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Abstract

Background: Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in
humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics
analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex,
nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before
and after treatment with ethanol.

Results: Acute ethanol altered the expression of ,2,750 genes in one or more regions and 400 transcripts were jointly
modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that
efficiently summarized ethanol’s effects. These networks correlated with acute behavioral responses to ethanol and other
drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and
neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3b, are known to
influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like
Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that
we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-
based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.

Conclusions: The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate
phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were
strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding
that hub genes and a small number of loci exert major influence over the ethanol response of gene networks could have
important implications for future studies regarding the mechanisms and treatment of alcohol use disorders.
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Introduction

Alcohol use disorders (AUD) are extremely prevalent, with an

estimated 18 million Americans meeting diagnostic criteria for an

AUD (2007 Survey on Alcohol and Drug Use). However, only

a small subset of the wider population that regularly consumes

alcohol will ever meet clinical criteria for alcohol abuse or

alcoholism. AUD susceptibility is strongly influenced by genetic

factors, accounting for as much as 40–60% of the risk for

developing an AUD [1,2]. While population and family-based

association studies have discovered a number of genetic markers

linked to AUD susceptibility [3,4,5], the highly complex and

multifactorial nature of the disorder suggests that, independently,

each of these associations accounts for only a small portion of the

overall genetic variance. Moreover, the molecular mechanisms

underlying the neuroplasticity accounting for AUD likely involves

networks comprised of many more genes than currently identified

as affecting behavioral responses to ethanol in animal models or

genetically associated with AUD in humans.

Most experimental approaches to studying complex traits such

as AUD have focused on identifying the role for ‘‘single genes’’

even when employing genome-wide tools such as microarrays.

More recently, microarray expression data has been used in

systems genetics studies to construct maps of gene interactions on

the basis of correlated expression patterns, providing unprece-

dented insight into the molecular networks underlying complex
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traits. Such network-based approaches may prove to be more

effective for delineating genetic factors underlying individual

variation in AUD risk and the neurobiology of ethanol and drug

abuse disorders. A gene network (a group of genes that are

coordinately regulated or functionally inter-related) producing

significant influence on neural pathways affecting ethanol-

associated behaviors is both more likely to be experimentally

detected across human and animal studies and may also identify

key nodes that could serve as rationale therapeutic targets.

Mining microarray expression data for patterns of correlated

gene expression (co-expression), has made it possible to identify

novel gene/gene interactions [6] and construct non-parametric

models of gene transcription networks. Extending these analyses to

include genotypic data allows key regulators of a gene network to

be implicated by scanning for associations between DNA variation

and co-regulated groups of genes [7]. Such network-based

genetical genomics approaches have previously been utilized to

characterize the gene expression architectures of yeast [8], mouse

liver [9] and the nervous system [10]. Investigators have also used

this approach to dissect a variety of mouse models for complex

traits, including alcohol preference [11], susceptibility to obesity

[12], type 2 diabetes [13] and tumorigenesis [14].

Initial responses to ethanol are highly informative predictors of

AUD risk, with level of response (LR) being inversely correlated

with susceptibility [15,16,17]. Similar inverse relationships be-

tween acute LR and ethanol consumption have been observed

with a number of selectively bred or gene targeted rodent strains

[18]. Therefore, an understanding of the molecular pathways

initially perturbed by ethanol may identify important contributors

to LR behaviors and elevated AUD susceptibility. As with

humans, genetically diverse populations of mice exhibit a wide

range of ethanol sensitivity. The B6 and D2 inbred strains are

a particularly well documented example, with numerous studies

reporting that ethanol induces significantly larger responses in D2

mice, when compared to B6, across a number of measures such as

locomotor activation [19] and withdrawal severity [20].

Our prior work showed that acute ethanol administration (2 g/

kg, 4 hours) induces regionally-selective changes in gene expres-

sion in the mesocorticolimbic system [21]. In all profiled brain

regions Kerns et al. [22] found the ethanol induced response of

these genes was generally markedly different between B6 and D2

mice. The greatest disparity in transcriptional LR was in the

prefrontal cortex (PFC), where far more genes were regulated by

ethanol in D2 mice than in B6 mice. However, these prior studies

on two strains did not have sufficient power for robust definition of

gene correlation networks or genetic analysis of mechanisms

underlying the ethanol-responsive gene sets.

In order to extract and dissect acute ethanol-responsive gene

networks, we performed a large-scale gene expression analysis

across recombinant inbred (RI) strains derived from the B66D2

(BXD) genetic mapping panel. The BXD family has been widely

used for both genetic studies on ethanol behaviors and many other

phenotypes, and for expression genetics studies [10]. For each

included BXD strain, we profiled PFC, ventral midbrain (VMB)

and nucleus accumbens (NAc) transcriptomes of mice from saline

and ethanol treatment groups. This produced the most extensive

assessment of ethanol-responsive brain gene expression to date.

Furthermore, we focused on PFC and produced the first genetic

analysis of ethanol-responsive gene networks. Our results show

network-level enrichment of genes involved in synaptic plasticity

and identify key hub genes regulating the ethanol response for

large networks of genes. This first such detailed genetic analysis of

the acute ‘‘ethanol responsome’’ may provide valuable insight for

molecular mechanisms underlying the neurobiology of ethanol

and also ultimately provide novel AUD susceptibility candidate

genes and targets for intervention in alcoholism.

Methods

Ethics Statement
All animal procedures were approved by Virginia Common-

wealth University Institutional Animal Care and Use Committee

under protocol numbers AM10332 and AM10139, and followed

the NIH Guide for the Care and Use of Laboratory Animals (NIH

Publications No. 80–23, 1996).

Animals and tissue collection
All BXD RI strains and the B6 and D2 progenitors were

purchased from Jackson Laboratory (Bar Harbor, ME). All

animals were male and between 10–12 weeks of age. Mice were

housed 4 per cage with ad libitum access to standard rodent chow

(catalog #7912, Harlan Teklad, Madison, WI) and water.

Following a two week acclimation period mice were injected

intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. This

ethanol dose was originally chosen from pilot experiment data to

maximize anxiolytic activity and minimize sedative responses

(decreased locomotor activity) as part of a parallel study of ethanol

induced anxiolysis. In that study, all mice underwent behavioral

testing that included 15 minutes of restraint in a 50 mL conical

tube followed by 10 minutes in a light-dark chamber. The results

of these behavioral genetics experiments will be published

elsewhere (Putman et al, submitted) and are not discussed in this

manuscript. Mice were killed by cervical dislocation four hours

following IP injection. Immediately thereafter, brains were

extracted and chilled for one minute in iced phosphate buffer

before being microdissected into 8 constituent regions as described

previously [21], including medial prefrontal cortex, nucleus

accumbens and ventral midbrain, which includes ventral tegmen-

tal area and substantia nigra. Excised regions were placed in

individual tubes, flash-frozen in liquid nitrogen and stored at

280uC.

Microarray data generation
This study incorporated prefrontal cortex tissue from 27 BXD

strains, nucleus accumbens and ventral midbrain tissue from 35

BXD strains, as well as B6 and D2 tissue from all three regions.

Frozen tissue for a given brain region and strain was pooled from

4–5 animals and homogenized with AurumTM total RNA fatty

and fibrous tissue extraction kit (BioRad, catalog #732–6830) and

a Tekmar homogenizer. RNA concentration was determined by

absorbance at 260 nm, and RNA quality was analyzed by

electrophoresis on a Experion analyzer (BioRad, Hercules, CA)

and 260/280 absorbance ratios. All RNA samples had RNA

quality indices (RQI)$8. Total RNA (5 mg) derived from each

pool and spike-in poly-A RNA controls were reverse transcribed

into double-stranded cDNA using Affymetrix SuperScriptH one-

cycle cDNA kit (Invitrogen, catalog #A10752030). Biotin-labeled

cRNA was synthesized from cDNA using the GeneChip IVT

labeling kit (Affymetrix, part #900449) according to manufac-

turer’s instructions, purified using the RNAeasy Mini Kit (Qiagen,

Mountain View, CA), and quantified by absorbance at 260 nm.

Labeled cRNA samples were hybridized to Mouse Genome 430

2.0 microarrays (Affymetrix, part #900497) according to the

manufacturer’s protocol and as described previously [21]. The

number of microarrays involved in this study required that their

processing be divided in batches of manageable sizes. To avoid

systematic variation of expression data through technical batch

effects, we performed a supervised randomization of samples into
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batch groups prior to each of the following processing stages: total

RNA extraction, cRNA synthesis and hybridization. Both a saline

and ethanol-treated mouse from a single strain were always

processed together to minimize risk of technical variation

confounding ethanol response detection. Annotation data for

Mouse Genome 430 2.0 probe-sets was obtained from the

GeneNetwork Data Sharing Zone (genenetwork.org/share/anno-

tations).

Microarray analysis
Microarray quality was assessed by inspecting the distributions

of log-transformed probe intensity values, as well as scanning for

outlier chips using a standard battery of quality measurements,

including: average background, scaling factor, percentage of

probe-sets called present and 39/59 ratios for Actin and Gapdh.

Bioconductor’s implementation of the MAS 5.0 Detection Calls

Algorithm, available in the affy package [22] for R [23], was used

to generate absent/marginal/present calls across all samples. We

excluded any probe-sets called absent in$95% of samples from all

subsequent analyses to improve the ratio of true positives in

downstream statistical filtering [24]. This removed 14,096, 12,970

and 13,312 probe-sets from the PFC, NAc and VMB, respectively.

The lists of ‘absent’ probe-sets were largely overlapping, with

11,343 probe-sets filtered out of all 3 regional datasets, suggesting

this filtering step largely removes probe-sets targeting genes

unexpressed in brain tissue. Expression data from the saline and

ethanol treatment groups were background corrected, quantile

normalized and summarized using the robust multi-array average

(RMA) expression measure [25]. For analysis of SNPs possibly

affecting microarray probe performance, the D2 genome sequence

provided by Xusheng Wang in Dr. William’s laboratory was used

to identify probes overlapping a B6/D2 SNP (Table S8).

Affymetrix probe sequences were aligned to the mm9 version of

the mouse genome provided by Bioconductor, using the Biostrings

package for R. All datasets generated for this paper can be queried

on GeneNetwork (genenetwork.org) or downloaded in their

entirety from the Gene Expression Omnibus repository under

accession number GSE28515. All data is MIAME compliant.

Identification of ethanol-responsive genes
The large scale of this study made cost prohibitive the inclusion

of biological replicates for each RI strain across treatment groups.

Therefore, assessing the reproducibility of changes in gene

expression within a single strain by conventional methods, such

as SAM [26], was not possible. We therefore used an alternative

approach to identify probe-sets with extreme ethanol expression

changes across a minority of strains or smaller but consistent

changes across a larger portion of the BXD family. The impact of

acute ethanol on transcript abundance was measured using the

Significance-score (S-score) algorithm [27], which utilizes in-

dividual probe-level data to determine the statistical significance of

transcript level differences between a pair of Affymetrix micro-

arrays. We utilized the R implementation of the S-score algorithm

[28] to compare microarray expression levels within BXD strains

across treatment groups to generate a saline vs ethanol S-score for

each probe-set, where a positive S-score indicates up-regulation

with ethanol and vice-versa. In the case of the progenitor strains,

where biological replicate microarrays were available for each

strain in triplicate, S-scores were generated using the SScore

function’s class label feature.

S-scores are normally distributed with a mean of 0 and

a standard deviation of 1 [27]. For 2-tailed tests, p-values for each

probe-set were calculated as twice the probability of obtaining an

S-score at least as large as the absolute value of the observed S-

score. Statistical significance of a given probe-set’s ethanol

response across BXD strains was assessed using Fisher’s combined

probability test [29]. An R implementation of Fisher’s method,

available as part of the MADAM package [30], was used to

combine the S-score transformed p-values. This process was then

repeated for 1,000 random permutations of the observed S-score

expression matrix, so that empirical p-values could be obtained by

comparing observed results to the permutation distribution.

Finally, to correct for multiple testing, q-values were generated

from the empirical p-values [31]. Probe-sets with q-values#0.05

were considered to be significantly ethanol-responsive.

Paraclique formation and network analysis
Steady-state RMA and saline vs ethanol S-score expression

datasets were analyzed using a graph theoretical algorithm [32] to

identify gene co-expression networks. We first calculated all

pairwise Pearson correlations across probe-sets, where each probe-

set is represented as a vector of BXD expression values, and used

this data to construct an unweighted graph in which vertices

represent probe-sets and edges were present whenever the absolute

value of the correlation between two probe-sets was $0.7. The

choice of threshold when converting a weighted graph to an

unweighted graph is analogous to the choice of p-value when

determining significance; it is chosen to produce a reasonable

tradeoff between false positives and false negatives. A correlation

threshold of |0.7| across 27 strains yields a correlation p-value of

4.8e-05 (calculated using Student’s t-distribution). Such low p-

values are indicative of the rigor of graph theoretical techniques.

The most natural grouping of vertices in a graph is by cliques,

or fully connected subgraphs. While finding the maximum clique

is a well-known computationally intractable problem, being NP-

complete, the topology of biological graphs lends itself to solution by

advanced algorithmic implementations [33,34]. Since the in-

evitable noise in large microarray datasets can render clique too

restrictive, we used a relaxed version termed a ‘‘paraclique’’. For

graphs constructed using a correlation threshold, we iteratively

extracted maximum cliques and used them as cores to build

paracliques. A paraclique starts with a maximum clique and gloms

onto all vertices with at least some proportion of edges to that

clique. This proportion is called the ‘‘proportional glom factor.’’

As a paraclique was formed, the number of edges that must be

present for a vertex to be included was scaled to the size of the

starting clique. We selected a glom factor of 0.7 for the analyses

presented here, which maintains an edge density .90% in nearly

all the resulting paracliques. For such defined paracliques, probe-

sets had expression responses to ethanol correlated with at least

70% of the other paraclique members at a threshold $|0.7|.

Lowering the glom factor below 0.7 resulted in a sharp drop-off in

edge density. Furthermore, empiric testing showed that more

stringent glom factors produced similar overall functional results

but tended to fragment known correlated gene groups (e.g.

dopamine signaling genes) into multiple paracliques (data not

shown).

The relative importance of each node within a paraclique was

assessed using network topological measures of connectivity and

centrality. Degree of connectivity was equal to number of edges

linking a probe-set to other paraclique members, based on the

|0.7| edge correlation threshold used to construct the unweighted

graphs. Betweenness centrality measures how frequently a node is

included in the shortest paths between all pair-wise members of

a network. With the edge threshold at |0.7|, Spearman’s rank

correlations were typically .0.9 between centrality and connec-

tivity. Increasing the edge correlational threshold to |0.9| reduced

the connectivity/centrality correspondence to ,0.6 and greatly
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increased the centrality for a subset of nodes situated between

densely inter-connected subnetworks. We therefore used between-

ness centrality scores within unweighted graphs constructed using

the more stringent |0.9| edge threshold as a supplemental

measure of node importance. Both measures were calculated using

the igraph package for R [35].

Fisher’s exact test was used to identify paracliques that harbored

a greater number of significantly ethanol-responsive probe-sets

than what would be expected by chance. The 30,941 probe-sets

that passed the present-call filter served as the background for this

analysis. Paracliques with a Bonferroni adjusted p-value#0.05

were judged to be significantly enriched for ethanol-responsive

probe-sets.

Functional analysis
Functional enrichment analyses were performed using Topp-

Fun, a functional enrichment application available at toppgen-

e.cchmc.org as part of the ToppGene suite of web applications

[36]. Each paraclique was considered on an individual basis.

Entrez ID’s for all members of a paraclique were submitted and

analyzed for over-representation of genes that belong to a Gene

Ontology (GO) category (cellular component, molecular function

and biological process), biological pathway, gene family or,

similarly, encode a particular protein domain. In order to enhance

the specificity and informativeness of these results, we considered

only those categories that comprise greater than 3 and fewer than

300 genes, inclusive. Multiple testing was accounted for using a 1%

FDR threshold. Results were curated by excluding categories with

gene lists more than 80% redundant with other, less enriched,

categories.

Phenotype correlations
We used GeneNetwork’s database of phenotypes to identify

associations between paracliques and physiological or behavioral

traits previously assayed with the BXD population. This analysis

was conducted by calculating correlations between GeneNetwork

phenotypes and ‘synthetic traits’ used to represent the expression

variation of paraclique trans-bands. These synthetic traits were

generated by principal component analysis of centered and scaled

probe-set expression values. The principal component (PC) trait

accounting for the largest proportion of expression variance was

used as a single synthetic PC-trait representing the corresponding

paraclique trans-band. For each PC-trait, sample order was

permuted 1,000 times and correlated with the BXD phenotype

database. The permuted correlation distributions were then used

to adjust each observed phenotype/PC-trait correlation’s p-value.

Genetical genomics analysis
Quantitative trait locus (QTL) mapping was performed for the

saline and ethanol treated RMA datasets, as well as the saline vs

ethanol S-score dataset, using a subset of informative microsatellite

and SNP markers that have been used to genotype the BXD

family [37,38], and are available from GeneNetwork (genenet-

work.org/genotypes/BXD.geno). Linkage between genotypes and

expression phenotypes was assessed by performing Haley-Knott

regression using R/qtl [39]. Genome-wide adjusted p-values were

derived using distributions of maximum LOD scores obtained

from 1,000 permutations of each probe-set’s expression data. We

classified the significance of an expression QTL (eQTL) using

guidelines put forth by the Complex Trait Consortium for

mapping traditional QTL [40]; where ‘significant’ refers to

genome-wide corrected p-values#0.01 and ‘suggestive’ refers to

p-values#0.63. Estimates of true QTL location were obtained

using R/qtl’s to calculate 1.5 LOD score drops, as recommended

by Manichaikul [41]. Expression QTL were considered cis eQTL

if their peak chromosomal location was less than 5 Mb upstream

or downstream of the regulated gene; all others were considered

trans eQTL.

Trans eQTL enriched loci, referred to as trans-bands, were

detected by splitting the genome into 10 Mb bins and counting the

number of suggestive eQTL that mapped to each. In order to

determine whether a particular genome bin harbored more eQTL

than would be expected by chance, we performed 10,000

permutations, each involving random assignment of all eQTL to

a genetic marker and recording the number of mappings at the

most populous bin. Observed trans-bands were deemed significant

if they exceeded the 95th percentile of the distribution of peak

trans-bands captured from each permutation. To facilitate the

search for candidate regulators underlying these eQTL enriched

regions, we defined support intervals for each of the major trans-

bands by aggregating the support intervals calculated for the

individual eQTL comprising each trans-band. Trans-band

support intervals were defined as the chromosomal regions flanked

by genetic markers that were included in at least 80% of the trans-

band member’s individual support intervals.

Prioritizing positional candidate genes
Candidate regulators for trans-bands were derived by an

empiric ranking scheme for genes contained within the support

interval of the trans-band. As detailed in Figure S1, this ranking

scheme assigned points for gene information within four

categories: genetic sequence variation (SNPs), expression genetics

(cis eQTL), ethanol regulation and network properties. Positional

candidates were scored based on harboring polymorphisms

between the B6 and D2 genomes that may alter protein function,

which we identified using GeneNetwork’s SNP browser. Genes

carrying non-synonymous or functional polymorphisms were

considered higher priority candidates. We also took into account

non-coding polymorphisms whose functional impact may only

manifest at the transcript level by further prioritizing interval

candidate genes associated with a robust cis eQTL (see above) in

either the basal saline or S-score expression datasets. In order to

prevent false positive cis eQTLs from being prioritized, probe-sets

with cis eQTL were penalized if their binding target region

contained a B6/D2 polymorphism. As Affymetrix probe sequences

were designed against the B6 genome, probe SNPs primarily

reduce binding avidity with D2 transcripts. Therefore, this penalty

was only applied to cis eQTL if B6 was the increaser allele. A full

list of SNPs identified within probe sequences are contained in

Table S8. Candidates were prioritized further if they belonged to

the same network as constituents of the linked trans-band, taking

into account the relative importance of a gene in the resident

network by using the connectivity and centrality measures from

the hub gene analysis. Genes identified as significantly ethanol-

responsive across the BXD lines received additional scoring.

Data visualization
Network figures were rendered using Cytoscape [42]. All other

figures were generated in R [23] using ggplot2 [43].

Results

Identifying ethanol-responsive genes
Previously, we reported an initial microarray analysis of

prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral

midbrain (VMB) brain regions from the B6 and D2 inbred strains

and identified 307 genes that changed significantly with acute

ethanol treatment [21]. To extend those prior efforts and construct

Ethanol and Brain Gene Network
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gene expression network correlations with ethanol behaviors, we

conducted an extensive microarray analysis of PFC, NAc, and

VMB across 27 recombinant inbred mouse lines from the BXD

family and the B6 and D2 parental lines from which they were

derived. The greater statistical power and genetic diversity

provided by the BXD microarray data made it possible to detect

lower magnitude or more variable changes in expression, as well as

changes that would otherwise be absent in a study limited to the

B6 and D2 strains due to epistatic suppression.

As described in the Methods, we used the S-score algorithm for

probe-level analysis of each strain’s transcriptional response to

ethanol, followed by Fisher’s combined probability test. This

approach favors genes that consistently responded to ethanol

across numerous BXD strains, regardless of direction, rather than

genes that exhibited large differences in only a small subset of

strains. Analysis of microarray datasets for PFC, NAc and VMB

identified 3,512 probe-sets, corresponding to 2,743 unique genes,

that changed significantly with ethanol in at least one brain region

(Table S1). While not meant as a direct comparison due to

differences in strains or directionality, these gene lists contained

over 40% of the genes previously identified as ethanol-responsive

by Kerns et al. (2005), despite differences in microarray design,

investigators and analysis methods. This analysis also expanded

the ‘‘ethanol responsome’’ nearly 10-fold. VMB exhibited the

largest transcriptional response to ethanol, while changes observed

in PFC and NAc were of comparable magnitude (Figure 1a). The

transcriptional response to ethanol within each brain region

included both unique and shared gene components. Roughly 1/3

of significantly ethanol-responsive genes in the PFC and NAc were

unique to their respective regions, while greater than 50% of the

VMB ethanol profile was specific to that region (Figure 1b).

Functional enrichment analysis showed strong homology in the

functional categories regulated by ethanol in all three regions

(Table S2). Gene groups related to synaptic activity and plasticity

were among the most significantly over-represented GO biological

functions, with dendritic or synaptic structure as the top GO

cellular components in each region. The 399 genes that were

significantly ethanol-responsive in all three brain regions were also

highly enriched for proteins that localize to the pre- and post-

synaptic membranes and regulate synaptic transmission, including

both ionotropic and metabotropic glutamate receptor categories

(Table S2). However, there were regional differences, the over-

representation of GABA and glutamate receptor signaling path-

ways was particularly high in VMB.

Assaying gene expression across the BXD panel allowed us to

analyze how genetic variation influenced transcriptional responses

to ethanol (Figure 2). As seen with other heritable complex traits

measured in genetic mapping panels, the transcript-level response

of most ethanol sensitive genes followed a continuous distribution

across the BXD and progenitor strains. There was a subset of

genes almost uniformly up-regulated by ethanol, including Npas4

(Figure 2b), Fos, Hsp8, Egr2, Dusp1 and Jun, all of which are

neuronal activity dependent. Most genes, however, exhibited

divergent ethanol responses between variable subsets of BXD

strains (Figure 2a). While continuous distributions of transcrip-

tional responses to ethanol were observed in all profiled regions,

transcript-level changes were highly region specific. That is, we

found little correspondence between a gene’s ethanol response

across regions. Even among the 399 genes found to be significantly

ethanol responsive in all three brain regions, inter-region S-score

correlations were effectively null (Figure S2). Therefore, acute

ethanol effects on gene expression were modulated by both genetic

background and brain regional environment factors.

Gene network analysis in prefrontal cortex
Rather than focusing on gene-lists, as was only possible in our

prior analysis limited to the B6 and D2 strains, we used the power

of genetic correlations across the BXD strains to derive coherent

gene networks. Due to the complexity of this analysis and the

importance of the PFC in influencing long-term adaptive

responses to ethanol and goal-directed behavior [44,45,46], we

restricted our network analysis to this brain region. A detailed

Figure 1. Transcriptional response to acute-ethanol within 3 regions of mesocorticolimbic reward circuit across the BXD family. (A)
Number of genes found to be significantly ethanol-responsive in the prefrontal cortex (PFC, n = 29), nucleus accumbens (NAc, n = 37) and ventral
midbrain (VMB, n = 37) by analysis of saline vs ethanol S-scores across BXD, B6 and D2 samples. (B) Venn-diagram depicting which subsets of ethanol-
responsive genes are region specific (blue), overlap across two regions (grey) or common to all three regions (red). All three pairwise overlap
combinations were statistically significant as determined by Fisher’s Exact Test for count data. Odds ratios from this analysis are depicted in word
bubbles.
doi:10.1371/journal.pone.0033575.g001
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analysis of network interactions across PFC, NAc and VMB will be

presented elsewhere (Wolen and Miles, manuscript in prepara-

tion).

We studied saline vs ethanol S-score expression data, as well as

individual saline- and ethanol-treatment RMA expression data,

using a graph theoretical algorithm that identified discreet

paracliques within each dataset [32]. As described in Methods,

the resulting paracliques, referred to as networks henceforth,

represent densely intercorrelated groups of genes that likely share

functional and regulatory homology. In the saline and ethanol

networks formed with RMA expression datasets, inter-gene

correlations represented the admixture of treatment variation

superimposed on basal steady-state mRNA levels. In the context of

the S-score networks, the correlations strictly reflect coordinated

changes in expression induced by acute ethanol. The size of these

networks ranged from 710 to 11 probe-sets (Figure 3a; Table S3).

While 64% of all significantly ethanol-responsive genes in the

PFC belonged to one of the 61 S-score networks, a Fisher’s exact

test revealed a subset of networks that were statistically enriched

for these genes. These ethanol-responsive gene enriched networks

(ErGeNs) are depicted in Figure 3b. Network-based clustering

(Figure 3c) and a traditional non-parametric partitioning (Fig-

ure S3) of all significantly ethanol responsive genes, both revealed

the existence of several modules of co-expressed genes that were

largely subcomponents of these paraclique-derived ErGeNs, most

predominantly ErGeN1 and ErGeN3. Taken together, these results

suggested that, at the time point employed by these studies, the

PFC transcriptional response to acute ethanol was primarily

mediated through a relatively small number of highly organized

gene networks.

To determine how networks generated from the different

treatment groups (saline vs ethanol networks) and analyses (saline/

ethanol networks vs S-score networks) related to each other, we

performed pairwise comparisons of all network members (Figure

S4; Table S4). Many of the saline networks significantly

overlapped with networks in the ethanol data, indicating the

inter-gene correlations that constitute these networks are largely

stable across treatments and likely represent robust biological

relationships. Similarly, S-score networks generally had a sub-

stantial and predominant relationship with a single or small

number of saline or ethanol networks, as might reflect the

contribution of basal expression levels and the mathematical

derivation of S-scores from saline and ethanol expression data.

We examined in detail how the two major networks comprising

the PFC transcriptional response to ethanol, ErGeN1 and

ErGeN3, related to their respective counterparts in the saline

and ethanol RMA expression data, in order to determine what

additional information is provided by the S-score networks.

ErGeN1 was significantly enriched for members of saline network

1 and ethanol network 1. Likewise, the gene members of saline

network 1 and ethanol network 1 significantly overlapped each

other, with 215 genes in common. The overlapping components of

these three networks were frequently the mostly highly connected

nodes (Figure 4, ErGeN1 panel). ErGeN3 exhibited a similar

relationship with saline network 4 and ethanol network (Figure 4,

ErGeN3 panel). Therefore, these S-score networks largely

comprise the robustly inter-connected hubs of existing networks.

However, missing from Figure 4 are the 439 and 143 probe-sets

that belong to ErGeN1 and ErGeN3, respectively, but not their

counterpart networks in the saline or ethanol RMA expression

data. These network facets unique to the ErGeNs represent a form

of genetic co-regulation that would have gone undetected without

the use of S-score data.

Figure 2. Acute ethanol transcriptional response profiles. (A)
Strain frequency distributions of gene transcriptional-response classes
based on PFC S-score analysis. S-scores .2 indicate a gene was up-
regulated by acute ethanol, S-scores ,2 indicate down-regulation and
S-scores between these thresholds were considered unchanged. (B) S-
score strain distributions for three significantly ethanol responsive
genes that each represent a different class of ethanol response profile.
doi:10.1371/journal.pone.0033575.g002
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Genetic regulation of ethanol-responsive networks
To uncover the genetic elements co-regulating these networks

we performed expression QTL (eQTL) mapping for each probe-

set’s expression trait in the saline and S-score data (Table S5).

Doing so across both datasets allowed us to assess how the baseline

regulatory architecture of the PFC transcriptome is altered by

exposure to acute ethanol. Interestingly, the genetic regulatory

profiles for the two datasets differed substantially. Although the

majority of probe-sets mapped to at least one suggestive eQTL

(Table 1), only 6% of eQTL positions were conserved in both the

saline and S-score datasets. Indeed, we observed a fundamental

shift in the type of genetic regulation most prominent across these

datasets. Of the 3,279 genes with significant eQTL in the saline

expression data, 42% were considered to be cis-acting, since the

peak eQTL location mapped within 5 Mb of the linked expression

trait. Whereas in the S-score data cis eQTL accounted for less than

1% of the 1,215 genes with significant eQTL.

The effective absence of cis eQTL in the S-score data suggests

that mechanisms underlying ethanol-responsive gene regulation

may fundamentally differ from those governing basal transcrip-

tion. However, some portion of the basal cis eQTL are likely

spurious associations driven by polymorphisms between the B6

and D2 genomes (see Table S8) that affect microarray probe target

hybridization [47,48]. As the impact of such SNP effects should be

invariant across the saline vs. ethanol treatment conditions, any

spurious cis eQTL would be effectively filtered out of the S-score

eQTL results.

Similar to other genetical genomics studies, we found that many

changes in transcript abundance induced by acute ethanol were

linked to a relatively small number of highly influential loci, so-

called ‘regulatory hotspots’ or trans-bands. This was particularly

salient for eQTL profiles of the major ErGeNs (Figure 5). These

networks could largely be partitioned into 6 trans-bands that

mapped to loci on Chr 4, 7, 11, 13, 15 and 19. In most cases, these

Figure 3. Saline vs ethanol S-score paraclique networks. (A) Distribution of S-score network sizes based on the number of genes assigned to
each. Significantly ethanol-responsive genes were over-represented in a subset of these networks (red bars). (B) These 16 paracliques were
considered ethanol-responsive gene-enriched networks (ErGeNs). (C) Network-based clustering of the 1,246 significantly ethanol-responsive genes in
the PFC revealed distinct modules largely corresponding to the ErGeNs depicted in B.
doi:10.1371/journal.pone.0033575.g003
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trans-bands were unique to specific networks, the exceptions being

the Chr 7 and Chr 11 trans-bands, which were composed of genes

from ErGeN1 & ErGeN3, and ErGeN3 & ErGeN10, respectively

(Table 2).

Hub genes
The parameters used to construct the networks described above

were such that the vast majority of genes share edges with at least

half of the remaining network. Subsets of genes shared edges with

nearly all network members, and were more important to the

network based on measurements of connectivity and centrality.

These network hub genes could be major regulators of the

transcriptional response to acute ethanol and more generally, may

represent key points of vulnerability in underlying signaling

pathways responding to ethanol. We therefore identified hub

genes by ranking network members based on their degree of

connectivity and betweenness centrality. (Table S3).

Among the most highly connected hubs within ErGeN3 were

a number of genes that have been previously implicated in

modulating level of response to ethanol or susceptibility to alcohol

dependence (Figure 6), including Kcnma1 and Gsk3b. Kcnma1 is

a large conductance potassium channel whose activity is directly

affected by ethanol [49]. Gsk3b, is a serine/threonine kinase that

participates in the WNT signaling pathway and is an important

modulator of ethanol-induced neurotoxicity in both mice [50] and

Drosophila [51]. These findings on Kcnma1 and Gsk3b serve to

validate our network analysis approach, identifying these and

other hub genes (Figure 6) as potentially important modulators of

ethanol phenotypes.

The ErGeN3 member with the highest degree of connectivity

was a probe-set (1435583_at) annotated as AU067633. However,

recent data from RNA-Seq analysis of B6 and D2 brain transcripts

(Lu and Williams, personal communication) strongly suggests that

this probe-set actually targets the distal 39 untranslated region of

Grm3, a metabotropic glutamate receptor (Figure S5). Given the

considerable evidence that metabotropic glutamate receptors are

key mediators of the neuroadaptations associated with addiction

[52], Grm3’s position as a major hub of this ethanol-responsive

network has mechanistic implications for regulation of the network

and further supports the overall significance of this network in

ethanol traits.

Candidate regulators of ethanol-responsive networks
We sought to identify candidate regulators of ErGeNs by

dissecting the hotspots underlying each network trans-band.

Positional candidate genes located within trans-band support

intervals were empirically ranked using an integrative strategy that

combined DNA sequence polymorphisms and results from the

Figure 4. Relationship between ErGeNs and counterpart networks in RMA expression data. Both S-score networks, ErGeN1 and ErGeN2,
had counterpart networks in the basal saline and post-ethanol expression data: ErGeN1 significantly overlapped with saline network 1 and ethanol
network 1; ErGeN3 significantly overlapped with saline network 4 and ethanol network 2 (Figure S3). Each point represents a gene that belongs to
a given ErGeN’s counterpart saline network (blue), ethanol network (red) or both (green). Filled-in points indicate the gene also belongs to the
overlapping ErGeN. The X- and Y-axes measure gene connectivity (|Pearson correlation coefficient|$0.7) within the saline and ethanol expression
datasets, respectively.
doi:10.1371/journal.pone.0033575.g004

Table 1. Expression QTL mapping results for saline RMA and S-score datasets.

Dataset eQTL class Suggestive eQTL (# genes) Significant eQTL (# genes)

Saline trans 9,570 1,877

cis 433 1,355

S-scores trans 10,968 1,276

cis 62 7

P-value thresholds are genome-wide corrected with cutoff values defined as in Methods.
doi:10.1371/journal.pone.0033575.t001
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differential expression, eQTL and network connectivity analyses.

The full list of ranked candidate genes for each trans-band is

provided in Table S6.

The two largest ethanol-responsive networks, ErGeN1 and

ErGeN3, shared a common regulator on the proximal end of

Chr 7, between 15.52 and 36.48 Mb (Table 2). Examination of

eQTL for all members of these networks revealed a complicated

pattern of association, in which the trans-band could be

subdivided into several groups based on peak eQTL locations

that clustered between 16.3 and 35.04 Mb (Figure S6). Peak

linkage of genes from ErGeN3, however, was limited to a narrow

region between 30.1 and 30.2 Mb, at the distal edge of the support

interval. This locus represents the common regulatory hot-spot

shared by these two networks and harbors the two most highly

ranked candidate regulators of the Chr 7 trans-band: Scn1b,

a voltage gated sodium channel subunit and Aplp1, amyloid beta

precursor-like protein (Table 3). Both genes were significantly

ethanol-responsive, highly connected hub nodes in ErGeN1 and

associated with cis eQTL in the saline data. Unlike Aplp1, The

ethanol response of Scn1b was at least partially regulated by a local

polymorphism, as evidenced by its suggestive cis eQTL in the S-

score data. Both genes contain coding polymorphisms, Aplp1’s

harbored a polymorphic splice site, raising the possibility that

different Aplp1 isoforms may segregate members of the BXD

family.

Of the ErGeN1 genes without a trans eQTL on proximal Chr 7,

most could be partitioned into trans-bands linked to Chr 13 or 15.

The regulatory hotspots underlying these trans-bands were both

unique to ErGeN1 (Table 2). The Chr 13 trans-band support

interval spanned from 47.6 to 69 Mb and peaked at 54.88 Mb.

QTL for both cocaine induced activation [53] and hypothalamic

corticotropin-releasing factor binding protein (Crf-BP) transcript

abundance [54] were previously mapped to this region. Ranking

the positional candidates within this region revealed a promising

candidate in Sncb (Synuclein beta), a neuronal protein that is

widely co-localized to presynaptic terminals throughout the brain

[55]. Sncb was one of the largest ErGeN1 hub genes and was

regulated by suggestive cis eQTL in both the saline and S-score

datasets.

The regulatory hotspot underlying the Chr 15 trans-band has

previously been implicated as a regulator of two ethanol

behavioral phenotypes, including an ethanol preference QTL

mapped using congenic lines derived from B6 and BALB/cJ mice

[56]; as well as a QTL underlying loss of righting due to ethanol

[57,58]. The primary candidate regulator of this trans-band was

Nell2 (Protein kinase C binding protein), which showed the highest

regional response to ethanol. Nell2 was an important hub of

ErGeN1, as the network’s fifth most central gene. While Nell2’s

baseline transcription was strongly regulated by a cis eQTL, its

ethanol response was modulated by the Chr 13 regulatory hotspot.

Similar to the Chr 7 trans-band, the regulatory hotspot on Chr

11 was linked to trans-bands from multiple networks, ErGeN3 and

ErGeN10 (Table 2). Two strong candidate genes emerged from this

region: Gria1 and Ncor1 (Table 3). From a hypothetical functional

perspective, both genes are highly intriguing candidates; Gria1, as

an ionotropic glutamate receptor and Ncor1 as a transcriptional

Figure 5. Genetic regulatory architecture of major ErGeNs. Histogram of saline vs ethanol S-score eQTL (genome-wide p-value,0.63)
frequencies across the genome divided into 10 megabase (Mb) bins.
doi:10.1371/journal.pone.0033575.g005

Table 2. ErGeN trans-band locations.

Chr ErGeN ID Peak marker position (Mb) Support interval (Mb)

4 ErGen3 46.61 (rs13477694) 35.49–55.07

7 ErGen1 ErGeN3 34.62 (rs3694031) 30.14 (rs8261944) 15.52–36.48 24.06–30.43

11 ErGeN3 ErGeN10 58.38 (rs3697686) 53.89–68.93 56.35–62.07

13 ErGeN1 54.88 (rs13481817) 47.68–69.04

15 ErGeN1 89.87 (rs13482702) 86.80–95.78

19 ErGeN7 41.69 (rs3653396) 32.73–41.95

doi:10.1371/journal.pone.0033575.t002
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repressor acting through nuclear receptors and histone deacetyla-

tion. In our expression data, both genes were significantly ethanol-

responsive, however, Ncor1’s response was stronger than Gria1’s.

Furthermore, while the baseline expression of Gria1 was primarily

regulated by a highly significant cis eQTL, regulation of Ncor1 was

modulated by a suggestive cis and trans eQTL, the latter of which

coincided with the Chr 7 trans-band. Reanalysis of Ncor1’s

expression using a two-locus model revealed a significant in-

teraction between the Chr 11 and Chr 7 eQTL (data not shown).

Biological relevance of ethanol-responsive networks
As done for total ethanol-responsive gene sets, we investigated

GO or pathway functional over-representation for the S-score

networks. The vast majority of networks were over-represented for

at least one gene family, protein domain/interaction, KEGG

pathway or GO category, significant at a FDR level of 5% (Table

S7). ErGeN1 was strikingly enriched for proteins with GTPase

activity (p-value = 1.5E-07), including Rab3a, which mediates

ataxic consequences of ethanol consumption and influences

ethanol preference [59]. Both ErGeN1 and ErGeN3 were

significantly enriched for genes encoding proteins that localize to

the synapse (Table 4). In contrast, S-score networks 2 and 12 had

a large over-representation of genes related to ribosome function

and oxidative phosphorylation.

Using the BXD panel of mouse strains also allowed for direct

comparison of ethanol gene expression data with the wide variety

of phenotypic traits previously profiled in the BXD strains. To

detect high-level phenotypes regulated by ethanol-responsive gene

networks, we tested associations between ErGeNs and over 2,000

phenotypes available from GeneNetwork. This analysis was

conducted by measuring correlations between GeneNetwork

phenotypes and synthetic traits generated by principal component

analysis of ErGeN trans-bands (Figure 7). The first principal

component of each trans-band was used for computational ease

and clarity. Performing this analysis at the network and trans-band

level made it possible to detect patterns of phenotypic associations

with improved specificity. As expected, the analysis showed

a striking clustering of trans-bands for individual ErGeNs and

associated phenotypes.

The GeneNetwork phenome database contains a large number

of neuroanatomical morphometric measurements. Many of these

[60] were strongly associated with ErGeN1 in its entirety (i.e., all

trans-bands), including ventral hippocampus volume, overall brain

weight, dorsal thalamus volume and amygdala basolateral

Figure 6. Hub genes within ErGeN3. Network visualization of all genes comprising ErGeN3 that share at least one adjacent edge at a correlation
threshold of .|0.9|. Node color indicates the magnitude of a gene’s transcriptional response to ethanol, quantified using Fisher’s combined p-values.
Grey nodes were not altered by ethanol. Node size represents a genes degree of connectivity.
doi:10.1371/journal.pone.0033575.g006

Table 3. Candidate genes in ErGeN trans-band support intervals.

Trans-band Gene ErGeN Diff. exp. q-value Network scaled cis eQTL p-value SNPs

connect.a centrality saline s-score coding nsb

Chr 7 Aplp1 1 0.04 0.95 0.92 0.004 6 3

Chr 7 Scn1b 1 0.02 0.94 0.75 0.05 0.51 6 1

Chr 11 Gria1 3 0.03 0.49 0.56 261025 16 0

Chr 11 Ncor1 10 0.005 0.03 0.75 0.19 14 5

Chr 13 Sncb 1 0.008 0.98 0.92 0.2 0.21 1 0

Chr 15 Nell2 1 0.002 0.94 0.99 0.01 4 2

Differential expression q-values and network parameters defined in Methods.
aConnectivity;
bNon-synonymous SNPs.
doi:10.1371/journal.pone.0033575.t003
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complex volume [54]. This network was also highly correlated

with the Bmax for naloxone binding [61], a m-opioid receptor

antagonist that is an approved treatment for alcoholism. Whereas

only a subset of ErGeN1’s trans-bands were correlated with

morphine metabolism rate [62]; the same two trans-bands also

correlated with ethanol acceptance in a two-bottle choice test [63].

This analysis also revealed ErGeN’3s to be important potential

mediators of phenotypic responses to several drugs of abuse. As

a whole, ErGeN1 impacts both baseline locomotor activity [64] and

habituation [65] in novel open field tests, but the effect of cocaine

on these phenotypes was primarily correlated with ErGeN1’s Chr 7

trans-band. Interestingly, non-locomotor based responses to

cocaine were associated exclusively with ErGeN3, including

measurements of stereotypic repeated movements [66,65] and

conditioned place preference for the drug (Phillips et al.,

unpublished). Given the importance of dopamine levels in

activating these behaviors, particularly stereotypy, we expected

to find a strong connection between ErGeN1’s Chr 7 trans-band

and the dopamine binding phenotypes included in the GeneNet-

work database. Instead, we observed that ErGeN7’s solitary trans-

band on Chr 19 to be the primary correlate of these measure-

ments, which included Drd1 & Drd2 binding density in the dorsal

striatum and NAc [65].

Along with ErGeN1, ErGeN3 was related to Naloxone Bmax

concentration but also showed strong correlations with morphine

induced locomotor activation and naloxone induced morphine

withdrawal (Phillips et al. unpublished). These morphine pheno-

types were also connected to ErGeN10. This overlap is perhaps not

surprising given the strong association between many genes within

ErGeN3 and ErGeN10 (Figure 3c), as well as the shared trans-band

support interval on Chr 11. However, one distinction between

ErGeN3 and ErGeN10 was the clustered connections of numerous

ethanol relevant phenotypes to ErGeN10. While ErGeN3 correlated

with ethanol metabolism rate [67] and blood glucose levels

following ethanol treatment [68], ErGeN10 appears more related to

ethanol behavioral phenotypes, including ethanol induced loco-

motor activation [63], anxiolysis (Cook et al., unpublished) and

sensitization [69].

Discussion

Here we have presented results from the first genetic analysis of

acute ethanol-responsive gene expression in the three major brain

regions comprising the mesocorticolimbic reward pathway, and

a comprehensive characterization of gene networks that constitute

this gene expression response in PFC. Our analysis identified

unique gene networks with implications on ethanol-evoked

neuroadaptive mechanisms and behaviors, and showed that the

response of such networks is governed by overlapping sets of

discreet genetic loci. Perhaps most importantly, this analysis

highlighted a series of hub genes as potentially major factors

influencing brain responses to ethanol, setting the stage for future

mechanistic studies and possible development of novel therapeutic

approaches to alcoholism.

The approach used here to identify ethanol-responsive genes

was somewhat unorthodox for a microarray study. Rather than

comparing two treatment groups composed of multiple biological

replicates, our treatment groups comprised relatively large samples

of 29–36 genetically unique individual strains. Although only

single arrays were performed per strain/treatment, the issue of

biological variability was reduced by pooling tissue samples from

at least 4 biological replicates per strain. Our use of the S-score

analysis method to compare ethanol vs. saline responses further

improved the robustness of our genetic correlation analysis [70].

Gene expression correlations or expression-genotype correlation

significance were also empowered by the number of strains

compared. The approach identified a robust set of genes whose

expression levels were significantly altered by ethanol across the

BXD strains in at least one of the three profiled brain regions. This

gene set included a large contingent of our prior 2-group

microarray study of brain ethanol-responsive genes [21]. Striking-

ly, nearly a quarter of the ethanol-responsive genes defined here

were previously identified as having basal expression differences in

a meta-analysis by Mulligan et al. [71] of microarray data from

whole brain RNA of a number of inbred lines selected for

divergent ethanol preferences (Figure S7). It’s likely the extent of

this overlap would have been greater if that meta-analysis had

been conducted across targeted brain regions, rather than whole

brain. Regardless, many of the genes whose basal expression levels

segregate with alleles driving divergent preferences for ethanol

were also regulated upon exposure to acute ethanol in our study.

This finding both adds validation to both studies and further

emphasizes the relevance of studying acute molecular or

behavioral responses to ethanol in terms of their implications for

molecular events underlying chronic ethanol behaviors.

One potential confound in our analysis of ethanol-responsive

gene networks regards the experimental design used for micro-

array studies. Since the BXD strains used for tissue harvesting

were also part of a behavioral genetics analysis on ethanol

anxiolytic actions (Putman, Wolen and Miles, manuscript in

preparation), the animals received mild restraint stress and

behavioral testing, in addition to saline or ethanol treatment (see

Methods). Use of S-scores to compare saline vs. ethanol-treated

animals was calculated to remove the effect of stress from the

derived expression patterns since both groups were handled

identically. However, we cannot rule out that an interaction

between stress and ethanol, rather than just a response to acute

ethanol, might contribute to some of the gene networks found in

our studies. Regardless, the large overlap between expression

patterns derived here for acute ethanol and a published study on

basal gene expression correlating with predisposition to ethanol

consumption [71], does lend strong support to the argument that

Table 4. Functional analysis of major ErGeNs.

Functional category Source FDR p-value # of genes

ErGeN1

GTPase activity GO:MF 1.5E-07 26/219

Regulation of synaptic transmission GO:BP 1.85E-07 21/153

Neurotransmitter secretion GO:BP 2.31E-06 14/85

Synapse part GO:CC 3.08E-09 32/270

Dendrite GO:CC 8.56E-09 25/182

Synaptosome GO:CC 7.85E-07 15/91

PTEN pathway MigDB 2.86E-06 7/18

ErGeN3

RING-type zinc fingers HGNC 1.2E-07 16/209

Synapse part GO:BP 1.83E-06 16/270

FHF complex GO:CC 2.84E-05 3/5

Histone deacetylase complex GO:CC 3.56E-04 5/43

Potassium channels HGNC 2.28E-05 6/88

doi:10.1371/journal.pone.0033575.t004
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the networks discussed here are likely to be important in

behavioral responses to ethanol.

Additional technical factors to be considered in these studies

regards the use of only a single microarray per strain/treatment

group and the possibility of SNPs affecting microarray probe

performance. Although arrays were derived from pooling tissue

across 4–5 animals, technical variance could have influenced our

results. We believe that such variance would have likely only

degraded expression correlations and done so partially given the

number of strains used for the genetic correlation analysis. In

particular, identification of overlapping trans-eQTL for many

genes within a given paraclique (Figs. 5 and S6) is strong evidence

for the technical rigor of these studies since such genetic

correlations would have been severely affected by technical

variance. Regarding potential SNPs affecting hybridization results,

this issue was discussed in Methods and a complete list of SNPs

identified in probes is included in Table S8. Since our analysis

largely focused on ethanol-regulated gene expression and the S-

score analysis would cancel out any SNP effect (since both control

and ethanol treated samples would be affected), we chose not to

eliminate SNP containing probes from our analysis but did

penalize them during candidate gene ranking (see Methods).

This genetic analysis of ethanol-responsive gene expression

allowed extension beyond dichotomous gene lists, to the spectrum

of acute ethanol transcriptional responses influenced by naturally

occurring polymorphisms segregating in the BXD strains. This

approach identified gene groups having by a wide range of

differential expression profiles: including genes such as Npas4,

Figure 7. ErGeN trans-bands have distinct phenotypic correlations. Correlations between principal component traits of ErGeN trans-bands
and BXD phenotypes (p-value,0.01). Edge thickness indicates strength of network/phenotype association and dashed lines indicate a negative
correlation. Each phenotype node is labeled with a trait ID that can be queried on GeneNetwork.
doi:10.1371/journal.pone.0033575.g007
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which was consistently up-regulated by ethanol, and Gabrb2, whose

response entailed up-regulation, down-regulation and no change,

depending on the subset of strains (Figure 2). Such a range of

expression changes highlights the complex role of genetic

background in modifying molecular responses to acute ethanol

exposure.

We leveraged the genetic variance in ethanol expression profiles

by deriving dense paraclique gene networks co-regulated by acute

ethanol. These networks likely represent initial perturbations of

key molecular pathways, which, upon repeated consumption of

ethanol, produce downstream neuroadaptations associated with

alcohol abuse and dependence. The functional results of ErGeN1

and ErGeN3 (both of which were highly populated with robust

ethanol-responsive genes) support this assertion, as both networks

were significantly enriched for proteins involved in neurotrans-

mission and synaptic plasticity (Table 4, Table S7).

A valuable advantage of such network-based approaches is that

the relative importance of specific genes can be assessed in part, by

the context of their surrounding interactions. There is a continu-

ously growing body of evidence suggesting that hub genes are of

particular importance to genetic networks. For example, in-

troducing null mutations into hub genes negatively impacted the

hardiness of Escherichia coli to a much greater extent than did

mutations of randomly selected genes [72]. This may be explained

by an observation made in Caenorhabditis elegans, showing that hub

genes participated in a variety of canonical signaling pathways

[73]. In a genetic network study of mouse liver, hypothalamus and

adipose tissue, hub genes were also found to be highly connected

nodes across all three expression datasets [74]. In the results

presented here, we too found that many hub genes in basal

networks maintained hub status within ErGeN’s as well (Figures 4

and 6).

The major hub genes of PFC saline vs ethanol S-score networks,

and particularly ErGeN3, included a number of genes previously

implicated in drug dependence and neurological disease. The

aforementioned node with the highest betweenness centrality in

ErGeN3 was a probe-set targeting Grm3. It is well established that

metabotropic glutamate receptors play an important functional

role in the development of AUD [75,52,76]. Studies have

demonstrated, in particular, that modulation of Grm3 decreases

ethanol seeking in rats [77,78]; although the agonists used in these

studies also bind Grm2. Grm3 is also a high priority candidate gene

for schizophrenia, as a group II mGluR agonist (LY354740)

blocked many symptoms induced in the rat phencyclidine

treatment model of schizophrenia [79]. Grm3 has also been

associated with schizophrenia phenotypes in human genome-wide

association (GWA) studies [80]. Among the genes adjacent to Grm3

in ErGeN3, the strongest correlation was between Grm3 and Nrg3

(r = 0.97, p-value,1e-16). Like Grm3, Nrg3 (neuregulin 3) is a highly

connected gene in ErGeN3 as well as a schizophrenia candidate

gene [81,82].

The large conductance potassium channel, Kcnma1, was also an

ErGeN3 hub gene (Figure 6). In addition to its known functional

response to ethanol exposure [49], Kcnma1 is a very intriguing hub

gene because it is a proven major regulator of acute ethanol-

induced intoxication in C. elegans [83]. Furthermore, two recently

published human GWA studies have provided preliminary

evidence for a link between Kcnma1 and alcohol dependence

[84,85]. The study by Kendler and colleagues also identified

another voltage gated potassium channel, Kcnq5, as having an

association with AD. This is an exciting result, as Kcnq5 is directly

adjacent to Kcnma1 in ErGeN3, and both genes are highly ethanol-

responsive and major hubs of the network.

In addition to identifying hub genes as leading candidates for

future verification studies, our genetic dissection of ethanol-

responsive gene networks also produced clues regarding the

mechanisms underlying ethanol network responses. Identification

of chromosomal hot spots linked to ethanol responses for entire

gene networks provides genetic evidence for hubs influencing the

response of ErGeN’s and expands our understanding of brain

molecular signaling events responding to ethanol. For example,

the sodium channel Scn1b was a hub gene in ErGeN1, showed

robust ethanol-responsiveness, had a highly significant cis-eQTL

and also was a strong candidate for regulating a trans-band of

ErGeN3 mapping to exactly the location of Scn1b. Scn1b codes for

a regulatory subunit of sodium channels which are crucial to

action potential propagation. Ethanol has been shown previously

to inhibit sodium channel function [86]. This data suggests that

Scn1b and other such potential regulators of ethanol-responsive

trans-bands may be key modulators for extensive portions of the

overall ethanol responsome.

Defining complex endophenotypes such as acute ethanol

sensitivity in terms of gene networks, rather than the genetic

variants that influence them, has the potential to yield information

about complex diseases that is more generalizable to humans.

Network function, rather than individual gene influences, is likely

more conserved evolutionarily. The ethanol-responsive gene-

enriched networks defined here could assist human GWA studies

by providing a novel source of functionally related candidate

genes. As mentioned above, the fact that several of the major

ErGeN hub genes have been recently implicated in GWA studies

suggests this approach is highly promising.

Co-analysis of human GWA studies and ErGeN hub genes may

provide a bidirectional validation for such genes, even leading to

candidates for therapeutic targeting. However, taken out of

context, such single genes still do not define the mechanisms

underlying cellular, neural network or behavioral responses to

ethanol, which remains our chief objective in identifying and

dissecting these gene networks. Direct validation of hub genes, in

terms of both gene network regulation and phenotypic responses,

are required to fully understand the role of these ethanol-

responsive networks in complex behavioral responses. Ongoing

studies in our laboratory seek to adapt and extend this approach,

through genetic manipulation of ErGeN hub genes, in order to

observe downstream effects on the original ethanol-responsive

network as well as the network-associated ethanol behavioral

phenotypes. Such validation of network-derived candidates could

provide a novel approach to future pharmacotherapies for AUD,

directed against regulation of a gene network rather than function

of a single protein.

Supporting Information

Figure S1 Outline of integrative strategy used to
prioritize positional candidate genes underlying ErGeN
trans-bands.

(TIFF)

Figure S2 In order to determine the degree to which
a gene’s transcriptional response to ethanol is tissue-
specific, we calculated cross-regional S-score correla-
tions for each of the 399 probe-sets that were signifi-
cantly ethanol responsive in the PFC, NAc and VMB. (A)
The distribution of Pearson correlation coefficients and (B)
corresponding p-values, indicate there is effectively no coordinated

response to ethanol across regions.

(TIF)
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Figure S3 Traditional non-parametric partitioning and
clustering of all significantly ethanol-responsive genes in
the PFC. The number of modules was determined by principal

component analysis, which revealed the first 4 components

explained ,70% of the variation in these genes S-scores (A).
Genes were assigned to modules by partitioning around medoids,

which were then independently hierarchically clustered based on

average linkage of Pearson correlations. These results are

visualized in the heatmap (B). Warmer colors represent positive

S-scores (up-regulated by ethanol) whereas cooler colors indicate

negative S-scores (down-regulated by ethanol). The adjacent

column of colors indicates to which PFC S-score network the

corresponding gene was assigned.

(TIFF)

Figure S4 Substantial overlap existed between the gene
constituents of paraclique networks formed with the
saline (blue squares) and ethanol (red diamonds) RMA
expression datasets, and the saline vs ethanol S-score
(green circles) expression data. The statistical significance of
overlap between networks was determined by Fisher’s exact test,

which identified 161 inter-dataset networks with more genes in

common (edge numbers) than would be expected by chance, based

on a Bonferroni-corrected p-value,0.05 (Table S4). The figure

depicts a subset of the overlapping inter-dataset network relation-

ships that share at least 15 genes in common. Each shape

represents the co-expression network specified by its label. Node

color and shape indicate the expression dataset used to form the

network, while node size is proportional to the number of genes

comprising the network. Edge thickness represents the statistical

significance of the overlap.

(TIF)

Figure S5 Whole brain RNA-Seq expression data across
the Chr 5 region that encompasses AU067633 and Grm3
(A), adapted from GeneNetwork mirror of the UCSC
Genome Browser (ucscbrowser.genenetwork.org). Al-

though probe-set 1435583_at (red) putatively maps to an

AU067633 intron, it appears to actually target Grm3’s 39 UTR,

which is highly expressed from the negative strand across the same

stretch of DNA. Probe-set 1435583_at’s basal RMA expression

levels were significantly correlated with the distal Grm3 probe-set,

1430136_at, while showing no relationship to the proximal

AU067633 probe-set, 14338324_at (B).
(TIFF)

Figure S6 Support intervals for the major eQTL hotspot
on Chr 7 for ErGeN1 (A) and ErGeN3 (B), and the eQTL
hotspot on Chr 11 for ErGeN3 (C) and ErGeN10 (D). Each
horizontal line represents an individual probe-set’s 1.5 LOD drop

support interval, ordered and colored based on peak LOD score.

Blue ticks indicate peak eQTL locations. The heatmap along the

x-axis represents the percentage of probe-set support intervals that

encompass the underlying markers.

(TIFF)

Figure S7 (A) Overlap between 2,743 genes that exhibited

a significant response to acute ethanol across the BXD family in

PFC, NAc or VMB and 3,859 genes identified as differentially

expressed between several high and low ethanol preferring strains

in a meta-analysis of whole brain tissue [70]. Overlap significance

was measured using a one-tailed Fisher’s exact test. (B)

Distribution of the intersecting acute-ethanol/ethanol-preference

genes among profiled regions of mesocorticolimbic CNS reward

circuit.

(TIFF)

Table S1 Regional Differential Expression Results. (A)
Affymetrix probeset IDs, gene symbols, Entrez gene identifiers and

differential expression q-values for genes significantly regulated by

ethanol in PFC across BXD strains. (B) Values for NAc. (C) Values
for VMB.

(XLS)

Table S2 Results for functional over-representation
analysis of genes differentially expressed in PFC (A),
NAc (B),VMB (C) and intersection across regions (D).
(XLS)

Table S3 PFC paraclique networks. Gene identifiers and

network parameters (connectivity and centrality) for Saline (A)

versus S-score (B) paracliques.

(XLS)

Table S4 Overlapping cross treatment paraclique net-
works. Matching of paraclique networks across saline, ethanol or

S-score datasets from PFC.

(XLS)

Table S5 Expression QTL analysis of PFC paraclique
networks. Peak QTL positions and significance are indicated for

genes from saline (A) versus S-score (B) paraclique analyses.

(XLS)

Table S6 Ranked trans-band positional candidate
genes. Results of empirical ranking scheme for saline versus S-

scores paracliques are shown for eQTL mapping to Chr 4, 7,11,

13, 15 and 19.

(XLS)

Table S7 Functional analysis of PFC paraclique net-
works. Data is from ToppGene functional over-representation

analysis of paraclique networks.

(XLS)

Table S8 D2 SNPs overlapping Affymetrix Mouse 430
type 2 microarray probes. Table indicates location and

sequence of SNPs existing between B6 versus D2 mice and the

position of probeset sequences from the Affymetrix 430 type 2

arrays.

(XLS)
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