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Modelling of cell flow for biomedical applications relies in many cases on the correct description of fluid-structure interaction
between the cell membrane and the surrounding fluid. We analyse the coupling of the lattice-Boltzmann method for the fluid and
the spring networkmodel for the cells. We investigate the bare friction parameter of fluid-structure interaction that is mediated via
dissipative coupling. Such coupling mimics the no-slip boundary condition at the interface between the fluid and object. It is an
alternative method to the immersed boundary method. Here, the fluid-structure coupling is provided by forces penalising local
differences between velocities of the object’s boundaries and the surrounding fluid. 0e method includes a phenomenological
friction coefficient that determines the strength of the coupling. 0is work aims at determination of proper values of such friction
coefficient. We derive an explicit formula for computation of this coefficient depending on the mesh density assuming a reference
friction is known.We validate this formula on spherical and ellipsoidal objects. We also provide sensitivity analysis of the formula
on all parameters entering the model. We conclude that such formula may be used also for objects with irregular shapes provided
that the triangular mesh covering the object’s surface is in some sense uniform. Our findings are justified by two computational
experiments where we simulate motion of a red blood cell in a capillary and in a shear flow. Both experiments confirm our results
presented in this work.

1. Introduction

Deformation of elastic membranes due to an external shear
flow or interactions with other such objects is an important
problem in basic research as well as in biomedical applica-
tions. One of the most pronounced examples is the red blood
cell (RBC) with its membrane composed of a lipid bilayer and
a cytoskeleton. 0is membrane behaves as a viscoelastic
material with property of area-conservation as described by
Skalak in [1]. Elastic properties of RBC have significant effect
on the physiological cell functions, and it also influences the
rheology of the whole blood [2]. Moreover, the elasticity plays
crucial role in the flow of RBCs inside microfluidic devices as
demonstrated by Fedosov in [3]. Understanding of the dy-
namics of RBC is thus of great interest. However, experiment-
based studies of RBC mechanics are usually difficult to
perform due to the small RBC dimensions. Here, computa-
tional modelling serves as a good alternative.

Most membrane models are either derived from con-
tinuum laws or based on spring networks. Here, we focus on
the latter due to their simplicity and similarity to the cy-
toskeleton. 0e membrane itself is usually described by
a triangular mesh of interconnected points with elastic forces
between them defining the elasticity [4].

0e flow of the fluid in which the cells are immersed is
usually computed from governing equations for fluid dy-
namics, for example, the Navier–Stokes equations for in-
compressible flow [5]. Recently, a lot of attention got the
lattice-Boltzmann method for its relatively simple imple-
mentation while preserving high accuracy for low and
moderate Reynolds numbers as shown by Chen in [6]. In this
method, the boundaries are often implemented by the
bounce-back rule [7] which can be extended for moving
boundaries of solid objects. For deformable objects, the
combination of mesh-based methods for the object de-
scription and the lattice-Boltzmann method for fluid
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computation has been recently used to model cell flow. Some
examples of such models include work of Kruger, Aidun,
and other authors [8, 9, 10, 11, 12, 13, 14] and references
therein.

0e crucial element in such models of the cell flow is the
coupling of the membrane mesh and the underlying velocity
field of the fluid. An efficient way of imposing these
boundary conditions is via immersed boundary method
(IBM), first introduced by Peskin [15]; for the overview of
different types of IBM, we refer to work of Mittal and
Iaccarino [16]. Here, the no-slip boundary condition is
imposed on the membrane of the cell, and the velocity of the
mesh pointX is set to be the velocity of the surrounding fluid
u. Because of the fixed fluid discretisation, the fluid velocity
at the position X is obtained from convolution with suitably
chosen δ function

zX
zt

(t) � u(X(t)) �  u(x)δ(x −X(t)) dx. (1)

0e concrete form of the delta function influences nu-
merical properties of the method. Yang et al. [17] use
a smoothing technique for discrete delta function to avoid
nonphysical oscillations of the volume force, appearing in
the governing equations. In general, the right choice of the
proper δ function is a challenging task.

0e IBM does not account for the mass of the boundary.
0emesh points are massless and in situations when mass of
the membrane does play a role, the use of the IBM is limited.
A variant of IBM has been introduced by Kim and Peskin
[18], where the authors account for the mass of the mem-
brane by introducing a dual mesh which carries the mass.
0e points of the dual mesh move according to the Newton
equations of motion and are linked to the original mesh by
stiff springs.

1.1. Dissipative Coupling. In this article, we elaborate a dif-
ferent approach of the coupling between the membrane
mesh and the fluid using dissipative force coupling. 0is so-
called force-coupling algorithm was first introduced by
Ahlrichs and Dunwegin [19] and later adapted by Lobaskin
and Dunwegin [20] to model colloidal particles. 0is model
has been named the raspberry model and was recently
improved by de Graaf and co-workers [21, 22]. In these
studies, the hydrodynamic properties of colloidal particles
have been thoroughly studied. Besides spherical objects,
nonspherical objects were also considered in the latter
studies.

Since its inception, the force-coupling algorithm has
seen several improvements in terms of accuracy and flexi-
bility. Ladd et al. [23] have devised a proper discrete in-
tegration scheme for the coupled system. A second-order
accurate discretisation and a unified formalism for fluid-
particle interactions including dissipative coupling, im-
mersed boundary method, and external boundary were
derived by Schiller [24].

0is approach introduces a friction coefficient that needs
to be properly calibrated. In the detailed analysis of force-
coupling algorithm [21, 22], Fisher and coworkers examine

the accuracy with which the raspberry method is able to
reproduce Stokes-level hydrodynamic interactions when
compared with analytic expressions for solid spheres in
simple-cubic crystals. In their work, they focus on de-
termination of the fit parameter, the effective hydrodynamic
radius.

We studied this method in [25]; however, at that time, we
did not properly analyse the emerging friction coefficient.
We developed the complete model for modelling deformable
objects such as capsules and vesicles in [25]. Its software
implementation was described in [26]. 0e model is based
on the lattice-Boltzmannmethod for fluid dynamics coupled
with the immersed boundary method for the membrane
description. 0e fluid-membrane coupling is provided by
the dissipative force-coupling algorithm between the fixed
lattice nodes and nodes of the triangular mesh for the cell
membrane. 0e coupling force is proportional to the dif-
ference between the fluid and object’s velocities. Similar idea
was used by Bigot in case of rigid bodies [27]. 0e force is
added to the governing equations, both for fluid and for the
membrane, in such a way that it penalises velocity difference.
0is approach mimics the no-slip condition.

0e coupling force is scaled by a prefactor called friction
coefficient denoted as ξ.

Similar methods for modelling deformable objects have
been proposed. Reasor et al. [13] introduce a spectrin-link red
blood cell membrane method coupled with a lattice-
Boltzmann fluid solver. 0ey implement different force-
coupling interactions between the fluid and structure. 0ey
interpolate the force due to the bounce-back operation be-
tween the interior and exterior nodes onto the spectrin-link
triangulated surface. 0is operation is performed along the
direction perpendicular to the membrane surface. A different
approach was used by Krueger et al. [10, 11] where finite
element methods give the description of object’s deformation.

In the present work, we focus on proper determination
of the friction coefficient. It is a purely phenomenological
term, and we determine its value in such a way that the
movement of objects corresponds to reality. As a ground
truth, we take a physically relevant experiment, and we
determine the friction coefficient for one specific tri-
angulation of this object. 0is calibrated value will serve as
a reference starting point for any other mesh with different
mesh density or size of the object. We derive the explicit
formula for computation of friction coefficient based on this
reference value.

0e paper is organised as follows. In Section 2, we briefly
describe three main parts of our model: fluid solver based on
the lattice-Boltzmann method, cell membrane model based
on spring networks, and the coupling of both models. Next,
in Section 3, we introduce two scenarios for experiments
which can be simulated with our computational model. 0e
outcomes of these experiments may be predicted by theo-
retical calculations and subsequently compared with sim-
ulation results obtained by our model. Section 4 describes
a series of simulations, the results of which are used to
calibrate the friction coefficient for the reference object. In
Section 5, we propose a hypothesis about the friction co-
efficient recalculation for an object with different shape, size,
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and discretisation. 0e hypothesised expression is verified in
Section 6 for ellipsoidal objects. In Section 7, we address the
effect of fluid viscosity on the value of friction coefficient. To
demonstrate the capability of the model with correct fluid-
structure interaction, in Section 8 we present computational
study of red blood cell flowing in a tube with diameter
comparable with the size of the cell. 0is example shows that
the cell deforms to a parachute-like shape reported in ex-
perimental observations. In Section 9, we provide validation
of the derived expression for the friction coefficient using
real biological experiments of red blood cells immersed in
a shear flow. We consider cell’s rotational frequency and
compare whether simulated frequency corresponds to the
measured one. In concluding Section 10, we discuss the
practical outcomes of acquired results for simulations, es-
pecially simulations of blood flow.

2. Model Description

Our computational model consists of three parts: solver for
the fluid, mechanical model based on spring networks for
the cells, and coupling between the fluid and the cell.

2.1. Fluid Governed by the Lattice-Boltzmann Method.
0is method describes the fluid dynamics and is based on
fictive particles. 0ese particles propagate and collide over
a fixed three-dimensional discrete lattice. 0e unknown vari-
able is the particle density function ni(x, t) defined for each
lattice point x, discrete velocity vector ei, and time t.We use the
D3Q19 version of the lattice-Boltzmann method (three di-
mensions with 19 discrete directions ei along the edges and
diagonals of the lattice). 0e governing LB equations are

ni x + eiδt, t + δt(  � ni(x, t)
√√√√√√√√√√√√√√√√√√√√√√√√

propagation

+Δi(n(x, t))
√√√√√√√√

collision

,
(2)

where δt is the time step and Δi denotes the collision op-
erator that accounts for the difference between pre- and
postcollision states and satisfies the constraints of mass and
momentum conservation. In the lattice-Boltzmann method,
the fluid flow needs to be evaluated with a half-step cor-
rection of the local force in order to be consistent with the
Navier–Stokes equation. 0erefore, the external forces can
be incorporated by half-step Verlet algorithm. We refer to
works of Ahlrichs and Dellar [19, 28] for details on the
lattice-Boltzmann method. For computations, we use
implementation of this method in scientific software
ESPResSo [29]. 0e velocity field u and the density of the
fluid ρ are evaluated from

ρ(x, t) � 
i

ni(x, t),

ρ(x, t)u � 
i

ni(x, t)ei.
(3)

2.2. Triangular Mesh and Newton Equations of Motion.
Cell’s membrane is covered by mesh points, linked together
into a triangular mesh. Elastic properties of the cell

membrane are represented with different types of force-like
bonds between neighbouring mesh points. To take the
mechanoelastic properties of the immersed objects into
account, geometrical entities in this mesh (edges, faces,
angles between two faces, etc.) are used to model stretching,
bending, stiffness, and other properties of the membrane.
One such example is the stretching force between two
neighbouring mesh points defined as

fs � −ksκ
l

l0
  l− l0( , (4)

where ks is the stretching stiffness coefficient, κ is a nonlinear
function mimicking neo-Hookean behaviour of cell’s
membrane, l is the current length of the edge between those
two points, and l0 is the length in a cell’s relaxed state. In the
model we use for computations, there are all together five
elastic coefficients: ks for the shear stretching, kb for the
bending rigidity, kal for local area expansion, kag for pres-
ervation of total surface, and kv for preservation of total
volume of the cells or other objects. Further details on
formulas for each such elastic moduli are presented in [21].
0ese coefficients determine the elastic behaviour of the cell,
or other objects. Implementation of this method into
ESPResSo code was done in our earlier studies [26].

0e sum of all such elastic forces defines force f exerted
on mesh points. 0is force causes motion of the mesh point
according to the Newton equation of motion.

m
d2x
dt2

� f, (5)

where m is the mass of the mesh point. 0e source of f is
either from the abovementioned elastomechanical proper-
ties of the immersed object or from the fluid-structure
interaction.

2.3. Coupling of the Lattice-Boltzmann Method and the Im-
mersed Boundary Method. Equations (2) and (5) describe
two different model components on two different meshes:
the motion of the fluid and the motion of the immersed
objects. For the coupling, we use an approach of Ahlrichs
and Dunweg from [19, 30] based on a dissipative force
between the fluid and the mesh points. 0e force exerted by
the fluid on one mesh point is proportional to the difference
of the velocity v of the mesh point and the fluid velocity u at
the same position:

F � ξ(u− v), (6)

where ξ is a friction coefficient. F enters (5) as a part of f. 0e
coupling is mutual so the opposite force is exerted on the
fluid.

Friction coefficient does not correspond to any physical
quantity and is purely phenomenological. It enforces the no-
slip condition, and in the limit ξ⟶∞, the no-slip con-
dition should be preserved.

In numerical computations, however, we need to use
finite value. 0is value is dependent on different features. In
the next sections, we determine the correct value of ξ.
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3. Design of Computational Experiments for
Friction Calibration

To determine the friction coefficient, we need to compare
our computational approach with analytical results. We
decided to set as a reference the movement of a solid
spheroidal object (further called sphere) in a fluid. 0ere are
theoretical computations that give us exact solutions for the
velocity of such sphere. We can then compare them with
computed results using our model. 0is way, we can in-
versely get the correct value for the friction coefficient.

It is of course a priori not clear whether a hollow
membrane consisting of interlinked mesh points can be
compared with a rigid sphere since dissipation in the inside
fluid may affect the friction. 0e presented simulations
however show a good resemblance of the reality.

0e motion of solid objects immersed in the fluid is
described by Newton’s second law of motion:

F � m
dv

dt
, (7)

where m is the mass and v is the velocity of the object. We
focus on the flow with low Reynolds number, and for these,
the drag force of the fluid on the objects is given by Stokes
law as

Fd � 6π]rv0, (8)

where r is the radius of the object, v is its velocity relative to
the surrounding fluid, and ] is the dynamic viscosity of the
fluid. 0eory assumes a solid rigid object immersed in an
unbounded fluid. Actually, our model assumes elastic ob-
jects; however, by setting the elastic coefficients high, we can
model solid objects as well. We have discussed the question
of domain boundaries in [31], and as we concluded, it is
sufficient to have 1 : 20 ratio between the size of the object
and the size of the simulation box. 0is ratio is even smaller
than 1 :10 used for similar analysis in [22]. With diameter
10 μm, simulation box with dimensions 200 μm is suitable.

Based on this theoretical knowledge, we design two
different experiments.

3.1. Terminal Velocity Experiment. We put a sphere into
a static fluid. Constant horizontal force F0 is applied on the
sphere (Figure 1(a)). 0e sphere accelerates, the drag force
therefore increases, at some point it cancels out with F0, and
sphere’s velocity thus becomes stabilised at some value. We
call this value terminal velocity and denote it by v∞. Terminal
velocity can be derived from theoretical assumptions sim-
ilarly as in [31]. We calculate terminal velocity by the fol-
lowing formula:

v∞ � lim
t⟶∞

v(t) �
F0

6π]r
. (9)

Terminal velocity does not depend on the object’s mass.

3.2. Balancing Force Experiment. We put a sphere into
a flowing fluid with constant velocity v0. We exert a bal-
ancing horizontal force FA in the direction opposite to the

flow such that the sphere remains at its original place
(Figure 1(b)). According to the theory, the balancing force
exerted on the sphere in an equilibrium state equals to drag
force by Stokes law. We calculate exact expression by the
following formula:

FA � 6π]rv0. (10)

Again, this does not depend on the object’s mass.

4. Calibration of a Reference Sphere

At this point, we can perform computer simulations of both
experiments to find a proper value of ξ. Two experiments
should be for this purpose equivalent and serve as a double
check. In the first step, we will randomly pick the value of ξ
and we can check whether simulated values of terminal ve-
locity in the first experiment and balancing force in the second
experiment correspond to the theoretical values. If not (which
is highly probable for the first shot), we adopt the value of ξ
and try again. By this inverse process, we will be able to
determine correct values of ξ. At the beginning, we chose the
values of ξ with regular incrementation; then, for finer cal-
ibration, we used simple bisection/step-doubling method.

0is process is quite computationally demanding. To
evaluate both experiments for one single value of ξ, we need
to perform full 3D simulation. 0erefore, we first calibrate
ξref for a reference sphere and afterwards we derive a for-
mula for direct computation of ξ for an arbitrary sphere
based on the value ξref . For the whole calibration process, we
used a simulation software ESPResSo [29], release 4.0, where
the described model is implemented.

From our previous experiences with similar computa-
tions, we decided to pick the sphere with radius 4 μm with
393 mesh points as a reference sphere. We use the following
elastic parameters: ks � 1.0, kb � 0.5, kal � 0.2, kag � 5.0, and
kv � 10.0. Such high values ensure that the sphere is not
deformed and behaves like a rigid one. 0e mass of indi-
vidual mesh points is set to 0.25 pg.

We set density of the fluid to 1025 kg·m−3 and dynamic
viscosity to 1.5375 mPa·s, which are values of blood plasma.
0e spatial step of the lattice-Boltzmann grid equals 1.0 μm.
All simulations were performed in a cubic simulation box
with edge 200 μm [31]. 0e time step of simulations equals
0.1 μs.

For terminal velocity experiment, we set the force F0 �

0.4 nN. From (9), we explicitly calculate the expected ter-
minal velocity v∞ � 0.003451 m·s−1.

For balancing force experiment, we set the fluid velocity
v0 � 0.010 m·s−1. Consequently, from (10), we compute
expected balancing force FA � 1.159 nN.

0e boundary conditions for the fluid in terminal ve-
locity experiment on all sides of the simulation box are set to
zero. For fluid in the balancing force experiment, these
conditions are set to v0.

0e simulation results are depicted in Figure 2. We can
see how the increase in the friction coefficient changes the
behaviour of the sphere in the simulations. In the case of
terminal velocity experiment, increasing the friction causes
decrease of the terminal velocity. 0is is natural, since
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increasing the friction coefficient means that the effect of
fluid on the object is stronger and thus it slows the sphere
down more for larger values of ξ.

In the case of the balancing force experiment, increasing
the friction means again that fluid acts on the object stronger
and thus we need larger balancing force to keep the object in
place. 0e figures indicate that the expected values of ter-
minal velocity and balancing force are achieved for the same
value of friction coefficient, so

ξref � 1.82 nN·s·m
−1

. (11)

5. Hypothesis for More General Shapes

In [31], we derived a renormalisation expression for com-
putation of friction coefficient ξn,r for an arbitrary sphere
with the number of mesh points n and radius r. 0e relation
reads as

ξn,r �
nref

n

r

rref
ξref , (12)

where ξref is the calibrated value for reference sphere with
nref mesh points and radius rref .

0e question however remains what is the correct
friction coefficient for nonspherical objects. 0e general
function of the friction coefficient is to transfer the drag
force of the fluid onto the object and back. Since the object is
modelled by its membrane only, we need to transfer this drag
force solely by the mesh points. Naturally, with more dense
mesh, it is sufficient to transfer less force per mesh node to
get the same effect on the membrane. It is thus logical to
expect that friction coefficient inversely depends on density
of the mesh points.0is idea is supported by expression (12):
increasing the number of mesh points while preserving the
radius increases the density of mesh points and decreases the
value of ξ.

Next, we need to define the mesh density. First ap-
proximation could be the number of mesh points per unit
area, explicitly expressed by n/S, where S is the surface of the
object. 0e relation (12) however suggests different: the
definition of the mesh density is number of mesh points per
unit length. In the case of spheres, themesh density could be
defined as n/r. For general shapes, we could choose the
diameter of the object. 0is would, however, not reflect the
fact that keeping the diameter and number of mesh points
constant one can increase the surface, which subsequently
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Figure 2: Influence of friction coefficient on (a) terminal velocity and (b) balancing force. Dotted lines indicate in both experiments the
same correct value 1.82.
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Figure 1: (a) Terminal velocity experiment, where force is initialised to F0 and terminal velocity v∞ is simulated. (b) Balancing force
experiment, where velocity of fluid is initialised to v0 and adaptive force FA is simulated.

Computational and Mathematical Methods in Medicine 5



decreases the density. 0erefore, we suggest using square
root of the surface and define mesh density as

n
�
S

√ . (13)

For spheres, for example, this choice is consistent (up to
a constant) with radius. Our proposition is to use the fol-
lowing expression for computation of friction coefficient for
nonspherical objects with n mesh points and surface S

ξn,S �
nref

n

�
S

√

���
Sref

 ξref . (14)

Note that for spheres, the newly proposed relation is
consistent with (12). 0e formula is now shape independent.

6. Verification of Proposed Hypothesis for
Ellipsoidal Shapes

To verify the hypotheses, we use extended theoretical results
concerning movement of rotationally symmetric ellipsoids
in a fluid. Such ellipsoids are created from a sphere by
prolonging (prolate ellipsoids) or shortening (oblate ellip-
soids) of the sphere along one axis (Figure 3).

0e relation (8) that is valid for spherical objects can be
generalised for oblate and prolate ellipsoids [32].0e explicit
expression for the drag force reads as

Fd � 6π]aKv, (15)

where ] is the dynamic viscosity of the fluid, v is the relative
velocity of the ellipsoid to the fluid, a is the radius of circular
cross section of the ellipsoid, and K is the shape factor. K
depends on the ratio a/b and on the flow direction. 0e
concrete values of K for different cases are taken from [32]
and shown in Table 1.

Using (15), we can reconstruct the theoretical steps from
Sections 3.1 and 3.2 and conclude that v∞ for the terminal
velocity experiment and FA for the balancing force exper-
iment read as

v∞ �
F0

6π]aK
,

FA � 6π]aKv0.

(16)

0ese expressions give us expected values of v∞ and FA
in both experiments.

Now, we test our hypothesis. We choose 6 different
ellipsoids (three of them are prolate and three are oblate).
Each ellipsoid is triangulated using open source software
GMSH [33]. 0e triangulation is regular, and thus, the local
density of mesh points is approximately constant across the
surface of the ellipsoid. 0e dimensions and other in-
formation are depicted in Table 2. Each of the six ellipsoids
has different friction coefficient that is computed according
to (14). 0e shape factor K was computed using expressions
from Table 1.

Each ellipsoid is put in two different flows, one in an axial
direction and one in a transversal direction.0is results in 12
different scenarios. Each of these scenarios served as

a starting point for both computational experiments, one for
terminal velocity and one for balancing force. Altogether, we
have thus computed 24 simulations. In these simulations,
the size of the simulation box, elastic coefficients, and values
for F0 and v0 were identical to those from the calibration of
the reference sphere in Section 4.

Assuming that the hypothesis is correct, we should
obtain the same values of expected v∞ and simulated v∞.
Analogous statement holds for the expected balancing force
FA and simulated FA.

Using the corresponding friction coefficient, we have
performed simulations for all 24 scenarios and we collected
the computed values of terminal velocities and balancing
forces, respectively. 0e actual results are presented in
Table 3.

0e Δ-columns contain relative differences. In the table,
we can see that the simulated quantities (terminal velocity or
balancing force) are fairly close to the expected values. 0e
relative difference is always under 5%.

7. Dependence on Viscosity of the Fluid

Increasing viscosity means that with given velocity gradient,
the shear stress increases. 0e friction coefficient is re-
sponsible for transfer of forces between the fluid and im-
mersed objects, and thus, it is natural to expect dependence
of the calibrated friction on viscosity. Our auxiliary simu-
lations revealed that indeed the friction coefficient for the
reference sphere is different for various viscosities. 0ere-
fore, we performed the sphere calibration from Section 4 for
three typical fluids used in microfluidics. Natural choice is
blood plasma. 0e values of blood plasma viscosity vary
from 1.3 to 1.5 mPa·s [34, 35]. Other two fluids are
phosphate-buffered saline suspensions used, for example, in
[36, 37]. All three fluids have the same density 1025 kg·m−3,
and their respective viscosities are presented in Table 4. 0e
table shows the calibrated friction coefficient for the refer-
ence sphere with 393 nodes and radius 4 μm. 0e relation
(14) remains valid, with different values for the reference
sphere.

8. Cell Flow in a Tube

To demonstrate the effect of different friction coefficients on
real flow of cells, we performed a simulation of flow of a red
blood cell exposed to Poiseuille flow in a tube with diameter
comparable with the size of the cell. 0e parabolic profile of
the fluid velocity means slower fluid velocities close to the
tube wall and large velocity around the axis of the channel.
0e red blood cell when exposed to such flow deforms to
a so-called parachute shape [3, 38, 39]. In this section, we
show that our model with properly resolved fluid-structure
interaction can capture this phenomenon.

We set up a simulation in a tube with diameter r � 5 μm
and length 50 μm. We consider fluid with density
ρ � 1000 kg·m−3 and viscosity 1.5 mPa·s flowing in a tube
with volumetric flow rate 0.054 μl·s−1. 0e elasticity of red
blood cells is determined by its elastic coefficients. We take
the following values:
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ks � 0.006,

kb � 0.008,

kal � 0.001,

kag � 0.5,

kv � 0.9,

(17)

which correspond to the stretching experiments reported in
[36]. Data from [36] have been used in numerous studies for
validation of the computational models [3, 40, 41]. 0e
friction coefficient computed from relation (14) was set to
1.56. 0is value was obtained for mesh with 374 nodes and
RBC diameter 3.91.

Initial spatial orientation of the cell is transversal with
respect to the axial direction. In Figure 4, snapshots of the
shape are depicted in different time instances of the very
same cell. In the figure, the cross section of the cell is visible.
0e cell gradually accelerates forming the parachute shape
depicted in Figure 4. 0e shape resembles those reported in
other computational and experimental studies [3, 38, 39].

When a different value of friction coefficient was used in
the same experiment, the shape of the red blood cell was not
affected. 0is seems to be in contradiction with results from
previous sections where we claim that friction coefficientmust
be properly set depending on the mesh density and that we
cannot choose its value arbitrarily.0ere is, however, a crucial
difference between the terminal velocity and the balancing
force experiments and the flow in an empty channel: in the
empty channel, there is no external force exerted on the
flowing object, and the object is being drifted by the fluid
freely. 0ere is thus much less transfer of force needed be-
tween the object and fluid compared with experiments, where
external forces act against the movement of the object.

In situations, however, where the object does not flow
freely in the flow, the friction coefficient must be set properly
as demonstrated by the following example. We designed
another test, where the cell is squeezed between two obstacles.
Here, the obstacles substitute external forces by their influ-
ence on the cell. In Figure 5, two different simulations are
depicted: one with the correct value of friction coefficient, 1.56
(cross section of the cell is drawn with thin line), and one with
significantly lower value, 0.8 (cross section with thick line).
We can clearly see different behaviour. After closer exami-
nation, one can identify two effects: different shape and delay.

Different shape is clearly visible at time instance 2 ms.
With higher value of friction, the shape is more prolonged in
axial direction than with lower value.0is can be explained by
larger transfer of force to the cell membrane. Near obstacles,
the flow is almost zero due to no-slip condition, while in
between the obstacles, the flow is fast. With larger friction,
fluid near the obstacles decelerates the cell and in themiddle it
accelerates the membrane, causing more prolonged shape of
the cell compared with the case with lower friction.

Axial
direction

Transverse
direction

S

a

a

b

(a)

S

a

a

b

Axial
direction

Transverse
direction

(b)

Figure 3: Ellipsoids with flow in axial and transverse directions. (a) Prolate ellipsoid with circular cross section with diameter a and
prolonged radius b. (b) Oblate ellipsoid with circular cross section with diameter a and shortened radius b.

Table 1: Values of the shape coefficient K appearing in the ex-
pression for the drag force.

Ellipsoid β � Flow K

Prolate b/a Axial (4/3)(β2 − 1)

((2β2 − 1)/
����
β2 − 1

√
) ln(β+

����
β2 − 1

√
)− β

Prolate b/a Transversal (8/3)(β2 − 1)

((2β2 − 3)/β2 − 1) ln(β+
����
β2 − 1

√
) + β

Oblate a/b Axial (4/3)(β2 − 1)

(β(β2 − 1)/
����
β2 − 1

√
) arctan(

����
β2 − 1

√
) + β

Oblate a/b Transversal (8/3)(β2 − 1)

(β(3β2 − 2)/
����
β2 − 1

√
) arctan(

����
β2 − 1

√
)− β

Table 2: 0e dimensions of 6 ellipsoids used to verify the hy-
pothesis. 0e friction coefficient is recalculated by (14).

Ellipsoid Type Node a (μm) b (μm) S
(μm2)

ξ
(nN·s·m−1)

1 Oblate 594 3 1.5 78.05 0.75
2 Oblate 130 4 1 113.92 4.14
3 Oblate 1026 6 1.5 256.32 0.79
4 Prolate 130 5 8.75 479.50 8.50
5 Prolate 622 3 4.5 152.26 1.00
6 Prolate 986 6 10.5 690.48 1.34
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Delay is pronounced later, at 3.5ms and 5ms. 0is can be
explained by the fact that when passing the obstacles, the no-
slip condition causes more effective deceleration of the cell
for higher friction, and thus for larger force transfer between
static fluid and moving membrane.

9. Cell in a Shear Flow

Objects immersed in a shear flow exhibit complex behav-
iour. Movement of rigid ellipsoidal particles in a shear flow
has been studied in [42]. 0e case of red blood cells is
however different due to their irregularity and elasticity. Red
blood cells exhibit several motion patterns in a shear flow.
Under certain flow conditions, they may tumble or exhibit
a tank-treading motion of the membrane or both, depending
on the shear rate [4]. Above a certain threshold, the cell
undergoes purely tank-treading motion. 0e membrane
rotates around the cell’s interior with a certain frequency.
0ere are biological measurements of relation between the
shear rate and the tank-treading frequency [43, 44].

Using these data, we will validate relation (14). We
perform three sets of simulations for three different values of
the friction coefficient. One value denoted by ξok is the
correct value computed from (14), while the other two values
are defined as ξ1 � 0.5ξok and ξ2 � 1.5ξok. 0e aim is to
verify whether computations using ξok give results corre-
sponding to biological data, while computations using ξ1 or
ξ2 give results diverging from the data.

Shear flow can be induced between two parallel surfaces
that move relative to one another. In practice, this means
either one of them is stationary or the other moving or two
plates moving with the same velocity in opposite directions,
as depicted in Figure 6.

0e shear rate _c generated by two walls moving with
velocities v0 and −v0 can be computed from _c � 2v0/h with h
being the distance between the walls. We will use a triangular
mesh covering the surface of the cell with 393 mesh points
and with surface area of approximately 142 μm2. 0e model
requires proper parameters so that the simulated cell has
elasticity of a real red blood cell. 0e following values of the

Table 3: 0e simulation results of terminal velocity (given in m · s−1) and balancing force (given in nN) experiments for different ellipsoids
put in axial and transverse flow.

Ellipsoid Flow K
Terminal velocity Balancing force

Exp v∞ Sim v∞ Δrv∞ (%) Exp FA Sim FA ΔrFA (%)
1 ⟶ 0.905 0.00508 0.00507 0.19 0.787 0.788 −0.14 %
2 ⟶ 0.867 0.00398 0.00407 −2.36 1.005 0.983 2.27
3 ⟶ 0.867 0.00265 0.00274 −3.36 1.508 1.456 3.45
4 ⟶ 1.153 0.00239 0.00235 1.77 1.671 1.691 −1.25
5 ⟶ 1.102 0.00418 0.00412 1.25 0.958 0.969 −1.17
6 ⟶ 1.153 0.00200 0.00191 4.04 2.005 2.066 −3.05
1 ↓ 0.793 0.00580 0.00562 3.20 0.689 0.712 −3.26
2 ↓ 0.682 0.00506 0.00490 3.02 0.791 0.817 −3.35
3 ↓ 0.682 0.00337 0.00335 0.69 1.187 1.195 −0.70
4 ↓ 1.288 0.00214 0.00214 0.27 1.866 1.858 0.43
5 ↓ 1.194 0.00385 0.00386 −0.20 1.038 1.035 0.28
6 ↓ 1.288 0.00179 0.00172 3.69 2.005 2.066 −3.05

Table 4: Calibrated friction coefficient for the reference sphere for
three different fluids.

] (mPa·s) ξ (nN·s·m−1)
1.5375 1.82
1.3000 1.54
1.0000 1.18

Figure 4: Parachute shape of the red blood cell in flow inside
a tube. Snapshots of one cell at time instances 0ms, 1ms, 2ms, and
3ms.

Figure 5: Constricted flow between two cylindrical obstacles. On
top, the flow of cell with correct value of friction parameter 1.56 is
depicted. Below, overlay of two simulations is shown: simulation
with correct value of friction 1.56 (cell cross section with thin line)
and simulation with lower value of friction 0.8 (cell cross section
with thick line). Snapshots are depicted at time instances
0ms, 2ms, 3.5ms, and 5ms.
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elastic parameters similar to those from [45] have been used
in our computations:

ks � 6 μN/m,

kb � 3 × 10−19 Nm,

kal � 1 μN/m,

kag � 0.5 mN/m,

kv � 0.9 mN/mm2
.

(18)

We used a cubical computational domain with di-
mensions 20 × 20 × 20 μm, h � 20 μm enclosing the cell
located in its center. We use the following fluid properties to
simulate suspending medium used in experiments from
[43, 44]: ρ � 1045 kg/m3, ] � 10.7 mPa·s. 0e desired shear

rate in the range from 0 to 200 s−1 can be generated by
velocities ranging from 0 to 0.002 m/s. To obtain correct ξref ,
we extrapolate the values in Table 4 to get ξref � 9.57 for
] � 10.7 mPa·s. Finally, using (14), we can compute

ξ �
nref

n

�
S

√

���
Sref

 ξref �
393
393

���
142

√

���
201

√ 9.57 � 8.02. (19)

In all the experiments, we use time step of 0.1 μm and
the lattice grid of 2 μm.

Computational results are summarized in Figure 7. In
Figure 7(a), we can see that results for ξok just slightly overshoot
data from experiments. Clearly, the results for ξ1 overshoot the
experimental data significantly. 0e results for ξ2 overshoot the
experimental data in the range _c � 50− 100 mPa·s while they
undershoot the data in the range _c � 100− 200 mPa·s. To

v0

v0

x

zh

y

Figure 6: Two parallel walls move in opposite directions creating shear flow.
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Figure 7: (a) Computed rotating frequencies versus experimental data. (b) Squared error of the computed data from the averaged biological
data.
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quantify the error, we plot squared error of simulated data from
the averaged experimental data in Figure 7(b). Missing data
points were either interpolated or extrapolated. 0e overall L2
error is 4.01 for ξok, 4.21 for ξ2, and 9.11 fro ξ1. 0is shows that
the case for ξok best fits the experimental data.

10. Conclusions

We analysed fluid-structure interaction that is based on
a dissipative force between the fluid and structure. 0is in-
teraction is mediated via friction coefficient between the mesh
points and the fluid grid. In this work, we answered the
question of proper value of the friction coefficient. 0e
analysis was gradually established by first calibrating the
reference sphere, generalisation to arbitrary sphere, proposal
for arbitrary shape, validation of proposed hypothesis for
ellipsoidal objects, and demonstration of validity for non-
concave objects, namely, for red blood cells.

Our study relies on explicit solutions to terminal velocity
and balancing force experiments. Unfortunately, for
asymmetrical or biconcave shapes, we are not aware of any
such explicit solutions, and our study could not be extended
to, for example, concave objects.

Nevertheless, we expect the relation (14) to be suffi-
ciently accurate for general shapes. 0e reason for this is
that the relation is based on local density of mesh points so
that the force transfer between mesh points and sur-
rounding fluid is locally the same over the whole surface of
the object, regardless of its possible asymmetry and
nonconvexity.

In case of red blood cells, their biconcave shape re-
sembles ellipsoids quite well. 0e validity of the proposed
results for red blood cells has been demonstrated in Section 8
by developing of typical parachute shape in a narrow tube.
Furthermore, we have shown in simulations of red blood cell
in a shear flow that the simulations with properly chosen
friction coefficient correspond to real biological data of cell’s
rotating frequency. As soon as we set different friction
coefficients, the computational data diverge from the bi-
ological measurements.

Data Availability

0e findings of this study have been obtained using publicly
available open source software ESPResSo, release 4.0,
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within this article. Further details are available from the
corresponding author upon request.
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