
RESEARCH ARTICLE

Integration and Fixation Preferences of
Human and Mouse Endogenous Retroviruses
Uncovered with Functional Data Analysis
Rebeca Campos-Sánchez1☯¤, Marzia A. Cremona2,3☯, Alessia Pini2,
Francesca Chiaromonte3,4*, Kateryna D. Makova4,5*

1 Genetics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University
Park, Pennsylvania, United States of America, 2 MOX—Modeling and Scientific Computing, Department of
Mathematics, Politecnico di Milano, Milano, Italy, 3 Department of Statistics, Penn State University,
University Park, Pennsylvania, United States of America, 4 Center for Medical Genomics, The Huck
Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of
America, 5 Department of Biology, Penn State University, University Park, Pennsylvania, United States of
America

☯ These authors contributed equally to this work.
¤ Current address: Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San
José, Costa Rica
* chiaro@stat.psu.edu (FC); kdm16@psu.edu (KDM)

Abstract
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line,

occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their

structure, evolution, and function. Yet we still have a limited understanding of how the geno-

mic landscape influences integration and fixation of ERVs. Here we conducted a genome-

wide study of the most recently active ERVs in the human and mouse genome. We investi-

gated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic

ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40

human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and

histone modifications) in ±32 kb of these ERVs’ integration sites and in control regions, and

analyzed them using Functional Data Analysis (FDA) methodology. In one of the first appli-

cations of FDA in genomics, we identified genomic scales and locations at which these fea-

tures display their influence, and how they work in concert, to provide signals essential for

integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages

(young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integra-

tion vs. fixation preferences. As a result of these analyses, we built a comprehensive model

explaining the uneven distribution of ERVs along the genome. We found that ERVs inte-

grate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and

repressive histone marks. Regions favoring fixation are depleted of genes and evolution-

arily conserved elements, and have low recombination rates, reflecting the effects of purify-

ing selection and ectopic recombination removing ERVs from the genome. In addition to

providing these biological insights, our study demonstrates the power of exploiting multiple
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scales and localization with FDA. These powerful techniques are expected to be applicable

to many other genomic investigations.

Author Summary

Approximately half of the human genome is composed of repetitive elements. Yet we do
not completely understand why certain elements insert in particular genomic locations,
and what determines which elements are retained and which are eliminated from the
genome. To address these questions we studied endogenous retroviruses, one type of
repetitive elements which occupy ~10% of the human and mouse genomes, together with
genomic features characterizing various biological processes (e.g., recombination and tran-
scription) in the neighborhoods of these elements. Using statistical techniques, we identi-
fied enrichment of genomic features in the vicinity of endogenous retroviruses of different
evolutionary ages. Features overrepresented adjacent to young endogenous retroviruses
are expected to have facilitated their insertion in the genome. Features overrepresented
adjacent to older endogenous retroviruses are expected to have facilitated both their inser-
tion and their chances of being sustained in the genome. Our analyses allowed us to
explain the uneven distribution of endogenous retroviruses along the genome, and thus to
better understand the interaction of different biological processes in shaping the evolution
of genome architecture.

Introduction
Endogenous Retroviruses (ERVs) are Class I Transposable Elements (TEs) considered to be
remnants of germ-line retrovirus infections inherited by the next generations [1]. As all Class I
TEs, ERVs transpose via an RNA intermediate, i.e. they “retrotranspose”. Because they possess
Long Terminal Repeats (LTRs), they are also known as LTR-retrotransposons. Depending on
the similarity of their gene content to that of certain retroviruses, ERVs are classified as Gam-
maretrovirus-, Betaretrovirus-, and Spumaretrovirus-like [1–3]. Full-length ERVs possess
three retroviral coding genes (i.e. gag, pol, and env) and LTR flanking sequences [4]]. In most
cases, the internal genes are deleted by recombination of LTRs, converting ERVs into solo-
LTRs [5,6].

Most ERVs have accumulated numerous mutations that render them inactive [7]. However,
some rare examples of young ERVs that have coding capacity, are expressed and are transposi-
tionally active, have been described in mammals, e.g. in koala [8], mouse [3], cat [9], sheep
[10], and mule deer [7]. Active ERVs are transposition-competent and have integrated
recently; hence for them, polymorphic events–in terms of presence/absence–are observed at
the population level but the allele frequencies of integrations are low. For instance, CrERVγ is
an endogenous gammaretrovirus that was recently detected in mule deer [7]. This ERV has
been invading the germ line of mule deer since its speciation from white-tailed deer approxi-
mately 1.1 million years ago (MYA), and the copies found display polymorphisms in the wild
mule deer population. In total, in this species, there are on average 100 full-length copies of the
CrERVγ per haploid genome [7]. However, if solo-LTR elements are included, this estimate
increases two-to-three-fold [7].

ERVs occupy ~8% of the reference human genome (they are called HERVs for Human
ERVs), and have been integrating in it starting more than 35 MYA [6,7,11,12]. However, only
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the HERV-K family has been active during the past 6 MY–since the divergence of human and
chimpanzee [13]. Moreover, among 113 human-specific HERV-K elements only 15 are full-
length and none is infectious [13], though about a dozen were found to be polymorphic in 100
individuals from diverse populations indicating retrotransposition activity in the recent past
[13,14]. In cell lines, however, two HERV-K named Phoenix [15] and HERV-KCON [16] were
reconstructed to be infectious, producing retroviral particles and causing in vitro integrations.
Expression of HERV mRNA varies among tissues. Importantly, significant expression levels
were detected in testis as well as placenta [17,18]. Some analyses are available for HERV-Ks
embryonic expression [19,20].

Approximately 10% of the reference mouse genome is derived from LTR elements, includ-
ing ERVs [21]. In mouse oocytes, approximately 13% of transcripts were reported to be derived
fromMaLRs (a type of LTR elements) as detected from ESTs [22]. Also, mice have highly
active ERVs causing up to 10–12% of spontaneous germ-line insertional mutations–most of
which are due to activity of IAP (Intracisternal A Particle) and MusD/ETn (or ETns in short;
Early Transposon family) elements [23]. IAPs and ETns are both non-infectious betaretro-
viruses. In the mouse genome, full-length IAPs contain retroviral genes needed for retrotran-
sposition; however there are also partially deleted copies (ERVs missing genes or other
sequences). ETns consist of non-coding sequences and are aided by MusD proteins to retro-
transpose [3]. Insertional polymorphisms have been detected for both IAPs and ETns in multi-
ple mouse strains; additionally, some insertions arose prior to the divergence of these strains
[24,25]. In the rodent lineage, out of seventeen species studied, three (Mus, Spermophilus, and
Cavia) possess 80% of all IAP loci found in these species [26]. These elements are absent from
monkeys and apes [26]. Mouse IAPs and ETns are known to transpose in different mouse
strains causing mutations in the germ line; both polymorphic (in terms of presence/absence)
and fixed elements are known for each mouse strain [25].

The exaptation of ERVs–i.e. the recruitment of their sequences to perform a new function
as regulatory or coding sequences–has influenced the evolution of genomes in multiple ways.
Some enhancers and promoters derived from ERVs assume new roles in gene regulation; e.g.,
the alternative promoter of the CYP19 gene–an enzyme important for estrogen biosynthesis–
leads to its high expression levels in the primate placenta [3,27]. Another interesting example
of ERV exaptation associated with the evolution of placenta is syncytin, a gene derived from
the env gene of HERV-W [28]. Other ERV genes were exapted to function as proteases, RNA-
dependent DNA polymerase with RNAse H, and integrases, as well as structural proteins, in
diverse organisms [29]. Importantly, while ERVs have been relevant to genome evolution, they
have also been implicated in the development of multiple diseases by disrupting genes, modify-
ing regulatory sequences or altering gene expression. Though causal links have not been defi-
nitely established, the diseases that have been associated with ERV retrotransposition or
expression include multiple sclerosis, cancer and psoriasis in human [3,11,29,30]; and obesity,
diabetes, and cancer in mouse [24].

Notwithstanding the role ERVs play in the architecture, evolution, and function of genomes,
our knowledge of how the genomic landscape influences their integration and fixation is still
limited. Gene density and GC content have been shown to be negative predictors of ERV den-
sity–for not only full-length elements but also solo-LTRs [31–33]. In contrast, reconstructed
HERV-Ks integrate in regions with high numbers of gene transcription units [34]. Similarly, in
vitro IAP integrations occurred preferentially in actively transcribed domains of HeLa cells
[35]. Interestingly, human and mouse ERVs that are located in introns are mostly present in
antisense orientation avoiding gene expression disruption [32,36,37]. Other important geno-
mic characteristics of ERVs and their genomic neighborhoods are high levels of methylation
and epigenetic modifications used by the genome to limit transposition [3,38]. ETns, however,
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show decreased methylation when located in the vicinity of transcription start sites and
expressed genes [39]. Chromosome location is another relevant feature of ERV distribution, as
illustrated by the description of 100 previously unknown HERV-Ks in the centromeres of 15
chromosomes [40]. It has been suggested [34] that the accumulation of ERVs is the net result
of two processes–integration, which can be biased towards certain genomic landscapes, and
purifying selection, which removes ERVs disrupting the function of important elements, e.g. of
genes. Disentangling these two processes can be challenging and requires the investigation of
ERVs that integrated in the genome at different times.

Several approaches have been used to elucidate the relationships between genomic features
and distribution of TEs. Most studies of the associations between genomic features and TE
density, Integration Site (IntS) preferences, or neighboring sequences characteristics were per-
formed employing statistical methods such as ROC curves [41], non-parametric tests [42],
Fisher exact tests [43], maximum likelihood techniques [33], MANOVA [44], and multiple
regressions [45,46]. The main limitation of many past studies was the low data resolution
determined by available technologies. However, resolution has recently improved, e.g., with the
release of ENCODE and ModENCODE consortia data [47]. The application of innovative sta-
tistical approaches though has not kept pace with the improvement in data. Statistical method-
ology should address the fact that many features of the genome act jointly in defining its
biological functionality. Being able to consider multiple genomic features simultaneously, e.g.,
with multiple regression analyses [45,46], is essential to obtain meaningful biological conclu-
sions. Moreover, with the availability of higher resolution data, it becomes paramount to use
statistical techniques capable of detecting and differentiating effects at different scales and loca-
tions, e.g., one genomic feature may be generally enriched or depleted in the broad flanks of a
TE, while another may show enrichment or depletion at a specific location in close proximity
of the element’s IntS.

To perform more powerful and effective analyses, one can view genomic features as “curves”
composed of measurements in consecutive genomic intervals. In this framework, Functional
Data Analysis (FDA) techniques can be exploited to extract signals from these curves, taking
advantage of the ordered nature of the measurements and considering different scales and loca-
tions, i.e. sizes and positions of genomic intervals (see [48] and [49] for a comprehensive intro-
duction to FDA). This class of techniques includes curve smoothing and registration methods,
functional principal component analysis, functional hypothesis testing, functional regression,
and functional clustering [50]. In the last decade FDA has been utilized in an increasing num-
ber of biomedical applications [51,52], particularly in cardiovascular research [53–55] and
kinesiology [56]. Although still limited in number, some applications of FDA also exist in the
context of genetics and genomics, e.g., in genetic association studies [57–59], epistasis analysis
[60], and ChIP-seq peak shape clustering [61].

Here, applying FDA methodology, we address three questions about the biology of ERVs.
First, what genomic features are significant for ERV integration and fixation? Second, at what
genomic scales and locations are these features influential? Third, and finally, how do genomic
features work in concert to provide signals essential for integration and fixation of ERVs?
Using genome-wide data, we applied the recently developed Interval Testing Procedure (ITP)
[62] to determine the influence of flanking sequence features on integration and fixation of
mouse (polymorphic and fixed ETns and IAPs) and human (fixed and in vitroHERV-Ks)
ERVs. As a result, we detected diverse genomic features that affect integration and fixation of
these elements (e.g. gene content, replication timing, AT count, and LINE content), and did so
differentiating effects at various scales and locations in the flanking regions. Finally, we
employed multiple Functional Logistic Regression (FLR) models to capture the combined
effects of a restricted set of features resulting in a compact group of genome features that define
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the genomic landscape of integration and/or fixation preferences for ERVs. Importantly, the
functional testing procedures and regression techniques we extended, employed and demon-
strated in this study can be broadly applied in genomics.

Results

Elements and controls
In this study we analyzed in vitro, polymorphic, and fixed ERVs. The distributions of in vitro
and polymorphic ERVs are only marginally influenced by selection and thus provide a more
accurate view of integration preferences. Fixed ERVs, in contrast, carry information about both
integration and fixation. We interrogated the genomic neighborhoods (32-kb flanking
sequences upstream and 32-kb flanking sequences downstream of each element, so there is no
overlap among flanking regions to maximize the number of ERVs in the study) of one human
and two mouse ERV families. In mouse, we considered 1,866 ETns (242 polymorphic and
1,624 fixed) and 5,950 IAPs (1,986 polymorphic and 3,964 fixed) detected genome-wide by
Zhang and colleagues [25]; elements were considered to be fixed if they were shared among
four mice strains, and polymorphic if they were present in the C57BL/6J strain but not in the
other three strains (see Methods). As control regions, we considered 1,379 continuous 64-kb
regions of the mouse genome that did not overlap with the flanking sequences of ERVs (see
Methods, Table 1). In human, we considered 826 fixed HERV-Ks (Table 1) annotated by Sub-
ramanian and colleagues [63]. We also extracted the genomic locations of 1,065 in vitro
HERV-K integrations in human embryonic kidney and fibrosarcoma cell lines [34] (Table 1).
A total of 1,690 control regions were generated similarly to those in mouse (see Methods).
Human and mouse ERVs in our analyses ranged from solo-LTRs (~60 bp) to full-length ele-
ments (~9 kb) (Table A in S1 Text). The number of ERVs present on each chromosome corre-
lated with chromosome size (Fig A in S1 Text). Human chromosome 19 was an outlier with an
overrepresentation of fixed HERV-Ks (Fig A in S1 Text).

Genomic features
We selected a diverse set of genomic features (Table 2) that could be implicated in ERV inte-
gration or fixation as reported by previous ERV [31–33] and non-ERV TE studies [45,46]. In
total, we considered 41 and 43 genomic features in mouse and human ERV flanking regions,
respectively (derived from 43 datasets in mouse and 44 datasets in human). These features
reflected DNA conformation (e.g., G-quadruplex), DNA sequence (e.g., A/T content), position
on the chromosome (e.g., distance to the closest centromere and telomere), recombination
(e.g., local recombination rates), replication (e.g., replication timing), gene regulation and
expression (e.g., histone marks and DNase I hypersensitive sites), as well as selection (e.g.,
exons and most conserved elements). Where possible, we specifically utilized features studied
in embryonic stem cells (ESCs) or in sperm cells as they most closely proxy characteristics of
germ-line and embryonic cells [64]. Four low-resolution features (replication timing, recombi-
nation rates, distance to telomere, and distance to centromere) were represented by a single
value for each 64-kb region. For each high-resolution feature, we measured either its content
(fraction of the genomic window covered by the feature), its count or its weighted average
(WA, only for methylation and expression features) in each of the 64 1-kb windows constitut-
ing the flanks of each ERV and each control region (Fig 1A, see Methods). We applied hierar-
chical clustering to screen out high-resolution genomic features that present strong
correlations with each other (Figs B and C in S1 Text). For example, for human, exon content
was highly correlated with gene expression in ESCs and thus we removed the latter from the
analysis. As a result, a total of 35 mouse and 36 human high-resolution genomic features
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(derived from 35 datasets in mouse and 37 datasets in human) were retained for further analy-
sis (Figs D and E in S1 Text).

Analysis overview
To identify genomic features significantly affecting the ERV distributions in the human and
mouse genomes, we contrasted flanking regions of fixed ERVs (either mouse ETn and IAP, or
human HERV-K) vs. control regions; such a comparison is expected to reflect both integration
and fixation preferences (Fig 1B). In an attempt to disentangle genomic features affecting ERV
integration from those affecting their fixation, we conducted additional comparisons; namely,
we contrasted flanking regions of polymorphic mouse ERVs (ETn and IAP) vs. mouse control
regions, and flanking regions of in vitro HERV-K vs. human control regions. In these compari-
sons integration preferences are expected to be substantially more prominent than fixation
preferences because selection had substantially less time to act on polymorphic or in vitro
ERVs than on fixed ERVs. Finally, to pinpoint genomic features significant for ERV fixation,
we contrasted flanking regions of fixed vs. polymorphic mouse elements (ETns and IAPs), and
of fixed vs. in vitroHERV-Ks. In a way, the analysis of fixed ERVs vs. controls can be viewed as
“cumulating” that of polymorphic or in vitro ERVs vs. controls, and that of fixed vs. polymor-
phic or in vitro ERVs. In total, we conducted nine comparisons (Fig 1B), each using four differ-
ent statistical techniques as described below (Fig 1C). Admittedly, polymorphic integrations
are affected by selection to a greater degree than in vitro ones, however we are not in possession
of both of these data types for the species in our study; only polymorphic data are available for
mouse ERVs and only in vitro data are available for human ERVs.

First, we tested whether ERV presence was significantly affected by low-resolution features
using a univariate permutation test (see Methods, Table B in S1 Text; Fig 2); this is appropriate
because these features are represented by a single value for each 64-kb region. Second, for the
high-resolution genomic features, we employed the two-population Interval Testing Procedure
(ITP) for functional data [62] to assess whether each feature, when considered alone, had sig-
nificantly different content (or count, or WA) in a comparison, e.g. in ERV flanking regions vs.
controls (see Methods for details). This technique is particularly suitable for our analysis
because it considers the data as a curve over the 64 1-kb windows comprising each region,
instead of taking one value for the region (e.g., an average over the 64 windows). ITP combines
inference on the whole curve with component-wise inference (i.e. inference on measurements
comprising the curve). Thus, it allows us to select relevant genomic features detecting both the
scale and the location at which each feature acts (see Methods for more details). From this anal-
ysis we expect to detect genomic features that: (1) show significant enrichment/depletion
locally, especially in windows close to the IntS of ERVs or further away from it–we call these

Table 1. Number of ERV elements and control regions used in this study.

Genome Datasets Elements in the reference Elements used Sample size after filtering Reference

Mouse Polymorphic ETn 248 242 217 [25]

Fixed ETn 1868 1624 1296 [25]

Polymorphic IAP 2224 1986 1788 [25]

Fixed IAP 5064 3964 3255 [25]

Control regions 1379 1142

Human In vitro HERV-K 1565 1065 1005 [34]

Fixed HERV-K 1036 826 826 [63]

Control regions 1690 1543

doi:10.1371/journal.pcbi.1004956.t001
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Table 2. Complete list of genomic features analyzed in this study. H and L marks indicate features analyzed in mouse, human or both using high- and
low-resolution datasets, respectively. The nature of the measures used is explained in more detail in the Methods.

Category Name Studied in
mouse

Studied in
human

Measure Reference

DNA conformation A-phased repeat H H Content [65]

Direct repeat H H Content [65]

G-quadruplex repeat H H Content [65]

Inverted repeat H H Content [65]

Mirror repeat H H Content [65]

Z-DNA repeat H H Content [65]

Mononucleotide STR H H Content Genome-wide screening

Dinucleotide STR H H Content Genome-wide screening

Trinucleotide STR H H Content Genome-wide screening

Tetranucleotide STR H H Content Genome-wide screening

DNA sequence SINE H H Content UCSC Genome Browser

LINE H H Content UCSC Genome Browser

L1 target sites H H Count Genome-wide screening

AT nucleotides H H Count Genome-wide screening

CG nucleotides H H Count Genome-wide screening

Position on the
chromosome

Distance to centromere L L Distance in bp Genome-wide screening

Distance to telomere L L Distance in bp Genome-wide screening

Recombination Recombination hotspot motif
(13-mer instability)

H Count Genome-wide screening [66]

Recombination hotspots H H Content [67–69]

Recombination rate H, L L Weighted
average

[67,69–71]

Replication ESC replication timing L L Weighted
average

DECODEdcc, UCSC Genome
Browser

Replication origins H Content [72]

Methylation Methylated CpG H H Weighted
average

[73–74]

Methylated CHG H H Weighted
average

[73–74]

Methylated CHH H H Weighted
average

[73–74]

Not methylated CpG H Content [74]

Not methylated CHG H Content [74]

Not methylated CHH H Content [74]

Sperm hypomethylation H Content [75]

Gene expression Testis gene expression 2 H H Weighted
average

[76–77]

ESC gene expression H H Weighted
average

DECODEdcc, [77]

H1-hESC exon expression H Weighted
average

DECODEdcc

H1-hESC transcript expression H Weighted
average

DECODEdcc

Transcription start sites H 2 H Content ENCODE, [78]

Chromatin openness/
modifications

Dnase I hypersensitive sites H H Content UCSC Genome Browser

H3K27ac—enhancers H H Content ENCODE *

(Continued)
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localized differential landscape (LDL) features (e.g. Fig 3A); (2) show a uniform level of signifi-
cant enrichment/depletion throughout all 64 1-kb windows–we call these invariant differential
landscape (IDL) features (e.g. Fig 3B); or (3) are not significant over the whole 64-kb region

Table 2. (Continued)

Category Name Studied in
mouse

Studied in
human

Measure Reference

H3K27me3—repressed chromatin H H Content ENCODE *

H3K36me3—transcribed chromatin H H Content ENCODE *

H3K4me1—enhancers H H Content ENCODE *

H3K4me3—promoters H H Content ENCODE *

H3K9ac—transcription activation H H Content ENCODE *

H3K9me3—repressed chromatin H H Content ENCODE *

Selection CpG islands H H Content UCSC Genome Browser

Exon H H Content UCSC Genome Browser

Intron H H Content UCSC Genome Browser

Most conserved elements H H Content UCSC Genome Browser

Total number features 41 43

* Mouse ES Bruce4 C57BL6, human H1-ESC.

doi:10.1371/journal.pcbi.1004956.t002

Fig 1. Workflow of the methodology employed to compare the flanking regions of ERVs versus control regions. The comparison
between the flanking regions of two different ERV types utilizes an analogous pipeline. (A) Generation of windows and data. (B) Schematic of
the nine comparisons implemented in our study. (C) Schematic of the statistical analysis, including Functional Data Analysis techniques.
FLR: Functional Logistic Regression, ITP: interval testing procedure, IDL: invariant differential landscape, LDL: localized differential
landscape.

doi:10.1371/journal.pcbi.1004956.g001
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examined. In order to capture different nuances of the data, we performed ITP using three test
statistics (mean difference, median difference, and variance ratio; Figs 4–6 and F-T in S1 Text),
however, below we focus on results concerning mean differences.

Third, to determine the individual explanatory power of major predictors, we fitted single
Functional Logistic Regressions (FLRs; Figs 1C and 7, Table C in S1 Text) for each feature
found to be significant in ITP. This analysis allowed us to summarize and better quantify the

Fig 2. Boxplots of significant low-resolution features (i.e. recombination rates, replication timing, and
distance to centromere) measured for the flanking regions of fixed and polymorphic (or in vitro)
ERVs, and for control regions. The ERVs considered are: (A) ETns, (B) IAPs, and (C) HERV-Ks. Dotted
lines represent means (solid lines in the boxplots are medians). Univariate permutation tests for the mean
differences are summarized with asterisks above the corresponding comparisons (p-value <0.001 ‘***’, p-
value <0.01 ‘**’, and p-value <0.05 ‘*’). Distance to telomere was also tested but was not found to have
significant mean differences. WA—weighted average. More details can be found in Table C in S1 Text.

doi:10.1371/journal.pcbi.1004956.g002
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results obtained by univariate permutation test and ITP (Fig 7). Moreover, it allowed us to identify
features that, by themselves, explained a percent of deviance in excess of 20%. These are clearly very
relevant predictors (Table C in S1 Text) but we did not include them in our final multiple FLRmod-
els (see below) as they would hide the concurrent effects of other potentially relevant predictors.

Fourth, we examined the joint effects of the remaining significant predictors (as determined
by ITP and univariate permutation test) via multiple Functional Logistic Regression (Fig 1C
and Tables 3–11). The multiple FLR models expressed the likelihood of being in the neighbor-
hood of an ERV vs. control (or of a fixed vs. a polymorphic mouse ERV, or of a fixed vs. in
vitroHERV-K) as a joint function of several predictors. In particular, IDL features and low-res-
olution features that proved significant in univariate permutation tests were treated as scalar
predictors represented by their averages across the 64 windows constituting each region. In
contrast, LDL features were treated as functional predictors with curves evaluated at customized
scales and intervals to capture the specific behavior of each LDL feature, e.g. around the IntS,
as suggested by the ITP. Importantly, the modified ITP we employed (see Methods) gave us
detailed information on the best scale and location, i.e. on the subregions on which to study the
curve, for each of these functional predictors.

Fig 3. ITP results using the mean difference as test statistics for (A) recombination hotspots (localized differential
landscape–LDL) and (B) mononucleotide microsatellites (invariant differential landscape–IDL) in the flanking regions of
fixed ETn vs. controls. The heatmap in the top panel shows the p-values for each component (i.e. window; horizontal axis)
corrected controlling the family-wise error rate on all possible maximum interval lengths (vertical axis). Blue corresponds to low p-
values, hence significant differences between the distributions underlying the flanking regions of ERVs and the controls. The middle
panel shows corrected p-values at the chosen maximum interval length threshold, with gray highlighting significant components
(corrected p-values<0.05). The lower panels show the average of the genome feature under consideration over the flanking regions
of all fixed ETns (red line) and controls (green line). First and third quartiles (25% and 75% quantiles) are shaded in the respective
colors–red for ETns and green for controls. The shades for control are invisible because they are zeros for control. The heatmap
suggests the scales (vertical axis) and the locations (horizontal axis) at which the feature is significant to characterize ERVs
genomic landscape.

doi:10.1371/journal.pcbi.1004956.g003

Functional Data Analysis to Uncover Endogenous Retroviral Distributions

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004956 June 16, 2016 10 / 41



ETns
To identify genomic features affecting the distribution of ETns in the mouse genome–as a
result of both integration and fixation preferences of these elements–we contrasted flanking
sequences of fixed ETns vs. control regions. Univariate permutation tests applied to the low-
resolution features (Fig 2A and Table B in S1 Text) indicated that the flanking regions of fixed

Fig 4. Significance (i.e. -log10(corrected p-value)) of genomic features in windows along the flanking regions,
obtained from the ITP using the mean difference as test statistics: (A) fixed ETns vs. controls, (B) polymorphic ETns
vs. controls, and (C) fixed vs. polymorphic ETns. In each panel, the horizontal axis represents the 64 1-kb windows. The
vertical black line between window -1 kb and 1 kb marks the integration site. The thresholds reported on the left represent the
maximum scale at which each feature is significant, ranging from 64 kb (coarsest) to 1 kb (finest). Each row corresponds to
one feature and each cell represents one or two contiguous windows, depending on the number of nodes employed in the B-
splines (we consider one value for every 1-kb window when using the raw data, and one value every two 1-kb windows when
using the piecewise constant smoothed version of the data). White cells: not significant (p-value >0.05), red cells: significant
with higher mean in the flanking regions of ETns vs. controls (or in the flanking regions of fixed vs. polymorphic ETns), blue
cells: significant with lower mean in the flanking regions of ETns vs. controls (or in the flanking regions of fixed vs.
polymorphic ETns). Color intensity is proportional to significance (more intense colors correspond to lower corrected p-
values).

doi:10.1371/journal.pcbi.1004956.g004
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ETns have lower recombination rates and later replication timing, and are closer to centro-
meres. ITP indicated (Fig 4A and Fig F in S1 Text) that all four microsatellites types, LINEs, L1
target sites, AT count, and the H3K9me3 histone mark are overrepresented, while SINEs,
exons, introns, CpG islands, most conserved elements, all features associated with CpGmethyl-
ation, ESC expression, and two histone marks (H3K27me3 and H3K36me3) are underrepre-
sented, throughout the whole fixed ETn flanking regions. ITP also identified features with
interesting localized behaviors: recombination hotspot content and the H3K27ac histone mark
are overrepresented immediately next to the IntS, while DNase I hypersensitive sites and three
histone marks (H3K4me1, H3K4me3, and H3K9ac) are underrepresented everywhere except

Fig 5. Significance (i.e. -log10(corrected p-value)) of genomic features in windows along the flanking regions,
obtained from the ITP using the mean difference as test statistics: (A) fixed IAPs vs. controls, (B) polymorphic
IAPs vs. controls, and (C) fixed vs. polymorphic IAPs. See explanations for Fig 4.

doi:10.1371/journal.pcbi.1004956.g005
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for immediately next to the IntS. We found that also Z-DNA repeats and G-quadruplex repeats
are underrepresented, with a yet more complex local behavior. Next, single FLRs revealed that
all four microsatellites types, LINEs, introns, most conserved elements, and ESC expression
have very strong effects (relative contribution to the deviance explained, RCDE�26%; Fig 7A
and Table C in S1 Text). We therefore excluded these predictors from the final multiple FLR
model, which explained 51.1% of the deviance in discriminating fixed ETns from controls
(Table 3). The two strongest scalar predictors in such a model (i.e. H3K9me3 and L1 target
sites, RCDE 20.5% and 23.5%, respectively) had positive effects, while AT count and
H3K27me3 had negative effects (RCDE 17.8% and 4.7%, respectively; see Discussion for the

Fig 6. Significance (i.e. -log10(corrected p-value)) of genomic features in windows along the flanking regions,
obtained from the ITP using the mean difference as test statistics: (A) fixed HERV-Ks vs. controls, (B) in vitro
HERV-Ks vs. controls, and (C) fixed vs. in vitroHERV-Ks. See explanations for Fig 4.

doi:10.1371/journal.pcbi.1004956.g006
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explanation of the negative effect of AT count in multiple FLRs). The two strongest functional
predictors–CpGmethylation and exon content (RCDE of ~10%)–had negative effects. Interest-
ingly, the H3K4me1 mark (RCDE 5.1%) had a strong positive effect strictly localized at the
IntS (-4 to 4 kb) and a negative effect away from the IntS, while mirror repeats (RCDE 3.1%)
had a positive effect on the whole region.

Fig 7. Deviance explained by individual predictors in single logistic regression fits, concerning (A) ETns, (B) IAPs, and (C) HERV-Ks. Each panel
contains color-coded results from three comparisons–magenta: fixed vs. controls, blue: polymorphic (or in vitro) vs controls, green: fixed vs. polymorphic (or
in vitro). Only features that resulted significant in the ITP are considered here as scalar or functional predictors (indicated with stars and points, respectively),
depending on whether they were IDL or LDL features. The deviance explained (between 0 and 100%) is reported as positive or negative depending on the
sign of the estimated predictor coefficient (the predominant sign in the case of functional predictors). The red lines at ±20% represent the threshold above
(below) which “dominant” predictors were omitted from the subsequent multiple FLRmodeling.

doi:10.1371/journal.pcbi.1004956.g007
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To highlight integration preferences, we contrasted flanking sequences of polymorphic
ETns vs. control regions. In this analysis (Fig 4B and Fig G in S1 Text) we found many similari-
ties but also a number of noteworthy differences with respect to the analysis of fixed ETns vs.
controls (Fig 4A and Fig F in S1 Text). For instance, similar to fixed ETns, the flanking
sequences of polymorphic ETns appeared to replicate later than controls (Table B in S1 Text
and Fig 2A) suggesting that this feature might be important for ETn integration. The underrep-
resentation of exons, CpG islands, and several histone marks was weaker for polymorphic
ETns vs. controls than for fixed ETns vs. controls suggesting that ETns can integrate but tend
not to become fixed in such environments (Fig 4B and 4A). Moreover, the content of DNase I
hypersensitive sites did not differ significantly from controls in a relatively large region sur-
rounding the IntS for polymorphic ETns (-6 kb to +16 kb; Fig 4B) but only at 1 kb upstream

Table 3. Multiple FLRmodels for fixed ETn vs. control. The "Predictor" column reports predictors included in the logistic regression. The "Coefficient" col-
umn reports coefficient estimates (a positive coefficient means that an increase in the feature increases the likelihood of, e.g., fixed vs. control; a negative
coefficient means an increase in the feature decreases such likelihood). The "p-value" column reports p-values for the coefficients. They both are in bold if p-
value<0.05. For functional predictors, several rows are listed corresponding to the intervals where the feature was considered—as indicated in the "Range of
windows" column. The "RCDE" column reports the relative contribution to the deviance explained for each feature. "DE" at the bottom of each panel is the
total deviance explained by the model.

Predictor Range of windows Coefficient p-value RCDE (%)

Z-DNA repeats content scalar -1.3E+00 1.0E-10 2.6

SINE content scalar -4.9E-01 5.6E-04 0.7

L1 target sites count scalar 4.4E+01 2.0E-16 23.5

AT count scalar -7.4E-02 2.0E-16 17.8

Recombination rates LR WA scalar -8.7E-01 9.5E-05 0.9

CHG not methylated content scalar 2.0E+01 2.0E-09 2.2

H3K27me3 content scalar -3.0E-01 2.0E-16 4.7

H3K9me3 content scalar 5.7E-01 2.0E-16 20.5

CpG methylation WA (-30,-10) -2.0E-01 2.3E-12 10.8

(-10,10) -2.0E-01 4.1E-12

(10,30) -2.0E-01 1.3E-12

Exon content (-28,-20) -1.3E-02 3.7E-02 9.7

(-20,-12) -3.0E-03 6.3E-01

(-12,-4) 1.7E-03 8.1E-01

(-4,4) -5.2E-02 1.6E-11

(4,12) -9.7E-03 1.5E-01

(12,20) -1.1E-02 9.3E-02

(20,28) -1.4E-02 1.9E-02

H3K4me1 content (-28,-20) -1.9E-02 4.6E-04 5.1

(-20,-12) -8.5E-03 1.3E-01

(-12,-4) -1.6E-02 3.4E-03

(-4,4) 2.6E-02 7.2E-07

(4,12) -1.7E-02 2.8E-03

(12,20) -3.4E-03 5.2E-01

(20,28) -1.4E-02 5.7E-03

Mirror repeats content (-32,-16) 3.5E-02 1.2E-02 3.1

(-16,0) 5.3E-02 7.5E-05

(0,16) 5.7E-02 3.1E-05

(16,32) 3.3E-02 1.3E-02

DE (%) 51.1

doi:10.1371/journal.pcbi.1004956.t003
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from the IntS for fixed ETns (Fig 4A). Single FLRs displayed very similar explained deviances
for microsatellites and LINEs in the two comparisons, while the explained deviances for intron
content and most conserved elements content were lower for polymorphic ETns vs. controls
than for fixed ETns vs. controls (Fig 7A, Tables 4 and 3)–confirming that the former are subject
to weaker selection effects. The final multiple FLR model for polymorphic ETns vs. controls
explained 48.4% of the deviance (Table 4) and was similar to the model for fixed ETns vs. con-
trols (Table 3).

Next, to highlight fixation preferences, we contrasted flanking regions of fixed vs. polymor-
phic ETns. This analysis, too, revealed some similarities and some important differences rela-
tive to that of fixed ETn vs. controls. Fixed ETns were located in regions with lower
recombination rates and closer to centromeres compared to polymorphic ETns (Table B in S1
Text and Fig 2A) suggesting that these features are important for fixation. The ITP tests con-
trasting fixed vs. polymorphic ETns (Fig 4C and Fig H in S1 Text) did not identify microsatel-
lites as features differentiating fixation and integration propensities. However, they did reveal a
more localized underrepresentation of exons and most conserved elements around the IntS
(Fig 4C)–as compared to the ITP tests contrasting fixed ETns vs. controls (Fig 4A). Recombi-
nation hotspots, which were overrepresented in polymorphic ETns vs. controls (Fig 4B) and
strongly overrepresented near the IntS in fixed ETns vs. controls (Fig 4A), were underrepre-
sented in fixed vs. polymorphic ETns (Fig 4C). Also, several histone marks (H3K9me3,
H3k4me1, and H3K9ac) were overrepresented near the IntS in fixed vs. polymorphic ETns
(Fig 4C), but did not show a significant difference near the IntS in fixed ETn vs. controls (Fig
4A). Interestingly, DNase I hypersensitive sites were overrepresented -1 kb upstream and
underrepresented up to 2 kb downstream from the IntS (Fig 4C). Single FLRs did not identify
features which, individually, had great strength in characterizing fixed vs. polymorphic ETns
(all explained deviances<3.5%) (Fig 7A and Table C in S1 Text). However, taken together in
the context of multiple FLR, eight features explained 15% of the deviance in discriminating
fixed vs. polymorphic ETns (Table 5) and reiterated most of our observations from the ITP
tests (Fig 4C).

Table 4. Multiple FLRmodels for polymorphic ETn vs. control. See explanations for Table 3.

Predictor Range of windows Coefficient p-value RCDE (%)

Exon content scalar -3.0E-01 2.5E-02 0.9

L1 target sites count scalar 5.1E+01 2.0E-16 34.3

AT count scalar -6.4E-02 2.0E-16 21.9

CHG not methylated content scalar 2.2E+01 1.4E-05 3.2

CpG methylation WA scalar -1.1E+01 8.5E-14 10.9

H3K9me3 content scalar 4.3E-01 1.9E-14 10.8

mESC expression WA (-30,-10) -9.2E-03 2.5E-02 29.2

(-10,10) -2.5E-02 3.9E-06

(10,30) -2.5E-03 5.4E-01

H3K27me3 content (-30,-10) -3.3E-02 2.7E-03 10.9

(-10,10) -2.7E-02 3.8E-03

(10,30) -1.9E-02 2.0E-02

Recombination hotspots content (-30,-10) 4.7E-03 1.3E-01 2.4

(-10,10) 6.8E-03 4.6E-02

(10,30) -2.4E-03 4.6E-01

DE (%) 48.4

doi:10.1371/journal.pcbi.1004956.t004
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Table 5. Multiple FLRmodels for fixed vs. polymorphic ETn. See explanations for Table 3.

Predictor Range of windows Coefficient p-value RCDE (%)

Recombination hotspots content scalar -4.2E-01 5.2E-05 8.7

Distance to centromere scalar -5.7E-09 2.3E-03 4.9

H3K4me1 content (-28,-20) 1.6E-02 8.9E-02 25.3

(-20,-12) -2.3E-02 2.6E-02

(-12,-4) -3.3E-02 7.8E-04

(-4,4) 4.9E-02 1.9E-06

(4,12) -2.3E-02 1.4E-02

(12,20) 1.3E-02 2.0E-01

(20,28) 1.3E-02 2.0E-01

H3K9ac content (-28,-20) -1.4E-02 3.7E-01 14.9

(-20,-12) 3.1E-02 9.7E-02

(-12,-4) 1.5E-02 4.2E-01

(-4,4) 5.7E-02 6.9E-03

(4,12) -4.3E-02 2.8E-03

(12,20) 4.5E-02 6.8E-03

(20,28) -1.5E-02 2.9E-01

H3K9me3 content (-28,-20) 1.3E-02 4.4E-01 16.4

(-20,-12) -3.6E-02 1.8E-02

(-12,-4) -7.2E-03 6.8E-01

(-4,4) 4.7E-02 9.1E-05

(4,12) -1.8E-02 2.6E-01

(12,20) 2.0E-02 2.5E-01

(20,28) 4.0E-02 6.7E-02

DNase hypersensitive sites content (-30,-26) -9.3E-02 2.0E-02 15.1

(-26,-22) -1.2E-02 7.8E-01

(-22,-18) 6.7E-03 8.8E-01

(-18,-14) -4.2E-02 3.7E-01

(-14,-10) 3.6E-02 4.1E-01

(-10,-6) 1.0E-03 9.8E-01

(-6,-2) -5.4E-02 1.9E-01

(-2,2) -2.2E-02 5.8E-01

(2,6) -7.1E-02 8.3E-02

(6,10) -1.2E-02 7.9E-01

(10,14) -9.5E-02 3.2E-02

(14,18) -1.1E-02 8.2E-01

(18,22) -2.3E-02 6.1E-01

(22,26) 8.7E-03 8.5E-01

(26,30) -3.4E-03 9.3E-01

H3K27ac content (-28,-20) 1.4E-02 4.2E-01 8.1

(-20,-12) 1.4E-02 4.0E-01

(-12,-4) 2.2E-02 1.6E-01

(-4,4) 2.0E-02 1.8E-01

(4,12) 3.0E-02 6.2E-02

(12,20) -3.1E-02 3.3E-02

(20,28) 1.9E-03 9.0E-01

DE (%) 15.0

doi:10.1371/journal.pcbi.1004956.t005
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IAPs
Interestingly, the genomic features significant in distinguishing between the flanking sequences
of fixed IAP and control regions were very similar to those identified in the analogous compari-
son for ETns. For instance, just as fixed ETns (Table B in S1 Text and Fig 2A), fixed IAPs were
found in regions with lower recombination, later replication, and smaller distance to the cen-
tromere than controls (Table B in S1 Text and Fig 2B). Most predictors found to be significant

Table 6. Multiple FLRmodels for fixed IAP vs. control. See explanations for Table 3.

Predictor Range of windows Coefficient p-value RCDE (%)

CpG methylation WA scalar -1.1E+00 1.2E-03 0.6

H3K27me3 content scalar -2.6E-01 2.0E-16 5.5

H3K4me3 content scalar 3.5E-01 1.2E-03 0.6

TSS DBTSS content (-32,-24) -1.9E-02 3.1E-04 11.1

(-24,-16) -1.5E-02 2.3E-03

(-16,-8) -2.9E-03 5.4E-01

(-8,0) -1.8E-02 2.3E-04

(0,8) -1.4E-02 3.1E-03

(8,16) -2.1E-02 1.1E-05

(16,24) -1.1E-02 2.7E-02

(24,32) -1.5E-02 5.7E-04

Exon content (-28,-20) 2.4E-03 5.0E-01 7.6

(-20,-12) -1.0E-02 5.8E-03

(-12,-4) 1.0E-03 8.0E-01

(-4,4) -3.2E-02 3.4E-14

(4,12) -3.4E-03 4.0E-01

(12,20) -5.2E-03 1.9E-01

(20,28) -6.8E-03 4.7E-02

H3K4me1 content (-28,-20) -7.0E-03 1.6E-02 9.4

(-20,-12) 4.2E-04 8.9E-01

(-12,-4) -4.4E-03 1.7E-01

(-4,4) -3.3E-02 2.0E-16

(4,12) -3.8E-03 2.4E-01

(12,20) -2.4E-05 9.9E-01

(20,28) -5.9E-03 4.7E-02

L1 target sites count (-30,-10) 5.4E-02 7.1E-06 8.6

(-10,10) 5.3E-02 2.2E-05

(10,30) 5.1E-02 1.0E-05

DNase hypersensitive sites content (-28,-20) 4.0E-03 5.0E-01 5.1

(-20,-12) 2.1E-02 1.1E-03

(-12,-4) 2.2E-02 6.6E-04

(-4,4) 6.8E-03 2.7E-01

(4,12) 1.9E-02 3.8E-03

(12,20) 1.9E-02 2.3E-03

(20,28) 1.6E-02 1.0E-02

H3K36me3 content (-30,-10) 6.8E-04 7.3E-01 3.5

(-10,10) -1.6E-02 2.2E-11

(10,30) 5.4E-03 8.8E-03

DE (%) 33.3

doi:10.1371/journal.pcbi.1004956.t006
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Table 7. Multiple FLRmodels for polymorphic IAP vs. control. See explanations for Table 3.

Predictor Range of windows Coefficient p-value RCDE (%)

Recombination hotspots content scalar 3.2E-01 8.3E-07 2.1

CHG methylation WA scalar 7.6E+00 4.5E-05 1.4

Replication timing WA scalar 8.0E-01 2.0E-16 6.6

H3K27me3 content scalar -1.2E-01 8.8E-07 2.1

H3K36me3 content scalar -9.4E-02 1.9E-05 1.5

H3K4me1 content scalar -1.5E-01 7.0E-03 0.6

L1 target sites count (-30,-10) 6.3E-02 1.6E-07 13.5

(-10,10) 5.0E-02 5.4E-05

(10,30) 4.3E-02 1.7E-04

H3K9me3 content (-28,-20) 6.8E-02 7.6E-05 16.1

(-20,-12) 1.4E-01 7.7E-08

(-12,-4) 7.1E-02 2.0E-04

(-4,4) 7.8E-02 2.0E-05

(4,12) 5.1E-02 8.6E-03

(12,20) 4.9E-02 1.9E-03

(20,28) 1.0E-01 7.2E-06

Exon content (-28,-20) -9.8E-03 3.7E-02 8.9

(-20,-12) -5.6E-03 2.6E-01

(-12,-4) 3.2E-03 5.4E-01

(-4,4) -3.6E-02 3.2E-10

(4,12) -6.4E-04 9.0E-01

(12,20) -8.2E-03 1.2E-01

(20,28) -6.0E-03 1.9E-01

CpG methylation WA (-28,-20) -1.2E-01 5.3E-04 6.1

(-20,-12) 3.0E-02 4.0E-01

(-12,-4) -7.6E-02 2.9E-02

(-4,4) -1.3E-02 7.0E-01

(4,12) -1.1E-01 2.0E-03

(12,20) -1.1E-01 1.7E-03

(20,28) -8.7E-02 1.2E-02

DE (%) 30.4

doi:10.1371/journal.pcbi.1004956.t007

Table 8. Multiple FLRmodels for fixed vs. polymorphic IAP. See explanations for Table 3.

Predictor Range of windows Coefficient p-value RCDE (%)

Recombination hotspots content scalar -4.1E-01 2.0E-16 42.2

Recombination rates LR WA scalar -1.9E+00 1.3E-03 4.2

H3K4me1 content (-28,-20) -6.7E-04 7.5E-01 47.6

(-20,-12) 1.6E-03 4.6E-01

(-12,-4) 4.9E-04 8.2E-01

(-4,4) -2.4E-02 2.0E-16

(4,12) 9.2E-04 6.6E-01

(12,20) 1.2E-03 5.6E-01

(20,28) -2.1E-03 2.8E-01

DE (%) 3.8

doi:10.1371/journal.pcbi.1004956.t008
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by the ITP tests were also shared between the fixed IAPs vs. controls and the fixed ETns vs.
controls comparisons (Figs 5A and 4A, respectively). Several noteworthy exceptions included a
uniform underrepresentation of H3K27ac throughout the 64 kb region flanking fixed IAPs
(Fig 5A and Fig I in S1 Text), while this histone mark was overrepresented near the IntS of fixed

Table 9. Multiple FLRmodels for fixed HERV-K vs. control. See explanations for Table 3.

Predictor Range of windows Coefficient p-value RCDE (%)

LINE content scalar 3.6E+00 2.0E-16 13.33

Recombination hotspots motif count scalar 3.0E+00 2.0E-16 9.68

Replication timing WA scalar -8.3E-01 4.1E-07 1.12

CHG methylation WA scalar -7.8E+00 1.5E-04 0.64

H3K9me3 content scalar 1.9E-01 1.9E-07 1.17

H3K4me1 content scalar -3.6E-01 1.9E-04 0.58

H3K9ac content scalar -3.1E-01 9.1E-04 0.46

L1 target sites count (-30,-10) 3.2E-01 2.0E-16 27.09

(-10,10) 2.6E-01 1.6E-14

(10,30) 3.4E-01 2.0E-16

AT count (-30,-10) -1.9E-03 8.5E-13 12.61

(-10,10) -1.5E-03 5.4E-08

(10,30) -2.1E-03 5.5E-16

G-quadruplex repeats content (-32,-16) -9.7E-02 1.8E-02 1.89

(-16,0) -1.5E-01 2.4E-04

(0,16) -1.1E-01 5.2E-03

(16,32) -3.0E-02 4.5E-01

Hypomethylation testis content (-32,-16) 3.7E-02 2.6E-06 5.37

(-16,0) 3.9E-02 2.4E-07

(0,16) 3.3E-02 5.0E-05

(16,32) 1.8E-02 1.8E-02

CpG islands content (-32,0) -5.7E-02 2.9E-13 5.22

(0,32) -3.1E-02 7.2E-06

DE (%) 79.0

doi:10.1371/journal.pcbi.1004956.t009

Table 10. Multiple FLRmodels for in vitro HERV-K vs. control. See explanations for Table 3.

Predictor Range of windows Coefficient p-value RCDE (%)

L1 target sites count scalar -2.8E+00 2.0E-16 11.0

AT count scalar 1.6E-02 5.9E-15 7.7

Recombination hotspots motif count scalar -2.9E-01 4.9E-04 1.5

CHH methylation WA scalar -3.4E+00 5.0E-03 0.9

H3K9me3 content scalar 1.3E-01 5.3E-14 6.8

Distance to telomere scalar -4.5E-09 3.0E-02 0.6

Intron content (-32,-16) -4.6E-02 1.9E-05 29.2

(-16,0) -3.7E-02 4.0E-03

(0,16) -3.8E-02 3.9E-03

(16,32) -3.5E-02 8.0E-04

CpG methylation WA (-32,-16) 1.6E-01 6.0E-03 4.6

(-16,0) 8.8E-02 1.2E-01

(0,16) 1.4E-01 2.0E-02

(16,32) 1.5E-01 4.5E-03

DE (%) 24.4

doi:10.1371/journal.pcbi.1004956.t010
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ETns (Fig 4A and Fig H in S1 Text). Transcription start sites were underrepresented for fixed
IAPs, while they were not significant for fixed ETns. Also, three histone marks (H3K4me1,
H3K4me3, and K3K9ac), as well as DNase I hypersensitive sites, were uniformly underrepre-
sented throughout the 64 kb region flanking fixed IAPs, but not significantly different from
controls immediately next to the IntS for ETns (Fig 5A, Fig I in S1 Text, Fig 4A, and Fig H in
S1 Text). Major individual predictors, as identified by single FLRs, were also remarkably similar
between fixed IAPs (Table C in S1 Text and Fig 7B) and fixed ETns (Table C in S1 Text and Fig
7A)–with only one extra predictor for fixed IAPs; H3K9me3 content. The multiple FLR model
had a 33.3% deviance explained (Table 6) and again showed many similarities to the analogous
model for fixed ETns (Table 3).

Next, following a logic similar to the one used above for ETns, we attempted to separate
integration vs. fixation preferences for IAPs. Just as was observed for ETns, genomic features
significant in distinguishing the flanking sequences of polymorphic IAPs from control regions
(Fig 5B and Fig J in S1 Text) were very similar to those distinguishing the flanking sequences of
fixed IAP from control regions (Fig 5A and Fig I in S1 Text). The underrepresentation of
Z-DNA repeats was more localized (close to the IntS), while recombination hotspot content
was more uniformly overrepresented in polymorphic IAPs vs. controls than in fixed IAPs vs.
controls. Moreover, transcription start sites showed no significant differences and the
H3K27ac histone mark was only weakly underrepresented in polymorphic IAPs vs. controls,
while these features were more prominent in fixed IAPs vs. controls suggesting their impor-
tance for fixation rather than integration. Single FLRs identified the same group of major pre-
dictors for polymorphic IAPs vs. controls as were identified for polymorphic ETns vs. controls,
with the addition of the functional predictor ESC expression (explained deviance 22%)(Fig 7B
and Table C in S1 Text). We excluded these features from the final multiple FLR model, which

Table 11. Multiple FLRmodels for fixed vs. in vitro HERV-K. See explanations for Table 3.

Predictor Range of windows Coefficient p-value RCDE (%)

Replication timing WA scalar -1.7E-01 1.0E-02 2.2

CHH methylation WA scalar -3.9E+00 3.5E-05 5.8

Most conserved elements content (-30,-10) -1.2E-02 2.3E-04 56.1

(-10,10) -2.6E-02 9.2E-13

(10,30) -2.7E-03 4.0E-01

Exon content (-28,-20) 1.1E-02 9.4E-02 10.3

(-20,-12) 1.6E-02 1.8E-02

(-12,-4) 4.7E-03 5.0E-01

(-4,4) -1.5E-02 5.4E-02

(4,12) 3.8E-03 5.9E-01

(12,20) 5.2E-03 4.5E-01

(20,28) 1.3E-02 3.4E-02

H3K4me1 content (-28,-20) -1.6E-02 2.9E-02 9.1

(-20,-12) 4.0E-04 9.6E-01

(-12,-4) -2.3E-02 5.3E-03

(-4,4) 2.5E-02 1.2E-03

(4,12) -6.6E-03 3.7E-01

(12,20) -5.5E-03 4.8E-01

(20,28) -3.7E-03 5.9E-01

DE (%) 12.1

doi:10.1371/journal.pcbi.1004956.t011
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explained 30.4% of the deviance in discriminating polymorphic IAPs vs. controls (Table 7) and
was similar to the analogous model for ETns (Table 4).

When comparing fixed and polymorphic IAPs (Fig 5C and Fig K in S1 Text), the ITP identi-
fied only three features that had lower means throughout the fixed IAP integration regions–
SINEs, DNase I hypersensitive sites, and recombination hotspots. However, striking differences
were observed for 12 genomic features with localized landscape. For instance, fixed IAPs
revealed strong signatures of depressed means within ±4 kb from the IntS for features such as
dinucleotide and trinucleotide microsatellites, most conserved elements, unmethylated CpGs,
and the histone mark H3K27me3. Introns and two histone marks (i.e. H3K4me1 and
H3K27ac) were also underrepresented in a larger area around the IntS. Moreover, we observed
overrepresentation of LINEs and H3K9me3 (the mark of heterochromatic regions) surround-
ing the IntS in fixed vs. polymorphic IAPs. Exon content was underrepresented in a few win-
dows downstream of the IntS, while AT count was overrepresented in most windows of both
flanks except at the IntS. Single FLRs for fixed vs. polymorphic IAPs identified H3K9me3 as a
very strong functional predictor (explained deviance of 21.5%, Fig 7B and Table C in S1 Text).
All other features, singularly, could explain only a very low portion of the deviance (<2%), and
even their concurrent effect was low, producing a multiple FLR model with an explained devi-
ance of 3.8% (Table 8).

HERV-Ks
Flanking sequences of fixed HERV-Ks were characterized by lower recombination rates and
later replication timing than controls (Table B in S1 Text and Fig 2C). Based on the ITP (Fig
6A), microsatellites (of all four types), LINEs, recombination hotspots, L1 target sites, AT
count, and H3K9me3 marks were overrepresented, while G-quadruplex repeats, SINEs, repli-
cation origins, cytosine methylation level features (i.e. CpG, CHG, and CHH), and four histone
marks (H3K36me3, H3K4me1, H3K27ac, and H3K9ac) were underrepresented, throughout
these flanking sequences. Exons, introns, and most conserved elements were underrepresented
as well, especially near the IntS. Single FLR fits revealed that all four microsatellites types (sca-
lar predictors), introns, and H1-hESC transcript expression, considered as functional predic-
tors, each individually explained 26–76% of the deviance. These features were excluded from
the final multiple FLR model (Fig 7C and Table C in S1 Text), which explained 79% of the devi-
ance (Table 9). The model included LINEs and recombination hotspots as positive scalar pre-
dictors (RCDE of 13% and 9.7%, respectively). In terms of functional predictors, L1 target sites
was the strongest predictor with a positive effect in the whole region from -30 to 30 kb, and
stronger away from the IntS (RCDE 27.1%). In addition, AT count had a negative effect stron-
ger away from the IntS (RCDE 12.6%), hypomethylation in testis and CpG islands had positive
and negative effects, respectively, for the whole integration region (both RCDE of ~5%), and
G-quadruplex repeats had a negative effect near and upstream of the IntS (RCDE 1.9%).

To highlight HERV-Ks’ integration preferences, we contrasted flanking sequences of in
vitroHERV-Ks vs. control regions. The former replicated later and were more distant from the
centromere than the latter (Table B in S1 Text and Fig 2C). The ITP indicated (Fig 6B) that G-
quadruplex repeats, L1 target sites, recombination hotspots, replication origins, CHHmethyla-
tion, and four histone marks associated with active transcription or promoters (H3K36me3,
H3K4me1, H3K27ac, and H3K9ac) were underrepresented, while LINEs, AT count, and the
H3K9me3 mark were overrepresented, throughout the flanking sequences compared to control
regions. Additionally, the ITP indicated that there were fewer CHGmethylated sites near the
IntS of in vitroHERV-Ks than in control regions. Other genomic features had significant dif-
ferences further away from the IntS (e.g., SINEs, TSS ENCODE, H1-hESC transcript
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expression, and H3K27me3), or showed more complex localized behaviors (Fig 6B and Fig M
in S1 Text). The multiple FLR model for in vitro HERV-Ks vs controls explained 24.4% of the
deviance (Table 10).

To focus on HERV-K fixation preferences, we contrasted flanking sequences of fixed vs. in
vitroHERV-Ks. Recombination rates, replication timing, and distance to centromere were sig-
nificantly different, with lower means for fixed compared to in vitroHERV-Ks (Table B in S1
Text and Fig 2C). The ITP (Fig 6C and Fig N in S1 Text) indicated that microsatellites, L1 tar-
get sites, and recombination hotspots were overrepresented throughout the flanking sequences
of fixed vs. in vitroHERV-Ks. Introns and most conserved elements were underrepresented
throughout the whole region too, but the difference was stronger near the IntS. Exons were
underrepresented ±2 kb next to the IntS. Moreover, three histone marks (H3K4me3, H3K27ac,
and H3K9ac) were underrepresented upstream of the IntS, while the H3K9me3 mark was over-
represented downstream of the IntS. CpG and CHGmethylated sites, as well as H3K36me3,
were generally underrepresented but had more complex localization patterns. Single FLRs
identified six positive scalar predictors–all four microsatellites types, recombination hotspots,
and L1 target sites–each of which, individually, explained as much as 85% of the deviance (Fig
7C and Table C in S1 Text).

Discussion
Here, to investigate patterns in the distributions of ERV elements, we studied a number of
genomic features in the flanking sequences of human and mouse ERVs with FDA, a class of
statistical techniques still relatively underused in the field of genomics. In particular, we con-
trasted features between the flanking regions of fixed ERVs vs. controls, polymorphic (or in
vitro) ERVs vs. controls, and fixed vs. polymorphic ERVs. The first type of contrast reflects
both fixation and integration preferences with the latter somewhat eroded by selection, the sec-
ond type highlights integration preferences with minimal influence of selection–particularly in
the case of in vitro ERVs, while the third type captures fixation preferences. We observed that
various genomic features are overrepresented or underrepresented in some but not other con-
trasts (Fig 7). Moreover, while some features present significant differences over the whole
flanking regions considered, others present localized differences–especially close to the IntS.
Below we discuss our findings, relating them to biological processes proxied by the various
genomic features under analysis (Table 2).

DNA conformation
We explored the associations between ERVs and a diverse set of non-B DNA conformation
predictors inferred from the primary DNA sequence of the human and mouse genomes. In
vivo, such conformations are formed transiently during recombination, repair, transcription,
and replication, frequently causing genomic instability [79] and were found to be associated
with the presence of DNA transposons [44,46]. We observed that mirror repeats and A-phased
repeats are overrepresented in the flanking regions of fixed ETns, as well as of fixed and poly-
morphic IAPs, as compared with control regions (A-phased repeats are also overrepresented in
the vicinity of fixed HERV-Ks). The overrepresentation of these repeats in the flanking regions
of both fixed and polymorphic IAPs suggests their role in ERV integration–the lack of signifi-
cant overrepresentation for polymorphic ETns perhaps being due to a more limited statistical
power, given the smaller sample size (Table 1). A subset of mirror repeats–triplex repeats–are
thought to bind mismatch and nucleotide excision repair proteins [79], therefore we propose
that these protein complexes might be recognized by the integrase machinery and trigger ERV
integration. This hypothesis needs to be evaluated experimentally. Mirror repeats have also
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been associated with low gene expression levels [79]. In agreement with this we found ERVs
enriched in regions with low levels of transcription (see below). A-phased repeats cause double
helix bends that have been implicated in nucleosome assembly and expansion of trinucleotide
microsatellites [65,80] and might be important for the recognition of IntSs by the ERV inte-
grase, as suggested by retroviral studies [81–84]. Moreover, unlike mirror repeats that do not
have base composition bias, A-phased repeats are adenine-rich [65], resonating with the effect
of A/T nucleotides (see below).

G-quadruplex and Z-DNA repeats displayed negative associations with the ERVs. G-quad-
ruplex repeats are underrepresented in fixed vs. control and in vitro (or polymorphic) vs. con-
trol contrasts for both HERV-Ks and IAPs and thus likely inhibit ERV integration. Z-DNA
repeats might inhibit ERV integration as well, because they are underrepresented in the flank-
ing regions of both fixed and polymorphic IAPs. Importantly, these two types of repeats appear
to be inhibitive of ERV integration beyond their GC-rich composition [65] because in several
of our models they appear as significant predictors of ERV distributions together with AT-con-
tent (Tables 3 and 9). Both G-quadruplex and Z-DNA repeats are enriched in promoters and
in the 5’ and 3’ gene termini [79], and therefore we cannot exclude the possibility that purifying
selection removes ERVs from such regions.

We observed a strong overrepresentation of all four types of microsatellites in the fixed and
polymorphic mouse ERVs compared to controls, suggesting the importance of microsatellites
for ERV integration. Many microsatellites form non-canonical DNA structures–e.g., (AG)n
repeats form triplexes, (AT)n form four-stranded cruciforms, while (CA)n and (GC)n form
Z-DNA [85,86]–which lead to genome instability [87] and may be used by the integrases to
recognize potential IntSs. In the human genome, we found an enrichment of microsatellites of
all four types for fixed HERV-Ks compared with controls, and for fixed vs. in vitroHERV-Ks.
Therefore, microsatellites might not be directly relevant to HERV-K integration, and instead
be more relevant for their fixation (caution should be exercised though when comparing the
results from in vitro vs. control and polymorphic vs. control contrasts, as the latter are more
influenced by selection). The flanking regions of in vitro HERV-Ks actually had an underrepre-
sentation of mononucleotide microsatellites, potentially because such microsatellites are fre-
quently present as (A/T)n repeats located at the 3’ ends of retrotransposed genes–where
HERV-K integrations might be selected against. Additionally, (A/T)n repeats are found in Alus
that are also underrepresented in the in vitroHERV-K flanking regions (see below).

Nucleotide composition and the presence of other TEs
Corroborating previous studies [24,32], we observed that both mouse and human ERVs inte-
grate and become fixed in AT-rich genomic regions. Indeed, AT-content was a significant pre-
dictor in eight out of nine ITP contrasts (except for in vitroHERV-K). Moreover, L1 target
sites [88] are overrepresented in the flanking regions of polymorphic and fixed mouse ERVs as
compared to controls, suggesting that these sequences correlate with mouse ERV integration.
L1 target sites are also overrepresented in the flanking regions of fixed HERV-Ks vs. controls,
and of fixed vs. in vitroHERV-Ks, but are underrepresented in the flanking sequences of in
vitroHERV-Ks vs. controls, thus suggesting that these sequences correlate with HERV-K fixa-
tion. The enrichment of L1 target sites in the vicinity of ERVs can be explained by the high
AT-content of these sequences, and thus it might simply reflect the AT-richness of the genomic
regions in which ERVs integrate or are fixed, or perhaps it also indicates the enrichment of
LINEs in these flanking regions (see below). Both AT nucleotides and L1 target sites have posi-
tive effects as single predictors, however, in the context of multiple FLR, when the two predic-
tors are considered jointly, we observed a negative effect of AT nucleotides. Indeed, given the
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high correlation of the two predictors (Figs B and C in S1 Text), the positive effect shown by
AT nucleotides when considered on their own is covered by a statistically dominant effect of
L1 target sites in the joint analysis.

Mouse and human ERVs tend to be present in genomic regions rich in LINEs, but depleted
of SINEs. This trend is significant for the fixed vs. control and polymorphic (or in vitro) vs.
control contrasts, but not for the fixed vs. polymorphic (or in vitro) contrasts, arguing for a
link with ERV integration. An association of ERVs with LINEs might reflect a preference
towards integration in AT-rich sequences for both types of TEs. SINEs, in contrast, accumulate
in GC-rich regions of the genome [12,89]. Additionally, a strong positive relationship between
LINEs and ERVs, as evidenced by ITP and FLR, could also be explained by H3K9me3 histone
marks known to be located in regions rich in these TEs [90] (see below). An important consid-
eration in our analysis is that control regions are almost completely depleted of ERVs (see
Methods), as we excluded even older ERVs than the ones we studied here from our control
regions; this might underestimate the influence of such ERVs in integration preferences of the
studied ERVs.

Replication and recombination
In our study, ERV flanking regions had a late replicating profile. More specifically, the flanking
regions of fixed ERVs replicated later than those of polymorphic ERVs, and the flanking
regions of polymorphic ERVs replicated later than control regions. This was true for all three
types of ERVs studied. Moreover, the flanking regions of both fixed and in vitroHERV-Ks pre-
sented a low content of replication origins–also a signature of late replication [91]. We hypoth-
esize that the ERV integrase machinery targets late replicating regions because they are AT-
rich [92] or that ERV integration might be coordinated with DNA replication, similar to Tf1
retrotransposon integration at stalled replication forks [93] and as proposed for DNA transpo-
sons [46].

Recombination appears to be important for both integration and fixation of ERVs. The
flanking sequences of fixed ERVs have lower recombination rates than those of polymorphic
(or in vitro) ERVs and of controls (Fig 2), suggesting a signature of fixation preference. This
observation is in concordance with the hypothesis that ERVs are removed from highly recom-
bining regions via ectopic recombination [6,31,94]. Alternatively, drift might fix ERVs in low
recombining regions of the genome where selection is weaker. Katzourakis and colleagues [31]
did not find a correlation between HERV fixation and recombination rates, but the discrepancy
between our results and theirs might be due to the different HERV families investigated in the
two studies.

We also observed that polymorphic and fixed mouse ERVs are located in genomic neigh-
borhoods with higher content of recombination hotspots than controls, suggesting a role of
recombination hotspots in mouse ERV integration. The overrepresentation of hotspots right
next to the IntS for polymorphic ETns further supports this observation. In human, Myers and
colleagues [68] detected overrepresentation of two retrovirus-like elements (THE1A and
THE1B) in regions enriched with recombination hotspots. Moreover, for DNA transposons, it
has been proposed that recombination hotspots are required by the transposition mechanism
[46], and perhaps a similar interaction is essential for ERVs. In contrast, the comparison of
fixed vs. polymorphic mouse ERVs indicated an underrepresentation of recombination hot-
spots suggesting that their high concentration prevents fixation. HERV-Ks presented an almost
opposite pattern: recombination hotspots were overrepresented when contrasting fixed
HERV-Ks vs. controls and fixed vs. in vitro HERV-Ks, and were underrepresented when con-
trasting in vitro HERV-Ks vs. controls, arguing for an association between recombination
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hotspots and HERV-K fixation but not integration. Note that we found experimentally vali-
dated recombination hotspots [67] to be significant in mouse, and predicted ones [66] to be
significant in human, potentially explaining some differences in the results (experimentally val-
idated recombination hotspots in human [68,69]) were not significant in our models).

Location on the chromosome
We found that fixed mouse ERVs are located closer to centromeres than polymorphic mouse
ERVs, and that the latter are located closer to centromeres than control regions. The preferen-
tial location of ERVs next to centromeres might be explained by their integration in AT-rich
regions and by their fixation in regions with low recombination rates (see above). Indeed,
recombination rates and GC-content, which are highly correlated with each other, are
markedly decreased near centromeres [95]. In contrast, only small differences in the distance
to centromere were observed among fixed HERV-Ks, in vitro HERV-Ks, and control regions.

Epigenomic influences
Both methylated and unmethylated CpG sites were underrepresented in the flanking regions of
fixed and polymorphic mouse ERVs compared to controls, reflecting integration of these ele-
ments in AT-rich areas of the genome. Interestingly, hypomethylated CpGs representing con-
tiguous domains of low methylation measured in sperm (mean size of 1.8 kb) [75], are
overrepresented in the flanking regions of fixed HERV-Ks compared to controls and to the
flanking regions of in vitroHERV-Ks, suggesting a link with HERV-K fixation. Hypomethy-
lated CpGs overlap with promoters and other regulatory regions [75] and thus selection might
not tolerate ERVs in such areas of the genome.

All three ERV families studied tend to occur in regions with low DNase I hypersensitive
sites content, i.e. in areas with closed chromatin. However, our results are conflicting as to
whether this is an integration or fixation preference. Indeed, the signal for HERV-Ks is gener-
ally weak, in contrast to Brady and colleagues [34] who reported integration close to DNase I
cleavage sites for in vitroHERV-K (i.e. HERV-Kcon). There is no significant signal near the
IntS in the polymorphic ETns vs. controls contrast, and the signal in the fixed vs. polymorphic
ETns comparison is also weak (Fig 4). For IAPs, the signal is stronger in the fixed and polymor-
phic vs. control contrasts than in the fixed vs. polymorphic contrast, arguing for a link with
integration. Integration in areas with closed chromatin was previously observed for several ret-
roviruses (e.g., MLV and HIV), and it was proposed that the nucleosomal DNA is targeted for
integration by retroviral integrases [81,96].

Histone marks
As reported previously for retroviruses [97], histone marks are important predictors of ERV
distributions. Overall, our results corroborate previous findings (e.g., [98]) suggesting that
ERVs integrate in areas of repressed chromatin. Consistent with previous studies [38,90,99–
101], we observed an underrepresentation of histone marks associated with transcribed chro-
matin (H3K36me3 and H3K9ac), promoters (H3K4me3), and enhancers (H3K4me1 and
H3K27ac; [102]) in the flanking regions of fixed and polymorphic ERVs. In agreement with
this observation, we observed an overrepresentation of the H3K9me3 mark specific to
repressed chromatin [102,103] in the flanking regions of both fixed and polymorphic elements.
Surprisingly, and at odds with other studies (e.g., investigating youngest ETns and IAPs [90],
and ERV-Ls [104]), we observed an underrepresentation of the H3K27me3 mark associated
with repressed chromatin in the flanking regions of ERVs. What can explain the opposite
results we obtained for H3K9me3 and H3K27me3, two marks of repressed chromatin which
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are one enriched and the other one depleted in the flanking regions of ERVs? While both
marks signal repressed chromatin in early embryonic development, they are found in different
regions of the genome [105]. On the one hand, the H3K9me3 mark is associated with hetero-
chromatin formation due to the presence of tandem repeats [105], and thus its enrichment in
the flanking regions of ERVs supports the strong association we found between ERVs and
microsatellites. On the other hand, the H3K27me3 mark is abundant in gene-rich regions
[105], and thus its depletion in the flanking regions of ERVs might reflect purifying selection
acting against ERV integration in or around genes. Also, our results might be specific to the
ESCs–as they agree with those of Hiratani and colleagues [106] who also studied ESCs. Some
differences between our study and that of Brady and colleagues [34] might be explained by the
use of histone modification data from different cells (Brady and colleagues utilized the data
generated for CD4+ cells [99]). Finally, some of the differences among studies may be due to
differences in the protocols used to construct control data sets.

Our results concerning ERVs fixation preferences (from the fixed vs. polymorphic, or in
vitro, contrasts) with respect to histone marks suggest that ETns are fixed in areas rich in
enhancer marks (H3K4me1 and H3K27ac) and this signal is localized at the IntS, while IAPs
show an opposite trend (depletion of these marks) that is less localized. ETns bind transcrip-
tion factors [107] and therefore could act as enhancers attracting H3K27ac, however we would
like to see our observation of an association between ETns and enhancer marks validated in
subsequent studies including histone marks from different ESC.

Selection
In our analysis, exons, introns, and most conserved elements were underrepresented in the
flanking regions of fixed and polymorphic (or in vitro) ERVs vs. controls, as well as in the
flanking regions of fixed vs. polymorphic (or in vitro) ERVs. This may be evidence of purifying
selection acting against integration and fixation of ERVs in areas of the genome rich in genes
and most conserved elements. The signal was frequently weaker in the polymorphic (or in
vitro) vs. control contrast, and localized close to the IntS in the fixed vs. polymorphic contrast.
Our observation that mouse polymorphic ERVs are more prevalent in gene-rich regions than
mouse fixed ERVs corroborated the findings of Zhang and colleagues [25]. Our results for
fixed ERVs are also in agreement with the results of Medstrand and colleagues [32] who
observed that older ERVs are underrepresented within 5 kb from genes. A selective purge from
areas of the genome that are rich in genes and most conserved elements appears to be a charac-
teristic of most TEs [24,32,36,45,46]. Alus, preferentially integrating within genes [42,45],
appear to be an exception. We also observed that ERVs are more prevalent in areas with low
levels of transcription–likely reflecting both an integration preference for repressed chromatin
and a fixation preference for gene-poor neighborhoods. This result contrasts observations
made by Brady and colleagues [34]. These differences are probably due to the strict selection of
control regions in our analyses and the different methods of analysis.

The model for integration and fixation of ERVs
Some of the genomic features analyzed here were included in previous studies of ERV distribu-
tions, and our results are largely consistent with such studies [97,108–110]. However, our anal-
ysis included the most comprehensive list of genomic features to date, with many features not
considered in previous studies (e.g., replication, most conserved elements, diverse DNA con-
formation features, L1 target sites, and recombination hotspots for human and mouse). More-
over, our use of FDA techniques allowed us to effectively investigate localization and scale at
which the effects of these features unfold.
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As a result, we are in a position to propose a comprehensive model for the integration and
fixation preferences of the mouse and human ERVs considered in our study (Fig 8). ERVs inte-
grate in regions of the genome with high AT-content, enriched in A-phased repeats (as well as
mirror repeats for mouse ERVs) and microsatellites–the former possessing and the latter fre-
quently presenting non-canonical DNA structure. This highlights the potential importance of
unusual DNA bendability in ERV integration, in agreement with previous studies [96,111].
Interestingly, some non-canonical DNA structures–e.g., G-quadruplexes and Z-DNA–appear
to inhibit ERV integration (with Z-DNA avoidance strictly localized at the IntS site for poly-
morphic IAPs). ERV integration regions are rich in LINEs, replicate late, and have low density
of replication origins. Replication hotspots might assist integration of mouse ERVs (with the
signal localized close to the IntS for ETns). Our results on histone marks and DNase I hyper-
sensitive sites suggest that integration occurs in gene-poor regions with closed chromatin–
mimicking the behavior of retroviruses, whose integrases were proposed to target nucleosomal
DNA [81,96]. Our observations also indicate that ETns and IAPs differ locally in their sensitiv-
ity to certain histone marks associated with promoters or expression and open chromatin, with
the flanking regions of IAPs completely depleted of these features. However, for ETns these fea-
tures are not significant next to the IntS.

The ERVs in our study are preferentially fixed in areas of the genome where both genes and
most conserved elements are scarce (the signal is frequently stronger next to the IntS). There is
also a strong preference of ERVs to be fixed in areas with low recombination rates, likely
because in such areas they have a lower probability of being removed via ectopic recombina-
tion. The initial integration occurs preferentially relatively close to the centromere, likely
because of increased AT-richness, and fixed ERVs are located even closer to the centromere,
likely because of reduced recombination rates. ETns also show a fixation preference for areas
rich in enhancer histone marks (alternatively they might induce the formation of these marks),
and this signal is localized at the IntS.

The importance of contrasts
Utilizing data on the distributions of fixed, polymorphic, and in vitro ERVs, and comparing
their flanking regions with parts of the genome devoid of ERVs (controls) and with each other,

Fig 8. Models of ERV (A) integration, and (B) fixation preferences based on our analysis of genomic
features in the regions flanking the integration sites of mouse and human elements.Word size is
proportional to average deviance explained across various single FLRmodels. As indicated by the arrows,
red and blue represent positive and negative effects, respectively.

doi:10.1371/journal.pcbi.1004956.g008
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we were able to separate, at least partially, the integration and fixation preferences of these ele-
ments. Ideally, one would like to utilize all three groups of flanking regions plus controls to
study each element family. However, we were only in possession of data on polymorphic ele-
ments in the mouse genome, and of data on in vitro elements in the human genome. Because
of this, observed patterns may not be entirely comparable; in particular, polymorphic mouse
ERVs may experience more purifying selection than in vitro human ERVs. Moreover, one
drawback of using in vitro integrations is that these are produced in cell lines using ERV
constructs.

Conclusions
The complexity of our study of ERV biology reflects the intricacy of the genome and of the
mechanisms affecting the integration and fixation of these elements. We found evidence of
the existence of genomic features associated with both insertion sites and the ability of ele-
ments to be fixed in the genome. Our analysis leveraged the availability of data on polymor-
phic ERVs and in vitro integrations, which we could contrast with fixed elements; we suggest
applying a similar strategy to future studies of TE distribution. We expect further refine-
ments of our model as more genomic data become available, e.g., nuclear lamina interactions
and Hi-C profiles data [112] providing additional information on chromatin conformations
that may influence DNA accessibility for new integrations. Finally, the FDA statistical meth-
odology we utilized, in particular the ITP and FLR techniques, can be employed to analyze
a variety of genomic data. These techniques are very versatile; the ITP does not require
assumptions on the distributions underlying the data, and both the ITP and the FLR allow
one to effectively characterize location and scale of a phenomenon, linking detected effects to
specific intervals. We thus expect them to substantially contribute to numerous applications
in genomics research.

Materials and Methods

Selection of ERVs and data manipulation
We retrieved ETn and IAP elements fixed (1,868 and 5,064, respectively) in mouse strain
C57BL/6J, and those polymorphic (248 and 2,224, respectively) for C57BL/6J with respect to
strains A/J, DBA/2J and 129X1/SvJ (reference genome mm9) [25] (Table 1). We assume ERVs
shared among four mice strains to be fixed, even though these elements are transpositionally
active and some of them might be absent in mouse strains not analyzed here. In addition, we
chose 1,036 full-length and solo-LTR HERV-K elements from the human genome (hg19) [63]
(Table 1). This data set includes all known polymorphic elements (a total of five at the time of
writing this manuscript) [14] but, because they are also expected to be at least a few hundred
years old [113], we analyzed them together and refer to them all as fixed HERV-Ks. All ele-
ments were manually re-annotated, to avoid errors from automatic annotations in the
genomes. The data sets were filtered to include only the elements in the 60 bp to 11 kb length
range (Table A in S1 Text). We also obtained the IntS of in vitroHERV-K integrations in
human embryonic kidney (293T, female) and fibrosarcoma (HT1080, male) cell lines from
[34] (Table 1). Out of the 1,565 integrations reported in this study, we located 1,208 by align-
ment of the IntS sequence to hg19 using BLAT [114]. Only matches with 100% identity over
the total length of the IntS sequence were considered. In addition, IntS sequences that matched
multiple locations (a total of 31 cases with integration site sequences<100 bp) were discarded
because we could not identify their integration sites definitively.

For each element, we considered flanking sequences spanning 32-kb upstream and 32-kb
downstream of the element, so that we could maximize the number of ERVs analyzed
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without overlapping of the flanking regions. This 64-kb region was then divided into 64 1-kb
windows on which to quantify genomic features (Fig 1A). We eliminated elements for which
the 32-kb flanking sequences overlapped by over 320-bp (1%) with genome gaps (i.e.
sequences with Ns) or by over 1-bp with other elements’ flanking regions. Similarly, we gen-
erated 64-kb control regions, selecting areas that overlapped by at most 2% (1%) with mouse
(human) LTR elements (as annotated in the corresponding genome at the UCSC
Table browser [115]), or with the 32-kb flanking sequences of our ERVs (Table 1). After this
filtering, we were left with 1,866 ETns (242 polymorphic and 1,624 fixed), 5,950 IAPs (1,986
polymorphic and 3,964 fixed), 826 fixed HERV-Ks and 1,065 in vitroHERV-Ks, which repre-
sent approximately four fifths of the elements analyzed in the original publications, respec-
tively (Table 1). For ERVs that were annotated in the reverse strand (i.e. negative orientation
with respect to the chromosome orientation), we inverted the 64-kb regions to consistently
evaluate the effects of the genomic features with respect to the ERVs. Most of the functional
datasets used in this study lack data for the Y chromosome, therefore we excluded the ERVs
on this chromosome from our analyses.

Selection of genomic features
We selected a set of genomic features associated with ERVs by prior studies, or found to be sig-
nificant in other TE experiments. The data were obtained from the UCSC Table Browser [115],
ENCODE [116], and previous publications (Table 2); when necessary the lift-over tool [117]
was used to convert genome locations to mm9 and hg19. In total, we quantified 38 mouse and
39 human high-resolution genomic features, derived from to 39 mouse and 40 human datasets
(Table 2) in 1-kb windows along the flanking sequences of our elements and our control
regions (Fig 1A). Genome-wide microsatellite features were extracted from mouse and human
genomes requiring a minimum of 9, 5, 4 and 4 motif repeats to define mono-, di-, tri-, and
tetra-nucleotide microsatellites, respectively [118]. Mono-, di-, tri-, and tetranucleotide micro-
satellites were analyzed separately due to their unique genome distribution and mutation rates
[118,119]. High-resolution recombination rates (in mouse), as well as methylation levels and
expression levels, were quantified as weighted averages (average of rates or levels weighted by
the total number of base pairs in a window) in each 1-kb window. All other features were quan-
tified as coverages (fraction of the genomic window covered by the feature) in each 1-kb win-
dow, except L1 target sites, AT and CG nucleotides for which we used counts.

In order to reduce multicollinearity in downstream analyses, we applied a hierarchical clus-
tering with Spearman’s rank correlation (distance = 1-|correlation|) and complete linkage [87],
and selected one feature from each cluster above a 80% threshold in mouse and in human (Figs
B and C in S1 Text). This reduced the set of features under investigation to 35 and 36 (35 and
37 datasets) in mouse and human, respectively (Figs D and E in S1 Text).

In addition to these high-resolution features, we selected two features that were available at
low resolution in human and mouse (recombination rates and replication timing) and we con-
sidered their average value as a single value for each 64-kb region. Replication timing was mea-
sured as the log2 of early/late S-phase populations of cells in culture [120]; therefore regions
that replicate earlier present high replication timing “values”. Moreover, distances to telomere
and centromere (measured considering the element or the center of the control region) were
included in the study.

Statistical methodology overview
For each high-resolution genomic feature, we considered curves described by the whole 64-kb
signal as the object of our study, embedding the problem in the framework of Functional Data
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Analysis (FDA) [48,49]. Importantly, FDA allowed us to naturally incorporate in the analysis
the consecutive ordering of the measurements of each feature along the genome. The analysis
was divided in two main phases (see Fig 1A). First, we considered each individual genomic fea-
ture separately, in order to assess whether it had significant discriminatory power in a given
comparison (e.g. when contrasting ERV flanking sequences vs. controls; Fig 1B). We per-
formed this phase using an extended version of the Interval Testing Procedure for functional
data (ITP) recently introduced by [62]. ITP is able not only to assess whether differences exist
between the distributions of the curves in, e.g., ERV flanking sequences vs. control regions, but
also to anchor statistically significant differences to specific locations (1-kb windows) or sub-
intervals in the regions, and to specific scales (e.g., a specific 5-kb sub-interval near the integra-
tion site, comprising a difference that is registered as significant up to a scale of 30-kb). Also, in
any given comparison (Fig 1B), low-resolution features (recombination rates, replication tim-
ing, distance to telomere and distance to centromere) were tested using the simple univariate
non parametric test employed by the first step of the ITP on each basis component (see below
for more on the ITP). In the second phase we evaluated individual features fitting single Func-
tional Logistic Regressions (FLR), and dealt with multiple predictors simultaneously by means
of multiple FLR models (see Fig 1C) [48,49]. Combining the results obtained with these FDA
methods we were able to perform an extensive, genome-wide evaluation of the effects of geno-
mic landscape on integration and fixation of the various ERV families considered in this study
(Fig 1C).

Comparisons among data sets
In order to capture the influence of different genomic features on integration and/or fixation of
ERVs, we applied the ITP and FLR to nine pair-wise comparisons (Fig 1B): (1) ETn polymor-
phic vs. control, (2) ETn fixed vs. controls, (3) ETn fixed vs. polymorphic, (4) IAP polymorphic
vs. controls, (5) IAP fixed vs. controls, (6) IAP fixed vs. polymorphic, (7) in vitro HERV-Ks vs.
controls, (8) fixed HERV-Ks vs. controls and (9) fixed vs. in vitroHERV-Ks. Only non-over-
lapping regions were employed in these comparisons, leading to the sample sizes indicated in
Table 1.

Interval Testing Procedure for functional data (ITP)
Let XF,R(w) w = 1,. . .,64 be the signal (measured as count, coverage or weighted average)
related to the genomic feature F in the 64-kb region R–this will be one of two types of regions;
e.g., the flanking sequences of an ERV element or a control region. We considered this signal as
64 equidistant pointwise measurements of the curve xF,R(t) within the interval [-31.5; 31.5] sur-
rounding the IntS of an ERV, or the center of a control region (see Figs D and E in S1 Text). In
order to determine which are the features that best distinguish between the two types of
regions, we employed a functional hypothesis test on the differences between the curves distri-
butions in the two groups. Many FDAmethods exist to deal with this inferential problem glob-
ally, considering the distribution of the whole curve at the same time [121], or locally,
considering each component of the curve separately. Since we were interested both in global
and local significance, we used the ITP [62], which allowed us to simultaneously test for global
differences between the two distributions and to impute observed differences to specific subre-
gions. Because of its non-parametric (permutational) nature, this test does not require assump-
tions on the distributions underlying the data; this too made it highly attractive for our
application, since many of the genomic features under consideration have signals that appear
to follow complex, non-regular distributions. Importantly, we also introduced some extensions
to the original ITP of [62]. In its extended version, the procedure allows us to (i) use multiple
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test statistics–capturing distinct aspects of the curves distributions–in assessing differences,
and (ii) evaluate multiple scales by changing the maximum length of the intervals on which the
global test is performed. Below we give a brief description of the ITP approach (full detail can
be found in [62]).

Let x1,i(t) i = 1,. . .,n1 and x2,i(t) i = 1,. . .,n2 be two random samples from two independent
stochastic curves. In our application, these are the curves xF,R(t) related to a feature F, in the
two groups that we want to compare (e.g., flanking sequences of ERV vs. control regions). We
consider the problem of testing the null hypothesis that the distributions of the two stochastic
curves are equal, versus the alternative hypothesis that the two distributions differ. The first
step of the ITP consists in decomposing the observed curves on a suitable reduced basis

f�kgK
k¼1 [48,49], i.e. represent each curve xg,i(t) as the set

n
cðkÞg;i

oK

k¼1
of coefficients obtained in

the expansion

xg;iðtÞ ¼
XK

k¼1
cðkÞg;i �kðtÞ:

Then, in the second step, a univariate permutation test [122] on each basis component c(k) is
performed to assess whether its distribution is significantly different for the two stochastic curves
(or underlying “population” of curves). Under the null hypothesis that the distributions are the

same, all permutations of the n1+n2 “observed” coefficient values c
ðkÞ
1;1; � � � ; cðkÞ1;n1

; cðkÞ2;1; � � � ; cðkÞ2;n2
have

the same chance to occur. Hence, we can compute the empirical null distribution of a test statis-
tics considering the values it assumes on all the different permutations; the p-value is generated
dividing the number of permutations with a test statistics more extreme than the one observed
on the data by the total number of permutations. The third step is to perform analogous multi-
variate permutation tests on each possible set of contiguous components (i.e. on the interval
components c(1)-c(2), c(2)-c(3), . . ., c(1)-c(2)-c(3),. . .). Here we employ the Nonparametric Combina-
tion Procedure developed by Pesarin and Salmaso [121], that allow us to implement a multivari-
ate test by combining univariate test statistics obtained with synchronized permutations. In

detail, the same permutations of the n1+n2 values c
ðkÞ
1;1; � � � ; cðkÞ1;n1

; cðkÞ2;1; � � � ; cðkÞ2;n2
are applied to all

components k = 1,. . ., K. Finally, in order to control the familywise error rate over sets of contig-
uous components, the fourth step computes an adjusted p-value for each component as the max-
imum among the p-values of all tests whose null hypothesis includes the component under
consideration. Such a strategy exploits the ordered nature of the basis components creating a
multiple testing correction that is coherent with the structure of data, and allows us to impute
observed differences to specific subregions.

We chose to represent the curves using B-splines of order 1 (piecewise constant basis) with
65 or 33 nodes in the interval [-31.5; 31.5] and thus retain all the variability of the genomic fea-
tures observed at 1-kb resolution (Figs D and E in S1 Text). In this way, we were able to test
directly the raw data (65 nodes choice, one value every 1-kb) as well as a piecewise constant
smoothed version of the raw data (33 nodes, one value every two 1-kb windows) without intro-
ducing substantial biases in the ITP. Notably, even if we are considering order 1 B-splines to
represent the curves, the functional test statistics of the ITP (e.g. the mean curves) as computed
on the data are rather smooth and their distributions do not show marked discontinuities (Figs
F-N in S1 Text). The test p-values were computed considering 10,000 random permutations.

In its extended implementation, the ITP can be performed using different test statistics,
each highlighting a particular aspect of the curves distributions. In particular, we considered
three test statistics: 1) the sample mean difference, 2) the sample median difference, and 3) the
sample variance ratio. In addition to introducing different test statistics, we modified the ITP
so that differences between the distributions of the two stochastic curves are evaluated at all
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possible resolutions; that is, we corrected the p-values controlling the familywise error rate on
intervals of all possible maximum length. In this way, we were able not only to evaluate the
importance of a genomic feature in characterizing ERVs (globally or at specific locations)
when considering the whole 64-kb flanking region, but also to establish if the feature of interest
is able to differentiate between events and controls only at a smaller scale.

All genomic features found significant (p-value<0.05), considering at least one test statistics
in the ITP, were included in the Functional Logistic Regression (FLR) analysis phase (see Fig
1C and below). In particular, features that showed significant differences between the two
groups independently of scales and locations (invariant differential landscape features–IDL)
were represented through their mean values across the 64 1-kb windows and treated as scalar
predictors in the FLR. On the other hand, features that were significant only at a particular
scale and/or for specific locations, considering at least one test statistics (localized differential
landscape features–LDL) were treated as functional predictors. Genomic features that were sig-
nificant on the whole 64-kb region but showed stronger differences (e.g., in means) in a partic-
ular location were also treated as functional predictors.

To test for significant differences (e.g., between ERVs flanking sequences and controls, or
other comparisons) in recombination rate, replication timing, distance from telomere and dis-
tance from centromere (low-resolution features), we employed an univariate version of the ITP
described above, where a single value is considered for each region. Similarly to the ITP, we
tested the null hypothesis that the feature under study has the same distribution in elements
and controls (or other comparisons), versus the alternative hypothesis that the two distribu-
tions differ, by means of a univariate permutation test. We considered again three test statistics:
1) the sample mean difference, 2) the sample median difference, and 3) the sample variance
ratio. For each, we computed the test p-value estimating the distribution of the test statistics
under the null hypothesis with 10,000 random permutations. The features that resulted signifi-
cant (p-value<0.05) with respect to at least one test statistics were included in the FLR as scalar
predictors (see Fig 1C and below).

Functional Logistic Regression (FLR)
The second phase of our analysis consisted in fitting single and multiple FLR models [48,49]
using as potential predictors the genomic features selected with the ITP (Fig 1C). The goal of
single FLR fits was to identify predictors with very strong predictive power in each comparison.
After setting aside these major predictors, whose strength may obscure the role of other fea-
tures, the goal of multiple FLR was to relate the discrimination (e.g., between the flanking
sequences of ERVs and control regions) with all remaining features simultaneously.

The details are as follows. For each comparison, we generated a binary response Y encoding
events and controls as “1” and “0”, respectively, and considered the functional model

logitðE½Y jZF1
; � � � ;ZFr

; xFrþ1
ðtÞ; � � � ; xFrþs

ðtÞ�Þ ¼ ln
p

1� p

� �

¼ b0 þ
Xr

i¼1

bFi
ZFi

þ
Xrþs

i¼rþ1

1ffiffiffiffiffiffiffi
jIFi j

q
Z
IFi

bFi
ðtÞxFiðtÞdt

where p represents the probability of an event conditionally to the observed features. Here ZFi

represent the scalar predictors, i.e. the features that emerged as important for all scales and
locations (IDL features) and the low-resolution features selected through the univariate test,
while xFiðtÞ represent the functional predictors (LDL features) with support intervals IFi ,

respectively. In detail, the signal XF,R(w) w = 1,. . .,64 in region R for a genomic feature F that
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was significant independently of scales and locations in the ITP, was summarized by its sample
mean over the 64 windows

ZF;R ¼ 1

64

X64
w¼1

XF;RðwÞ

and then included in the FLR model as scalar predictor. Conversely, the curve xF,R(t) with
pointwise evaluations XF,R(w) w = 1,. . .,64 corresponding to a genomic feature F that was sig-
nificant exclusively in the interval IF was included in the model as functional predictor in the
selected interval. For each functional predictor, we expanded predictor curve and related coeffi-

cient function on the same reduced basis f�F;kgKFk¼1
, i.e.

xF;RðtÞ ¼
XKF
k¼1

cðkÞF;R �F;kðtÞ

bFðtÞ ¼
XKF
k¼1

bðkÞF �F;kðtÞ:

This basis (with its specific support) was chosen separately for each functional predictor, in order
to minimize the dimension KFwhile capturing the scale that emerged as significant in the ITP.

To arrive to a meaningful FLR model (Fig 1C) we first considered each scalar predictor ZF

alone and fitted the single logistic regression model:

logitðE½Y jZF�Þ ¼ ln
pF

1� pF

� �
¼ b0 þ bFZF

where pF represents the probability of an event conditionally to the observed feature F. When-
ever the distribution of the scalar predictor was skewed, we regularized it with a shifted loga-
rithmic transformation and fit the model with the transformed data. More specifically, we took
logs after adding a positive shift parameter s chosen to simultaneously maximize the p-values
of the Shapiro-Wilk normality test on the transformed scalar signal in both events and con-
trols. We computed the proportion of deviance explained (DE) by the model, or pseudo R-

squared, as DE ¼ R2
pseudo ¼ Dnull�Dmodel

Dnull
where Dnull is the null deviance and Dmodel the model

residual deviance [123]. This measure revealed the discriminatory strength of each individual
scalar predictor (e.g., to distinguish between flanking sequences of ERVs and control regions).
Similarly, we fitted a single functional logistic regression model for each individual functional
predictor xF(t):

logitðE½Y jxFðtÞ�Þ ¼ ln
pF

1� pF

� �
¼ b0 þ

1ffiffiffiffiffiffijIFj
p

Z
IF

bFðtÞxFðtÞdt

where pF represents again the probability of an event conditionally to the observed feature F.
Similar to scalar predictors, functional predictors were log-transformed as needed, and their
strength was measured by means of the DE. Scalar or functional predictors that were very
strong (DE> 20%) were noted and interpreted (see Results and Discussion), but not included
in the multiple FLR–as their inclusion would obscure subtler contributions and co-significance
of other, weaker predictors.

Next, we chose the best subset among the remaining scalar predictors using a multiple logis-
tic regression model with LASSO regularization after predictors standardization [124]. The
optimal regularization coefficient was chosen as the one maximizing the mean 10-fold cross
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validation misclassification rate. After identifying the best subset of scalar predictors, say
fZFi

gr
i¼1
, we fitted the standard additive multiple logistic model (without LASSO penalization)

logitðE½Y jZF1
; � � � ;ZFr

�Þ ¼ ln
pscalar

1� pscalar

� �
¼ b0 þ

Xr

i¼1

bFi
ZFi

:

We then augmented this scalar model attempting to add the remaining functional predic-
tors one at a time in a stepwise forward fashion (i.e. adding each time the functional predictor
inducing the biggest gain in terms of DE), as long as the DE increased more than 1% and the
AIC decreased. Finally, we excluded scalar predictors that may have been rendered non-signifi-
cant by the introduction of the functional predictors in a stepwise backward fashion–leading to
our final multiple FLR model for the comparison under consideration.

The importance of each predictor (scalar or functional) in the final multiple FLR model was

measured by its relative contribution to the deviance explained (RCDE), defined as RCDE ¼
ðDnull�DmodelÞ�ðDnull�Dred modelÞ

ðDnull�DmodelÞ where Dnull is the null deviance, Dmodel the multiple FLR model residual

deviance, and Dred model the residual deviance of the multiple FLR model obtained by removing
the predictor of interest [87].

Tools and packages
All data manipulations were performed with in-house scripts and Galaxy tools (e.g. lift-over,
make windows, assign weighted-average, and feature coverage). Statistical analyses were per-
formed in the R environment using the packages fda.usc [125], car [126], glmnet [127], pheat-
map [128] and a modified version of the functions in fdatest [129].

Supporting Information
S1 Text. Supplemental tables and plots extending results for ITP and FLR.
(PDF)
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