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The vestibular system sends projections to brainstem autonomic nuclei that modulate
heart rate and blood pressure in response to changes in head and body position with
regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular
stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency
(0.02–0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized
rats. We have hypothesized that these responses occur through activation of vestibulo-
sympathetic pathways. In the present study, c-Fos protein expression was examined in
neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were
activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial,
and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary
nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed
in MVN, where immunolabeled cells were present throughout the rostro-caudal extent
of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely
absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal
SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped
area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and
glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons
showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting
the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projec-
tion from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons
in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in
the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a
reliable marker for sGVS-activated neurons of the vestibulo-sympathetic pathway.
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INTRODUCTION
The family of immediate early genes has over 40 members, includ-
ing c-fos, c-jun, and c-myc. Many of the genes in this family,
including c-fos, are DNA-binding transcription factors with a zinc
finger motif (Curran and Morgan, 1995). The protein product of
c-fos activation, c-Fos, is transported to the cell nucleus, where it
dimerizes with members of the Jun protein family to form activa-
tor protein (AP)-1 transcriptional complexes. Such complexes, in
turn, participate in the subsequent regulation of target (late) gene
expression (for reviews, see Morgan and Curran, 1991; Hughes
and Dragunow, 1995; Durchdewald et al., 2009).

Immediate early genes have minimal expression in quiescent
neurons, but are transiently activated in response to a broad spec-
trum of excitatory extracellular stimuli. Of note, the intracellular
signaling cascades triggered by such stimuli occur over a more pro-
tracted period (minutes–hours) than the millisecond timeframe of

synaptically mediated changes in neuronal excitability (Illing et al.,
2002). In fact, peak c-fos mRNA and c-Fos protein accumulation
occur approximately 30 min and 1.5–4 h following stimulation,
respectively, and protein levels usually return to baseline within 6–
8 h (Morgan and Curran, 1989; Herdegen and Leah, 1998). Since
c-fos transcription is relatively rapid, does not require new pro-
tein synthesis, and has a very short half-life, and since the protein
product has a high turnover rate,gene expression and c-Fos protein
accumulation can be used as indicators of neuronal activity (Mor-
gan and Curran, 1991). Moreover, since induction of c-fos mRNA
and accumulation of c-Fos protein can occur trans-synaptically,
it is possible to identify functionally related neurons at multiple
stages along neural pathways of interest (Dragunow and Faull,
1989). While the extended period of c-Fos protein accumulation
precludes the possibility of identifying sequential synaptic con-
nections based on temporal dissection, as is done with viral vector
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tracing techniques, the advantage of c-Fos localization is the ability
to visualize neurons that are specifically activated by a particular
stimulus.

The utility of c-Fos as a marker for neuronal activation has
been demonstrated in a wide range of studies using behavioral
paradigms, systemic drug infusions, neuroreceptor ligand bind-
ing, and electrical and chemical stimulation (Herdegen and Leah,
1998). Fos expression has typically been associated with excitatory
activation of sensory systems, and c-Fos is not manifest in neurons
that are tonically inhibited (Chan and Sawchenko, 1994). Cells
that receive predominantly excitatory input and some cells under
conditions of release from tonic inhibition show c-Fos expression
in response to stimulation, although other disinhibited neurons
do not (for review, see Kovács, 2008). Moreover, c-Fos is rarely
observed in large motor neurons of the brainstem (Chan and
Sawchenko, 1994). Thus, c-Fos expression occurs only in a subset
of the cells that are activated by a particular stimulus.

In the vestibular system, c-fos expression and c-Fos protein
localization have been used to visualize neurons that participate
in several functional pathways and systems-level mechanisms.
These studies have sought to identify the locations and distrib-
utions of neurons activated by semicircular canal, otolith organ,
or combined canal/otolith-related stimulation achieved through
a variety of experimental paradigms including horizontal and
vertical linear acceleration, Ferris wheel rotation, off-vertical-axis
rotation (OVAR), centrifugation, spaceflight, and steps of gal-
vanic vestibular stimulation (GVS; Kaufman et al., 1992b, 1993;
Kaufman and Perachio, 1994; Marshburn et al., 1997; Gustave
Dit Duflo et al., 2000; Saxon et al., 2001; Pompeiano et al., 2002;
Chen et al., 2003; Fuller et al., 2004; Lai et al., 2004, 2006, 2008;
Kaufman, 2005; Zhang et al., 2005; Cai et al., 2007, 2010; Tse
et al., 2008; Abe et al., 2009; Baizer et al., 2010). In addition, a
number of studies have used c-Fos to identify central vestibular
neurons that are activated in response to unilateral or bilateral
destruction or inactivation of receptor hair cells, individual end
organs, the entire labyrinth or the vestibular nerves (Kaufman
et al., 1992a, 1993, 1999; Kitahara et al., 1995, 1997; Cirelli et al.,
1996; Darlington et al., 1996; Kim et al., 1997, 2002; Gustave
Dit Duflo et al., 1999; Shinder et al., 2005a,b, 2006), since these
cells and tissues may play key roles in the process of vestibular
compensation.

It is well documented in experimental animals that the vestibu-
lar system sends projections to autonomic centers that modulate
heart rate and blood pressure in response to changes in head
and body position, particularly with regard to gravity (for review,
see Holstein et al., 2011b). Primary afferents of this pathway are
derived mostly (but not exclusively) from the otolith organs, and
are thought to terminate on cells in the caudal vestibular nuclear
complex (VNC). Second order vestibular neurons project directly
as well as indirectly to brainstem sites involved in the regulation
of cardiovascular activity such as nucleus tractus solitarius (NTS)
and the rostral ventrolateral medullary region (RVLM; Balaban
and Beryozkin, 1994; Yates and Miller, 1994; Yates et al., 1994;
Porter and Balaban, 1997; Holstein et al., 2011a). However, despite
the nearly century-old appreciation that the vestibular system par-
ticipates in the control of blood pressure (Bradbury and Eggleston,
1925), and a wealth of information concerning the baroreflex

pathways, the descending vestibulo-sympathetic pathways remain
largely uncharacterized.

Steps of GVS have been used in experimental animals to acti-
vate vestibular nerve fibers and cause changes in blood pressure
and heart rate (Courjon et al., 1987; Abe et al., 2008, 2009). In
addition, GVS has been used extensively in humans, in whom
brief trains of sinusoidally modulated GVS (sGVS) have repeatedly
been demonstrated to increase muscle sympathetic nerve activity
(SNA; Bent et al., 2006; Voustianiouk et al., 2006; Grewal et al.,
2009; James and Macefield, 2010; James et al., 2010). This current
activates the entire vestibular nerve (Peterson et al., 1980; Gold-
berg et al., 1984), but does not appear to stimulate non-vestibular
“graviceptors” (for review, see Curthoys, 2010). Although sGVS
initiates activity throughout the VNC, the responses of many acti-
vated vestibular neurons habituate rapidly (Courjon et al., 1987).
For a more detailed discussion of the impact of sGVS stimulation,
please see the accompanying Opinion Article by Cohen and col-
leagues. In brief, the low frequency of the sinusoidal stimulus, the
frequency-dependent postural sway evoked by sGVS in standing
human subjects (Lau et al., 2003), and the ocular roll but not nys-
tagmus that is elicited by sGVS (Watson et al., 1998; MacDougall
et al., 2005) all suggest the central pathways that remain activated
as a result of this stimulus are primarily related to the otolith sys-
tem. Our recent report of sGVS effects on heart rate and blood
pressure in rodents further supports this conclusion (Cohen et al.,
2011). The present study tested the hypotheses that the immediate
early gene c-fos is activated in response to sGVS, and that c-Fos
protein accumulates in the nuclei of vestibular neurons located in
regions that are associated with vestibulo-autonomic pathways in
sGVS-stimulated animals, but not in non-stimulated controls.

MATERIALS AND METHODS
All experiments were approved by the Institutional Care and Use
Committee of the Mount Sinai School of Medicine and were car-
ried out in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals (NIH Publications
No. 80-23, revised 1996). Data from 20 adult, male Long-Evan
rats (Harlan Laboratories, MA, USA) weighing 300–400 g were
used for these studies. Five rats received head fixation mounts
and implanted telemetric transmitters to measure blood pressure.
Three rats were used in terminal experiments in which blood pres-
sure was measured via a transducer catheter inserted into the
external carotid or femoral artery. These rats were not used for
anatomical experiments. In the remaining 12 animals, peripheral
blood pressure was measured by photoplethysmography (PPG)
and no head mounts were used. PPG is a non-invasive optical
technique used to detect blood volume changes at the surface of
the skin.

SURGICAL PROCEDURES
All surgical procedures were conducted aseptically in rats anes-
thetized with isoflurane (4% induction; 2–2.5% maintenance in
95% O2/5% CO2), and kept on an Isotherm heating pad regulated
by feedback from a rectal thermometer. Post-surgical pain was
managed with buprenorphine (0.05 mg/kg BID, SQ) for 3 days.
Rats were allowed to recover for a minimum of 7 days before
they were used in experiments. Implantation of telemetric blood
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pressure measurement devices and placement of head fixation
mounts (described below) were accomplished during the same
aseptic surgical session.

IMPLANTATION OF HEAD MOUNTS FOR PAINLESS IMMOBILIZATION
OF THE HEAD
Rats were anesthetized with isoflurane (as above) and placed in
a stereotaxic frame. After removing a round patch of skin and
the periosteum from the calvarium, sterile stainless-steel screws
were secured into four burr holes drilled around the perimeter of
the skull. Dental acrylic cement was poured over the calvarium to
cover the screws. Two steel nuts were also encased in the hardening
acrylic to receive the bolts used to immobilize the subject’s head
during some vestibular testing.

IMPLANTATION OF TELEMETRIC BLOOD PRESSURE SENSORS IN THE
AORTA
Five rats were implanted with telemetric blood pressure sensors
(DSI, St Paul, MN, USA). After placing an approximately 2 cm inci-
sion in the groin, the femoral artery was isolated and occluded with
two mini-clamps. The sensor catheter was inserted into the vessel
via a small arteriotomy and, after removing the cranial clamp, was
advanced into the abdominal aorta. The catheter was secured with
two ties around the artery and the body of the sensor was placed
into a subcutaneous pocket in the animal’s flank. The pocket was
closed with a purse-string suture and the skin incision was closed
with surgical staples. Of the five rats, three received sGVS (see
below) and two were used as mock stimulation controls.

CANNULATION OF CAROTID AND FEMORAL ARTERIES
Three rats were used in terminal experiments in which blood pres-
sure was recorded with an external pressure transducer connected
to a Grass amplifier. Rats were anesthetized with isoflurane (as
above) and placed in a supine position in a stereotaxic frame. In
one rat, a transducer catheter was introduced into the femoral
artery and advanced into the abdominal aorta. In two other rats,
the catheter was placed into the external carotid artery. Blood pres-
sure was measured via Grass amplifier. No anatomical studies were
conducted on tissue from these animals.

SINUSOIDAL GALVANIC VESTIBULAR STIMULATION (sGVS)
sGVS was given binaurally in 16 animals (the 6 rats with intra-
aortic sensors and 10 rats with no implanted devices) at 2 mA
and a frequency of 0.025 Hz. The stimulus was applied for five
cycles and repeated five times with 3 min rest between repetitions.
Sinusoidal currents generated by a computer-controlled stimula-
tor (Voustianiouk et al., 2004) were delivered via Ag/AgCl needle
electrodes (BAK) inserted into the skin over the mastoids, behind
the external auditory meati (Cohen et al., 2011).

MOCK STIMULATION CONTROLS
Four rats were used as controls for the sGVS stimulation. Two of
these rats had head mounts and implanted telemetric blood pres-
sure sensors, and the other two were tested using PPG. The control
rats were placed in the cylindrical holder for sGVS testing. Ag/AgCl
needle electrodes were inserted into the skin over the mastoids,
behind the external auditory meati, and connected to the cur-
rent stimulator. The rats were maintained as such for 90–120 min,

but no current was applied. All subsequent animal and tissue
treatments were identical for the mock- and sGVS-stimulated
subjects.

BLOOD PRESSURE AND HEART RATE MEASUREMENTS
Blood pressure data from the telemetric sensors were collected
via a wand receiver (DSI, St Paul, MN, USA). Blood pressure in
response to sGVS or mock stimulation was recorded continuously
using customized A/D conversion hardware and stored at a rate
of 1 KHz with 12-bit resolution (Data Translation, Inc.; Marlboro,
MA, USA). The data were converted for analysis using VMF data
analysis software.

PHOTOPLETHYSMOGRAPHY
We modified the standard clinical PPG method (Imholtz et al.,
1991) in order to assess the heart rate and blood pressure changes
induced by sGVS non-invasively. PPG monitors peripheral blood
circulation, and the signal is composed of two major factors:
peripheral blood pressure and vasoconstriction (Imholtz et al.,
1991). The PPG signal was initially processed by a band pass filter
in the hardware in order to increase the heart beat component.
High frequency noise was removed off-line in the analysis soft-
ware. PPG was recorded in 12 rats from a small clamp placed on
a paw.

TISSUE HARVESTING AND PROCESSING
Perfusion, fixation, and tissue sectioning
While peak c-Fos protein accumulation has been demonstrated
90–240 min after stimulation,most studies report maximal expres-
sion at 90–120 min and decreased expression at shorter and longer
times (for recent reviews, see Kovács, 2008 #2526; Durchdewald
et al., 2009 #2527). On this basis, animals for the present study were
deeply anesthetized with isoflurane and perfused transcardially
with 100 ml of (37˚C) 10 mM phosphate buffered saline (PBS)
followed by 500 ml of 4% paraformaldehyde/0.2% glutaraldehyde
fixative in 0.1 M PB (pH 7.4) at room temperature (RT) 90 min
after the completion of the sGVS stimulation. Brains were har-
vested immediately after perfusion, blocked using an adult rat
brain coronal matrix (Ted Pella, Inc.; Redding, CA, USA), and
stored at 4˚C in PBS with 0.02% NaN3. Tissue blocks were sub-
sequently cut by vibrating microtome into 50 μm thick serial
sections that extended through the entire VNC and ventrolat-
eral medullary region. All the medullary sections (usually about
120 per animal) were stored in PBS with 0.02% NaN3 (as a
preservative) at 4˚C.

Anatomical boundaries
The presence and location of the four main vestibular nuclei
(spinal, medial, lateral, and superior) were determined for each
tissue section by comparison of the anatomical structures present
in the dorsal aspect of the section with the most commonly used
stereotaxic atlases of the region (Paxinos and Watson, 1998; Paxi-
nos et al., 1999). The boundaries for the RVLM were determined
in each tissue section by comparison of the structures present in
the ventral aspect of the section with published maps and atlases of
that region (Paxinos et al., 1999; Card et al., 2006; Bourassa et al.,
2009; Goodchild and Moon, 2009). Utilizing the most conservative
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estimates based on these published maps, we identified the RVLM
as the 1-mm rostro-caudal region extending from approximately
11.8 to 12.8 mm caudal to Bregma. The other dimensions of the
region were defined by a triangle with pars compacta of nucleus
ambiguus at the apex, and the ventral surface of the medulla 1.4
and 2.2 mm lateral to the midline as the two other geometric
points. As recently noted (Goodchild and Moon, 2009), this region
corresponds well with previously published functional and phys-
iological maps of RVLM. Related nuclear groups such the caudal
ventrolateral medulla and the intermediolateral cell column were
not analyzed in this study.

Primary antibodies
The monoclonal mouse anti-glutamate (MAb 215B2, IgG1) anti-
body used in this study was produced in our laboratory. A
full description of the antibody production, characterization,
and specificity was published previously (Holstein et al., 2004).
Antibodies produced by this clone were screened exhaustively
by ELISA for cross-reactivity with other amino acids and neu-
rotransmitters conjugated to bovine serum albumin (BSA) by
glutaraldehyde. In addition, pre-incubation of MAb 215B2 with
glutamate bound to BSA completely blocked ELISA reactivity
and tissue section staining. ELISA assays also demonstrated that
free glutamate could be fixed to rat brain homogenate protein
by the paraformaldehyde/glutaraldehyde mixture (but not by
paraformaldehyde alone), and that fixed glutamate was specifically
recognized by our anti-glutamate monoclonal antibody (Holstein
et al., 2011a).

Four commercial antibodies against c-Fos were utilized in this
study: two rabbit polyclonal antisera (Santa Cruz Biotechnol-
ogy, Cat. #253; Calbiochem, Cat. # PC38), one rabbit polyclonal
antiserum directly conjugated with Alexa Fluor 488 (Santa Cruz
Biotechnology, Cat. #253 AF488), and one mouse monoclonal
IgM antibody (United States Biologicals; Cat. #C-0030-02). In
addition, some tissue sections were exposed to a mixture of rab-
bit polyclonal antibody (Santa Cruz Biotechnology, Cat. #253)
preabsorbed with blocking peptide as a control for non-specific
staining. With our tissue fixation and processing conditions, the
unlabeled polyclonal sera provided more robust labeling than the
monoclonal antibody and the Alexa Fluor 488-tagged polyclonal
antiserum. Results using the two unlabeled polyclonal sera were
indistinguishable.

A commercial mouse monoclonal antibody against tyrosine
hydroxylase (TH; Millipore, Billerica, MA, USA) was also utilized
in the research. This antibody was used to identify catecholamin-
ergic neurons in the RVLM, and stained the same catecholamin-
ergic cell groups, including the C1 group, demonstrated by other
investigators (Armstrong et al., 1982).

Reagents
Primary and secondary antibodies were diluted in blocking buffer
(ADB: PBS containing 10% normal goat serum, 0.1% Triton
X-100, and 0.02% NaN3). Streptavidins were diluted in PBS con-
taining 0.5% BSA (Sigma, Cat. #A7530, St. Louis, MO, USA) and
0.1% gelatin (PBSG; Type A from porcine skin; Sigma). NaN3 was
omitted from buffers used to dilute peroxidase-labeled secondary
reagents.

Immunofluorescence
Tissue sections were processed for multiple-label immunofluo-
rescence detection of c-Fos, glutamate, and TH, as well as DAPI
staining to visualize the location and size of neuronal nuclei. All
steps were performed at RT with agitation on an orbital shaker.
Free-floating sections were pre-incubated for 3–6 h in ADB; incu-
bated for 12–18 h in ADB containing primary antibodies; washed
for 4–8 h in multiple changes of PBS; incubated for 12–18 h in ADB
containing mixed species- or IgG subclass-specific biotin- or Alexa
Fluor-conjugated secondary antibodies; washed for 4–8 h in mul-
tiple changes of PBS, and immersed in DAPI solution (300 nM in
PBS) for 30 min. After the final washes, all sections were mounted
on glass slides and coverslipped using Prolong (Invitrogen) as a
mounting medium.

The multiple-label immunofluorescence experiments utilized
combinations of primary antibodies distinguished by their host
species (mouse anti-glutamate, rabbit or mouse anti-c-Fos, rabbit
anti-TH), immunoglobin class and subclass. Secondary antibodies
were applied as mixtures of species- and isotype-specific reagents
selected such that each secondary recognized only one compo-
nent of the primary antibody mixture. Primary reagents were
always pre-mixed and added concurrently and, after thorough
washing, all secondary antibodies were also pre-mixed and applied
simultaneously.

Crosstalk among the secondary antibodies was assessed by
applying each secondary to sections labeled with the inappropri-
ate primary reagent (e.g., goat anti-mouse secondary following a
rabbit anti-c-Fos primary antiserum). Each secondary antibody
bound only to its appropriate primary antibody, with negligible
binding to inappropriate primaries. In addition, most of the cellu-
lar elements that were present in the immunofluorescence-stained
sections were stained by only one of the colors in the specimen’s
secondary mixture. This provides an indication within single
sections that only one secondary antibody bound to each primary
antibody, and therefore that secondary antibody cross-reactivity
was insignificant.

Since we have experienced varying degrees of sensitivity among
secondary antibodies, we used several alternative secondary anti-
bodies and several alternative fluorochromes to detect each pri-
mary antibody. Consequently, our staining protocols include the
same combination of primary antibodies visualized using several
different combinations of secondaries, including Alexa Fluors 350,
488, 532, 568, and 647 (Invitrogen).

Immunoperoxidase/diaminobenzidine staining
Vibratome sections were blocked with ADB (4–6 h) and treated
with anti-c-Fos antibody (12–18 h) followed by PBS rinses (six
changes over 4–6 h) and either biotinylated secondary antibody
(12–18 h), PBS rinses (six changes over 4–6 h), and streptavidin–
HRP, or by direct HRP-conjugated secondary antibody. Sections
were then rinsed in PBS (six changes over 2 h), and incubated
in Tris buffer (pH 7.6) containing 0.5 mg/ml diaminobenzidine
(DAB; Sigma D-5905; St. Louis, MO, USA) with 0.01% H2O2.

Microscopy, stain analysis, and image preparation
Sections were examined and images were acquired with a
Zeiss Axioplan2 microscope equipped for structured illumination
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(ApoTome). The intensity of c-Fos staining in different subsets
of labeled neurons was not compared or quantified in the sGVS-
stimulated animals because stain intensities levels were not cali-
brated in this study. Quantitative estimates were based on counts
of all labeled neuronal nuclei in peroxidase DAB-stained sections.
Immunofluorescence labeled tissue was not used for these esti-
mates because peroxidase–DAB is, in general, a more highly
sensitive approach.

Publication images were prepared using Adobe Photoshop
and Illustrator CS4. Adjustments of brightness and contrast were
accomplished with the Photoshop Levels and Curves tools, applied
equally to all parts of each image. For these latter adjustments, the
levels intensity check function was used to optimize the image
data range by clipping the background field to full intensity and
the darkest values just above zero. The curves tool was then used to
optimize contrast and tonal mapping. The levels tool was then used
again, solely as a diagnostic, to double check for clipping regions.
Note that we do not use the Photoshop Autolevels function since
this imprecisely uses percentages to judge clipping levels.

Atlas data
Labeling patterns were plotted using a standard rat brain atlas for
reference (Paxinos et al., 1999). Sections stained by immunoper-
oxidase or immunofluorescence for visualization of c-Fos were
either examined directly with the microscope or through digi-
tal photomicrographs and the locations of labeled cell bodies and
axonal arbors were plotted manually on brainstem drawings made
from the atlas. The resulting data were then rendered using Adobe
Illustrator to produce Figure 4.

RESULTS
SINUSOIDAL GVS
We recently reported that binaural sGVS can cause a sudden reduc-
tion in blood pressure and heart rate in anesthetized rats (Cohen
et al., 2011). These induced vasovagal-like responses have two
components,a transient drop in blood pressure that spontaneously
recovers over several minutes and oscillations in blood pressure
and heart rate that occur at twice the frequency of stimulation.
The oscillations persist for the duration of stimulation, and are
best induced at frequencies between 0.02 and 0.04 Hz although
typical vasovagal responses can be induced at higher frequencies
as well. The transient components in blood pressure and heart rate
are shown in Figure 1 in response to stimulation at 0.1 Hz, 2 mA
of binaural sGVS in a susceptible rat. Although the gain of the
normalized baseline blood pressure derived from the PPG was not
of the same magnitude as that derived from the intra-aortic sensor,
both signals behaved similarly (Figures 1A,C). That is, the aver-
aged blood pressure waveform from the PPG followed the changes
in the blood pressure waveform from the intra-aortic sensor. The
calibrations for heart rate (Figures 1B,C) apply to both the data
obtained from the intra-aortic sensor and PPG. Because both sig-
nals were derived from the systolic changes in blood pressure, the
heart rate from both sensors was identical. Thus, the PPG provided
an accurate measure of blood pressure and an accurate reflection of
heart rate. These results provide verification that changes in blood
pressure and heart rate can be detected and quantified using PPG
data. Based on these findings, we utilized PPG to assess heart rate

FIGURE 1 | Changes in (A) blood pressure (BP) and (B) heart rate (HR)

in response to sinusoidal galvanic vestibular stimulation (sGVS) at

0.1 Hz, 2 mA (C). BP fell from 100 to 90 mmHg and HR decreased from 5.5
to 5.1 beats/s. The calibration for BP was taken from an implanted
intra-aortic sensor (red trace). Although the changes in BP from the PPG
(blue trace) were uncalibrated, the waveforms obtained from PPG and
intra-aortic sensors follow similar time courses. Changes in HR, which were
calculated from the systolic changes in BP, were the same for the
intra-aortic sensor and for PPG. See Section “Materials and Methods” for a
further description of processing of the PPG. These results verify that
changes in BP and HR can be detected and quantified using PPG data.

and blood pressure in animals used for the anatomical studies in
order to verify that the sGVS stimulus was effective in causing an
autonomic effect prior to tissue harvesting.

c-FOS ACTIVATION
Brainstem sections through the VNC were immunolabeled for
detection of c-Fos protein in order to visualize neurons of the
vestibulo-autonomic pathway that are activated by sGVS. Our ini-
tial studies addressed the specificity of c-Fos protein accumulation
in the tissue. Sets of representative vibratome sections from stim-
ulated (Figures 2A,B) and mock (non)stimulated (Figures 2C,D)
rats were selected as anatomically matched pairs. Each full skip-
serial set spanned the entire rostro-caudal extent of the VNC,
with 250 μm between sequential sections. The sections from the
two groups of rats were processed through the peroxidase–DAB
immunolabeling protocol contemporaneously, using the same
reagents and incubation periods. The glass slide-mounted tissue
sections were imaged using identical photomicroscopic condi-
tions, and the image files were processed using the same decision
rules for adjustment of image brightness and contrast. In the mock
sGVS-stimulated rats, c-Fos protein immunolabel was apparent
in the nuclei of some neurons in NTS, the gigantocellular retic-
ular nucleus, nucleus ambiguus, and the RVLM. The few nuclei
that were immunolabeled in the vestibular nuclei of the non-
stimulated rats (Figures 2C,D) were scattered throughout the
VNC region, showed no preferential localization within the VNC,
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FIGURE 2 | Representative vibratome sections through the vestibular

nuclei from two sGVS-stimulated (A,B) and two mock (non)stimulated

(C,D) rats processed for immunoperoxidase/diaminobenzidine staining

of c-Fos protein. c-Fos-immunoreactive neuronal nuclei are apparent in the

spinal and medial vestibular nuclei (SpVN, MVN), as well as nucleus tractus
solitarius (NTS), of the stimulated animals. Sections from the
mock-stimulated animals contained c-Fos-labeled cells in NTS, but rarely in
the vestibular nuclei. Scale bar in (D) is for all panels.

and comprised fewer than three cells/region/DAB-stained section.
Additional tissue sections processed as controls for non-specific
staining of the primary and secondary reagents showed no spe-
cific labeling (Figure 3). In all sections, staining was restricted to
the nuclei of neurons and was not present in the cytoplasm.

DISTRIBUTION OF sGVS-ACTIVATED NEURONS IN THE VESTIBULAR
NUCLEI
Series’ of vibratome sections from sGVS-stimulated rats were
processed for peroxidase–DAB immunocytochemistry to map the
distributions of activated, c-Fos-positive neurons throughout the
VNC. Since the sequential sections in each series were separated by
250 μm, there was no possibility that the same neuron was present
in more than one tissue section of a given series. Stained neuronal
nuclei in the VNC of each animal were plotted on standardized
stereotaxic atlas templates, based on analysis of brightfield images
of each tissue section. These distribution maps demonstrated that
sGVS-activated neurons were present in the spinal, medial, and
superior vestibular nuclei (SpVN, MVN, and SVN, respectively),
as well as the parasolitary nucleus, but not in the lateral vestibular
nucleus (LVN). Although there was some variability in the extent
of the staining across animals, the localization of activated neurons
within the VNC was consistent across all sGVS-stimulated rats
(n = 13). An example of the distribution of c-Fos immunolabel in
the VNC of an sGVS-stimulated rat is shown in Figure 4.

FIGURE 3 | A vibratome section through the caudal vestibular nuclei

from an sGVS-stimulated rat, stained with anti-c-Fos antibody

pre-incubated with a peptide blocker and then further processed for

immunoperoxidase/diaminobenzidine staining. Signal was negligible in
such control sections, and in those in which primary and/or secondary
reagents were omitted from the processing protocol.
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FIGURE 4 | A schematic representation of the distribution of

c-Fos-positive cells in the vestibular nuclear complex of one rat following

sGVS (see Materials and Methods for details) is shown on the left side of

the atlas sections (modified from Paxinos and Watson, 1998). The highest

overall density of immunostained neurons was present in the medial
vestibular nucleus (MVN). These cells were localized almost exclusively in the
parvocellular region (MVNpc) and caudal MVN. Immunopositive neurons were

(Continued )
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FIGURE 4 | Continued

present throughout the caudal half of the spinal vestibular nucleus (SpVN),
and there was a small dense cluster of immunopositive neurons in the
superior vestibular nucleus (SVN). Only labeling in the vestibular nuclei is
plotted on this schematic. Approximate Bregma coordinates from the
published atlas are indicated to the left. Abbreviations: 6, abducens nucleus;
8vn, vestibular nerve; 8n, vestibulo-cochlear nerve; das, dorsal acoustic stria;
DC, dorsal cochlear nucleus; DMSp5, dorsomedial spinal trigeminal nucleus
(dorsal D and ventral V subdivisions); DPGi, dorsal paragigantocellular nucleus;
ECu, external cuneate nucleus; Gi, nucleus reticularis gigantocellularis; GiA, n.
reticularis gigantocellularis, alpha nucleus; icp, inferior cerebellar peduncle;
IRt, intermediate reticular nucleus; IS, inferior salivatory nucleus; LVe, lateral

vestibular nucleus; lvs, lateral vestibulo-spinal tract; mlf, medial longitudinal
fasciculus; MVeMC, medial vestibular nucleus, magnocellular division;
MVePC, medial vestibular nucleus, parvocellular division; Pa6, paraabducens
nucleus; PCRtA, parvicellular reticular nucleus; pd, predorsal bundle; Pr,
prepositus nucleus; py, pyramids; RMg, raphé magnus; RVL, rostral
ventrolateral medulla; scp, superior cerebellar peduncle; SGe, supragenual
nucleus; sol, solitary tract; Sol, solitary nucleus (ventrolateral VL, rostrolateral
RL, and medial M subdivisions); sp5, spinal trigeminal tract (oral O and
interstitial I subdivisions); Sp5I, spinal trigeminal nucleus, pars interpolaris;
SpVe, spinal (inferior) vestibular nucleus; SuVe, superior vestibular nucleus; ts,
tectospinal tract; VCP, ventral cochlear nucleus, posterior division; VeCb,
vestibulocerebellar nucleus; Y, Y-group.

The highest density of c-Fos-positive VNC neurons was
observed in the MVN, where immunopositive cells were dis-
tributed throughout the entire rostro-caudal extent of the
nucleus (Figures 5A–F). Labeled cells were concentrated in the
parvocellular and caudal regions of MVN, but were not pref-
erentially localized in the periventricular zone and were rare in
magnocellular MVN (Figures 5A,B,D). c-Fos-labeled cells were
scattered throughout the caudal half of SpVN (Figures 5D–F),
whereas the stained neurons in SVN were only present in a discrete
wedge-shaped area of the shell (parvocellular) area of the nucleus,
immediately lateral to the lateral wings of the IVth ventricle at
approximately Bregma −10.52 (Figure 4).

MORPHOLOGIC FEATURES OF sGVS-ACTIVATED NEURONS IN THE
VESTIBULAR NUCLEI
In order to better visualize the sGVS-activated neurons within
the context of VNC chemoanatomy, series’ of vibratome sections
from the same animals utilized for peroxidase–DAB immunocyto-
chemistry were processed for multiple-label immunofluorescence
detection of c-Fos with glutamate and the nuclear stain DAPI.
There were no differences between the regional localization and
distribution of neurons stained by immunofluorescence and by
immunoperoxidase–DAB. The immunofluorescence sections ver-
ified that the sGVS-activated neurons were located predominantly
in caudal and parvocellular MVN (Figures 6A–C) and the para-
solitary nucleus (Figure 6C). Such cells frequently clustered in
small groups of 8–12 neurons, which often formed dorsoven-
trally oriented columns (Figures 6A,C). Approximately one third
of the c-Fos-labeled cells throughout the VNC showed intense
glutamate immunostain; the remaining activated neurons showed
only trace levels of immunofluorescence that presumably reflect
the metabolic pool of cytoplasmic glutamate (Figure 7A). Three
morphological types of activated neurons were observed: globular
(Figure 7B), multipolar (Figure 7C), and fusiform (Figure 7D).
The same three morphological cell types send direct projections
from the vestibular nuclei to the RVLM (Holstein et al., 2011a).
Of these, small diameter globular cells were the predominant
c-Fos-labeled cytology.

sGVS-ACTIVATED NEURONS IN THE RVLM
One major target of vestibular efferents to autonomic nuclei is a
direct projection to the RVLM (Holstein et al., 2011a), a region
that innervates preganglionic sympathetic neurons in the inter-
mediolateral cell column of the spinal cord (Card et al., 2006).
While the principal neurotransmitter of the pathway from the

RVLM controlling blood pressure is thought to be glutamate
(Morrison, 2003), numerous neuroactive molecules have been
identified in cells of the RVLM region, notably the C1 cate-
cholaminergic cell group (for review, see Stornetta, 2009). For that
reason, several series’ of sections through the VNC/RVLM region
from sGVS-stimulated and mock-stimulated rats were further
processed for immunofluorescence detection of c-Fos, glutamate,
and tyrosine hydroxylase. c-Fos was present in approximately five
to eight neuronal nuclei/RVLM/section in the mock-stimulated
animals. We observed an approximate threefold increase in c-
Fos labeling of the RVLM in the sGVS-activated rats. These
sGVS-activated neurons in RVLM were large, with long radiating
intertwined dendrites (Figures 8A,B). Most, but not all, of these
sGVS-activated neurons were intensely immunoreactive for tyro-
sine hydroxylase and approximately half of these were intensely
glutamate-immunofluorescent as well (Figure 8A).

DISCUSSION
REGIONAL DISTRIBUTION OF sGVS-ACTIVATED VESTIBULAR NEURONS
The present study demonstrates that sGVS activates the imme-
diate early gene c-fos, resulting in c-Fos protein accumulation in
the nuclei of some neurons in SpVN, MVN, SVN, and the para-
solitary nucleus. The highest density of c-Fos-positive vestibular
neurons was observed in MVN. Although we found immunopos-
itive cells distributed throughout the entire rostro-caudal extent
of this nucleus, labeled neurons were located predominantly in
the caudal and parvocellular regions, and were rarely observed in
magnocellular MVN.

It is noteworthy that neurons in caudal and parvocellular MVN
as well as the parasolitary nucleus receive significant otolith input,
and send projections to the spinal cord, cerebellum, and inferior
olivary complex (for reviews, see Büttner-Ennever, 1992; Bar-
mack, 2003; Highstein and Holstein, 2006; Holstein, 2012). In
contrast, magnocellular MVN receives a preponderance of semi-
circular canal-related signals and gives rise to the majority of the
vestibulo-ocular projections from MVN (Büttner-Ennever and
Gerrits, 2004). Since c-Fos protein is not expressed in neurons
that are tonically inhibited (Chan and Sawchenko, 1994), and
since many vestibulo-ocular neurons receive substantial direct
inhibition from cerebellar Purkinje cells and/or vestibular com-
missural fibers (Holstein et al., 1999; for reviews, see Holstein,
2012; Highstein and Holstein, 2006), it would be surprising if the
magnocellular MVN neurons involved in vestibulo-ocular reflex
pathways accumulated c-Fos protein. Similarly, vestibulo-spinal
and vestibulo-colic neurons did not appear to express c-Fos in
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FIGURE 5 | Neurons in MVN activated by sGVS, visualized in vibratome

sections processed for c-Fos immunoperoxidase/diaminobenzidine

staining. The panels illustrate six rostro-caudal levels of the MVN from the
same sGVS-stimulated rat. The images were obtained using the same
microscopy and imaging conditions, and were subject to the same
adjustments of brightness and contrast (see Materials and Methods). In all
panels, the midline is to the left. A dense cluster of immunopositive cells is
present in the rostral pole of MVNpc (A,B). The few activated neurons in

MVNmc (A–D) are small diameter cells; none of the larger diameter neurons
of this region were c-Fos-positive. c-Fos-stained cells were scattered
throughout the caudal spinal vestibular nucleus (B–F). Approximate Bregma
levels are indicated in the upper right of each panel. Abbreviations: MVN,
medial vestibular nucleus; MVNmc, medial vestibular nucleus, magnocellular
division; MVNpc, medial vestibular nucleus, parvocellular division; NTS,
nucleus tractus solitarius; SpVN, spinal vestibular nucleus. Scale bar in (F)

represents 100 μm, and is for all panels.

our study. This is most likely due to intrinsic cytological differ-
ences between sensory and motor pathway neurons since c-Fos
is primarily activated by sensory stimuli, and is rarely observed
in brainstem neurons involved in motor pathways (Chan and

Sawchenko,1994). Thus,we would not expect the vestibulo-ocular,
-spinal, and -colic motor neurons of theVNC to display c-Fos stain,
even though many of these cells are at least transiently activated
by sGVS.
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FIGURE 6 | Multiple-label immunofluorescence visualization of c-Fos

(green), glutamate (red), and DAPI nuclear stain (blue) in the vestibular

nuclei of three different rats stimulated by sGVS. (A) A low
magnification overview of rostral medial vestibular nucleus, where there is
a discrete cluster of c-Fos immunopositive cells. (B) A cluster of
sGVS-activated neurons in SpVN. (C) sGVS-activated neurons in the caudal
MVN and SpVN and a dorsoventrally oriented column of labeled cells in the
parasolitary nucleus. This panel has an irrelevant primary antibody control
overlay, in order to better visualize the anatomical landmarks. Scale bars:
200 μm in (A), 50 μm in (B,C). Abbreviations: MVN, medial vestibular
nucleus; MVNpc, medial vestibular nucleus, parvocellular division; NTS,
nucleus tractus solitarius; SpVN, spinal vestibular nucleus; SVN, superior
vestibular nucleus.

In addition to the labeled cells in MVN, we observed sGVS-
activated neurons in the caudal, but not rostral, half of SpVN.
This localization is consistent with tract-tracing and immunola-
beling studies that have identified the caudal half of the VNC,
particularly SpVN, and caudal MVN, as the region involved in
vestibulo-autonomic control (Balaban and Beryozkin, 1994; Hol-
stein et al., 2011a; for reviews, see Balaban and Yates, 2004; Holstein
et al., 2011b). However, vestibular nerve inputs are thought to
terminate rostrally and caudally, but not centrally in SpVN (Car-
leton and Carpenter, 1983, 1984) and not in the caudalmost tip of
the nucleus. For that reason, it remains to be determined using a
combination of sGVS and VIIIth nerve tract-tracing whether the
SpVN neurons that are activated by sGVS are direct recipients of
primary afferent innervation, or are downstream participants in
descending vestibular pathways.

We consistently observed a small group of c-Fos-
immunolabeled neurons in the medial aspect of caudal SVN
following sGVS. The SVN is cup-shaped (open end up), with
a central area composed of medium sized (30–40 μm diameter)
multipolar cell bodies surrounded on three sides by smaller neu-
rons. The central portion of the SVN primarily contains vertical
vestibulo-ocular neurons, whereas the parvocellular surround is
populated by many neurons with commissural and intra-VNC
connections (Mitsacos et al., 1983a,b). As noted above, the ver-
tical vestibulo-ocular neurons of the SVN core are not likely to
express c-Fos protein. The parvocellular neurons, in contrast, may
participate in vestibulo-autonomic pathways, and/or in polysy-
naptic unilateral and bilateral intra-VNC connections (Balaban
and Yates, 2004). Regardless, it is clear that sGVS activates neurons
throughout the entire rostro-caudal extent of the VNC, and not
solely the caudal region.

The VNC regions containing sGVS-activated neurons corre-
late generally, but not precisely, with otolith-recipient areas of
the vestibular nuclei demonstrated by traditional tract-tracing
methods (Kevetter and Perachio, 1986; Newlands et al., 2002,
2003; for review, see Highstein and Holstein, 2006). For example,
Fos-labeled cells were present in the caudal tip of SpVN, which
is not thought to receive direct otolith innervation, but there
was negligible Fos-related immunolabel in the LVN, although
its ventral tier is innervated by otolith nerve fibers. Since sGVS
activates the entire vestibular nerve, and since one of the major
advantages of c-Fos labeling is its ability to visualize activated
neurons at multiple sites of a polysynaptic pathway, a precise
correlation between the known otolith nerve projections and c-
Fos label associated with an otolith-related stimulus should not
be expected. In particular, most regions of the VNC are inter-
connected bilaterally by commissural fibers (Gacek, 1978; Epema
et al., 1988; for review, see Büttner-Ennever, 1992). This system
includes homotopic projections between identical areas on either
side of the midline and a more widespread system of crossing
fibers interconnecting non-homonymous regions of the VNC and
related groups. In fact, homotopic commissural pathways have
been demonstrated in non-magnocellular regions of MVN, the
parvocellular shell of SVN, and parts of SpVN, leaving open the
possibility that some of the sGVS-activated neurons visualized
in this study are part of the robust vestibular commissural
system.

Frontiers in Neurology | Neuro-otology February 2012 | Volume 3 | Article 4 | 10

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neuro-otology
http://www.frontiersin.org/Neuro-otology/archive


Holstein et al. Fos expression in vestibulo-autonomic neurons

FIGURE 7 | Multiple-label immunofluorescence visualization of c-Fos

(green), glutamate (red), and DAPI nuclear stain (blue) in the vestibular

nuclei of sGVS-stimulated rats. Three morphological types of vestibular
nuclear neurons are activated by sGVS: globular (A,B), multipolar (C), and

fusiform (D). The same three morphological cell types send direct projections
from the vestibular nuclei to the RVLM (Holstein et al., 2011a). Approximately
one third of the c-Fos-positive neurons showed intense glutamate
immunofluorescence (C,D). Scale bars in all panels are 20 μm.

c-FOS EXPRESSION IN THE VESTIBULAR NUCLEI
Previous studies have demonstrated c-fos activation in response
to various forms of vestibular stimulation. The first reports doc-
umented Fos protein in rodent SpVN, MVN, and the y-group
following centripetal acceleration (Kaufman et al., 1991, 1992a,b,
1993). A number of studies have replicated and extended these ini-
tial findings, revealing only minor differences in the localization
of neurons activated using various stimulation paradigms. In gen-
eral, the greatest c-Fos expression in response to vestibular stimuli
is reported in MVN, SpVN, and SVN, as well as several related
cell groups such as nucleus prepositus hypoglossi, the x-group,
and the y-group. For example, sinusoidal linear acceleration in the
horizontal (Zhang et al., 2005) and vertical (Lai et al., 2006, 2008)
planes activates c-Fos in some neurons within MVN and SpVN,
as well as ventral LVN, y-group, and x-group, but not SVN (Lai
et al., 2006, 2008). In contrast, Fos-positive cells are observed in
SVN as well as MVN and SpVN following OVAR in rodents (Chen
et al., 2003; Lai et al., 2004; Tse et al., 2008) and other species
(Gustave Dit Duflo et al., 1999; Baizer et al., 2010), whereas Ferris
wheel stimulation results in more widespread c-Fos staining in the
VNC (Cai et al., 2007). However, some studies have reported neg-
ligible c-fos gene expression in the VNC after low (0.25–0.5 Hz)
frequency OVAR or head tilt (Lai et al., 2004). Several investiga-
tions have utilized galvanic stimuli to activate c-fos gene expression
in vestibular pathways, and all of these have applied steps of current
rather than sinusoidal modulation (Kaufman and Perachio, 1994;
Marshburn et al., 1997; Abe et al., 2009). In general, these studies
report c-Fos expression in the periventricular zone of MVN, at

an intermediate-rostral level of the nucleus. This location corre-
sponds well with some of the sGVS-activated neurons we observe
in rostral MVN (Figure 5A).

c-FOS EXPRESSION IN FUNCTIONALLY RELATED CELL GROUPS
Since c-Fos activation is trans-synaptic, we also observed c-
Fos-positive neurons outside the vestibular nuclei, in regions
that comprise additional components of the vestibulo-autonomic
pathway. As expected, results from the mock-stimulated animals
demonstrated a tonic level of c-fos activation in NTS and RVLM
(for review, see Dampney et al., 2003), two regions that are impor-
tant for neural control of blood pressure. Tonic activity in these
cells presumably reflects the neural signals involved in maintaining
homeostatic control of blood pressure under resting conditions.
Figure 9 illustrates the relationship between the baroreflex path-
ways involved in that tonic control, the vestibulo-sympathetic
pathway(s) activated in response to postural adjustments, and the
convergence of those two pathways in the RVLM. In brief, arter-
ial baroreceptor afferents terminate in NTS, which sends primary
projections to the caudal ventrolateral medullary region (CVLM).
The CVLM exerts both excitatory and inhibitory influences on
RVLM, although the inhibitory connection appears to be most
critical for the maintenance of the baroreflex. This pathway is
essentially a regulatory feedback mechanism that stabilizes blood
pressure. In contrast, signals from the vestibular end organs drive
a faster, feed forward mechanism that counteracts the effects of a
postural adjustment (for review, see Yates and Bronstein, 2005).
This pathway involves direct projections from vestibular neurons
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FIGURE 8 | Multiple-label immunofluorescence visualization of c-Fos

(green), glutamate (red), tyrosine hydroxylase (magenta), and DAPI

nuclear stain (blue) in the RVLM of sGVS-stimulated rats. Most, but not
all, of the sGVS-activated neurons in RVLM are intensely immunoreactive
for tyrosine hydroxylase. The two cells indicated by white arrows in (A) are
also intensely glutamate-immunofluorescent, whereas the two
c-Fos-positive cells in (B) are not. Scale bars in both panels
represent 20 μm.

in the VNC to the RVLM, as well as indirect pathways via NTS and
CVLM.

We observed an approximate threefold increase in the number
of c-Fos-positive neurons in the RVLM of sGVS-stimulated rats in
comparison with mock-stimulated controls. This finding fits well
with previous studies in which Fos-labeled neurons were reported
in medullary autonomic nuclei including NTS and RVLM fol-
lowing OVAR (Chen et al., 2003) or centrifugation (Kaufman
et al., 1992b). However, since the RVLM receives and processes
convergent baroreflex and vestibulo-sympathetic reflex activity,
the increase in c-Fos-positive cell number we observe in the RVLM
could reflect trans-synaptically activated cells of the vestibulo-
sympathetic reflex, and/or neurons of the baroreflex pathway
responding to the hypotensive effect of sGVS (Li and Dampney,
1994; for review, see Dampney et al., 2003). Some insight into

FIGURE 9 | Schematic diagram of the major cell groups mediating

vestibulo-autonomic (red) and baroreflex pathways (green). Although
there are vestibular projections to NTS and to CVLM, little convergence of
this pathway with baroreflex signals occurs prior to processing in the
RVLM. Regions receiving significant convergent baroreflex and
vestibulo-sympathetic reflex inputs are indicated in yellow. See text for
details. Abbreviations: CVLM, caudal ventrolateral medullary region; IML,
intermediolateral cell column; NTS, solitary nucleus; RVLM, rostral
ventrolateral medulla; VNC, vestibular nuclear complex.

this may be gleaned from our observations of tyrosine hydroxy-
lase localization in most of the c-Fos-positive RVLM neurons. In
rabbits, approximately two-thirds of the RVLM neurons activated
by drug-induced hypotension synthesize catecholamines (Li and
Dampney, 1994). Since we observe a higher frequency of tyro-
sine hydroxylase labeling in sGVS-activated RVLM neurons than
is reported following hypotension alone, it is likely that some of the
cells in our study specifically reflect the vestibular stimulus. How-
ever, this remains speculative at present, and future quantitative
studies assessing the relative levels of neuronal activation in the
VNC, NTS, RVLM, and CVLM following sGVS will be necessary
to resolve this issue.

VESTIBULAR CELL TYPES ACTIVATED BY sGVS
Multiple-label immunofluorescence studies allowed us to visualize
the cell bodies of vestibular neurons with nuclear c-Fos accu-
mulation. To our knowledge, our study is the first cytological
and chemoanatomical description of c-Fos-positive cells activated
by vestibular stimuli. Three neuronal types were c-Fos-positive:
fusiform, multipolar, and globular. We previously observed that
these same three types of small diameter cells are retrogradely filled
following Fluoro-Gold tracer injections in the RVLM (Holstein
et al., 2011a). On that basis, we propose that the small diame-
ter multipolar, fusiform, and globular neurons of the VNC that
are activated by sGVS project to the RVLM and serve as the sec-
ond order neurons of the caudal vestibulo-sympathetic pathway.
Approximately one third of those cells show intense glutamate
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immunofluorescence, far in excess of the stain reflecting the meta-
bolic pool of cytoplasmic glutamate (Holstein et al., 2004). While
these neurons may utilize glutamate for neurotransmission, the
transmitter/modulator phenotype(s) of the remaining two-thirds
of the sGVS-activated vestibular neurons have yet to be identified.
Moreover, it is likely that sGVS may activate vestibular neurons
that participate in multiple functional pathways including the
vestibulo-spinal and vestibulo-colic reflexes. However, c-fos gene
expression is not activated in most of these brainstem nuclei asso-
ciated with motor pathways, and as a result such neurons were not
visualized in our study.

VESTIBULAR INFLUENCES ON THE AUTONOMIC NERVOUS SYSTEM
Changes in posture, particularly those involving alterations in head
position with regard to gravity, trigger rapid sympathetic nervous
system responses. In humans, caloric vestibular stimulation (Cui
et al., 1997) and head pitch (Ray and Carter, 2003), as well as
GVS (Bent et al., 2006; Grewal et al., 2009; James and Macefield,
2010) influence SNA. Similarly, activation of the otolith organs
using OVAR produces an increase in muscle SNA in-phase with
the head-up tilt component and a decrease corresponding to the
head-down component (Kaufmann et al., 2002). Moreover, lin-
ear acceleration (which specifically stimulates the otolith organs)
causes transient changes in blood pressure (Cui et al., 1999) that
are attenuated in patients with bilateral vestibular deficits (Yates
et al., 1999). These studies support the existence of a functional

connection between the vestibular system, particularly the otolith
organs, and the sympathetic nervous system in humans, as out-
lined in Figure 9. The present study verifies our observation that
sGVS at low frequencies (0.02–0.2 Hz) induces a sudden drop in
blood pressure and heart rate in rats (Cohen et al., 2011). These
results have been replicated using implanted blood pressure trans-
mitters and various levels of anesthesia (Cohen et al., 2011). As
illustrated in Figure 1, these autonomic changes can be detected
by measuring peripheral blood pressure using PPG.

In summary, the present study examined c-Fos protein accu-
mulation in neurons that are activated by low frequency binaural
sGVS in order to identify cell populations putatively involved in the
vestibular control of autonomic function. We found c-Fos-positive
neurons in the VNC, as well as in the RVLM, and conclude that
the localization of c-Fos protein is a reliable marker for neurons
of the vestibulo-autonomic pathway. Approximately one third of
the c-Fos-labeled vestibular neurons showed intense glutamate
immunofluorescence. Future studies will utilize sGVS stimula-
tion and c-Fos labeling to characterize the chemical anatomy of
vestibulo-autonomic pathways further.
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