(a). 
The four datasets ALL1, Lym, Adeno and Stroke, seem to be easy to be separated, since three feature selection 
algorithms including RIFS achieved 100% in mAcc. RIFS outperformed the three filter algorithms on all the other 
13 datasets. And CNS seems to be a difficult binary classification dataset. RIFS achieved 87.4% in mAcc, and 
improved the other filter algorithms by at least 11.6% in mAcc. RIFS usually selects no more than 10 features, and 
the maximal number of features selected by RIFS was 27 for the dataset Mye.

The experimental data suggests that an orchestration of low-ranked features may achieve very good classifi-
cation performances even for the difficult datasets like CNS and ALL2. No filter algorithms achieved mAcc better 
than 76.0%, and RIFS only achieved 80.4% and 87.4% in mAcc for the datasets ALL2 and CNS, respectively.. This 
provides an additional piece of evidence for the rule “Randomly re-start the IFS strategy” of RIFS.

Figure 2.  Demonstrative examples of RIFS rules and evaluation of the best starting percentage. (a) Two features 
starting from the rank i = 31 for the dataset ALL2. 4 features starting from the rank i = 443 for the dataset ALL3. 
(b) Accuracy curve of IFS(757) for the dataset T1D. (c) Accuracy curve of IFS(37) for the dataset Colon. (d) 
The maximum accuracy is calculated for each of the four datasets, i.e. ALL1/ALL2/ALL3/ALL4, with different 
percentages of all the features as the starting points.
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RIFS achieved F-score >  = 0.900 on 13 out of the 17 transcriptome datasets, and the maximal F-scores on 
12 datasets compared with the 3 filters, as shown in Fig. 5(a). The maximal F-score improvement 0.049 com-
pared with RIFS’s F-score = 0.916 was achieved by Trank and FPR on the dataset Gas1. The next biggest F-score 
improvement 0.038 compared with RIFS was achieved by Trank on the dataset ALL3. The data suggested that 
ALL3 was a difficult dataset for the filter algorithms.

Comparison with wrappers on the 17 transcriptomes.  RIFS with the default parameters pStarting-
Percentage = 45% and pStoppingDepth = 4 performed the best compared with the three wrapper algorithms, i.e. 
Lasso, RF and Ridge, on all the transcriptome datasets except for Myel, as also shown in Fig. 5(b). RIFS achieved 
100% in mAcc for 6 out of the 17 datasets, and its average mAcc is 94.5%. The next best algorithm based on the 
average mAcc is Lasso. Lasso achieved the average mAcc 90.4% and mAcc = 100% for the three datasets Leuk, 
ALL1 and Lym. Lasso was also the only wrapper algorithm outperforming RIFS with 2.4% in mAcc on the dataset 
Mye. Except for this case, RIFS performed better than all the wrapper algorithms on all the datasets, and achieved 
an average improvement 3.5% in mAcc for the best of the three wrapper algorithms on the 17 transcriptomic 
datasets.

Another performance measurement for a feature selection algorithm is the number of features selected by the 
algorithm. Besides the excess consumption of computational power in training and predicting by a classification 
model with a large number of features, the overfitting problem is also inevitable to be fixed49. Due to the high data 
production cost in the biomedical area, the number of samples is usually much smaller than that of features in a 
biomedical dataset50. And the final clinical deployment of a classification model has a cost positively correlated 
with the number of features in the model. So a biomedical classification model with a higher accuracy and a 
smaller number of features is preferred in the clinical settings.

Figure 3.  How many steps are tolerated without performance improvements. The classification performance is 
measured in mAcc.
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RIFS recommended a smaller list of features for training classification models with higher accuracy except 
for six cases, as shown in the table under the line plot in Fig. 5. Both RIFS and Lasso recommended 11 features 
for the dataset Colon, but RIFS outperformed Lasso with an improvement 3.3% in mAcc. Lasso selected the same 
number of features as RIFS for the dataset Lym, and both achieved 100% in mAcc. And Lasso outperformed RIFS 
with an improvement 2.4% in mAcc on the dataset Mye. For the three datasets ALL3, Gas1 and T1D, Lasso recom-
mended fewer features than RIFS, but RIFS achieved improvements in mAcc 6.7%, 1.5% and 11.4%, respectively. 

Figure 4.  The classification performances of RIFS on the 17 transcriptome datasets. The measurement mAcc is 
used as the vertical axis, and the horizontal axis lists the 17 datasets. The detailed mAcc values are also given on 
the top of each column.

Figure 5.  Performance comparison of RIFS with 3 filters and 3 wrappers. The vertical axis is the performance 
measurement mAcc and F-score, and the horizontal axis gives the dataset names. Since all the filter algorithms 
select the same number of features as RIFS, only the numbers of features by RIFS are shown. The last table 
gives the numbers of features selected by the wrappers algorithms and RIFS. (a) Comparison with 3 filters. (b) 
Comparison with 3 wrappers.
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Overall, RIFS suggested an average number of features 8.882, while the three wrapper algorithms chose 25.706, 
54.706, and 8428.353 features, respectively.

RIFS achieved the maximal F-score on 13 out of the 17 transcriptome datasets compared with the 3 wrapper 
algorithms. Except for the dataset ALL3, RIFS achieved at least 0.800 in F-score on all the other 16 datasets. The 
maximal F-score improvement 0.076 compared with RIFS was achieved by the algorithm Lasso on the dataset 
Gas1. RIFS didn’t work well on the three gastric cancer datasets Gas/Gas1/Gas2 and the dataset Mye compared 
with the 3 wrappers. RIFS achieved the biggest F-score improvement 0.237 on the dataset ALL3 compared with 
the three wrappers.

Transcriptome performs similarly well with methylome.  RIFS was employed to screen the transcrip-
tomes of prostate samples and detected two features with 100% discrimination accuracy of prostate cancers. A 
recent study suggested that top-ranked methylome features outperformed the top-ranked transcriptome features 
by at least 5.7% in the measurement Area Under the ROC Curve (AUC)46. A combination of three methylome 
features achieved 100% in both the overall accuracy and AUC, while three expression features only achieved 0.978 
in AUC. RIFS detected two features ILMN_1708743 and ILMN_1727184 as the biomarkers to discriminate the 
samples of prostate carcinoma and benign prostatic hyperplasia, as illustrated in Fig. 6. We may see that these two 
biomarkers can easily separate the 32 prostate carcinoma and ten benign prostatic hyperplasia samples. There 
is only one sample which is very close to the prostate carcinoma samples in the two-dimensional plane. And a 
non-linear-kernel SVM can achieve 100% in mAcc for this binary classification problem.

How random seeds impact the feature subsets?  Different random seeds generate different series of 
random numbers, so we evaluated how random seeds affect the performance of RIFS. To conduct a fair compar-
ison, RIFS was run with the default random seed 0 in the above experiments. This section executed RIFS on the 
dataset Mye using integers from 0 to 20 as the random seeds. Default values were chosen for the two RIFS parame-
ters pStartingPercentage = 45% and pStoppingDepth = 4. Table 2 shows that the random seeds 1/4/10/11/14/15/19 
generated the same feature subset as the random seed 0, and the 27 features achieved the best mAcc = 89.8%. And 
the random seeds 3/13/16/18 even found a feature subset of 13 features and achieved 89.0% in mAcc. So if a user 
may prefer a smaller feature subset, multiple tries of different random seeds are recommended.

Figure 6.  Dot plot of the two features detected by RIFS. There is only one benign prostatic hyperplasia sample 
which is very close to the prostate carcinoma ones.

Random seeds Rank NumF mAcc

1,2,4,10,11,14,15,19 379 27 89.8%

3,13,16,18 179 13 89.0%

5,6,9,12,20 66 17 89.2%

7 1 18 88.7%

8,17 63 21 89.1%

Table 2.  Results of RIFS with different random seeds. The first column gives the random seeds. Some random 
seeds generated the same feature subset, so they were summarized in the same row. The columns Rank, NumF 
and mAcc give the rank of the first feature, the feature number and the classification measurement mAcc of the 
best feature subset.
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Conclusions
RIFS demonstrated a new perspective of feature selection that two individually low-ranked features might work 
together to make a highly accurate classification model. RIFS can detect features with accurate classification per-
formances, by significantly expanding the searching space. RIFS also tries to avoid the local optimal solutions by 
tolerating more than one classification performance decreases. There is a balance between the running time and 
the classification performance, but the user has the flexibility of choosing better classification accuracy for a long 
running time or an acceptable accuracy within a short period.
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