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Abstract: Male hypogonadism is a disorder characterized by low levels of the hormone testosterone
and patients may also have insulin sensitivity (IS) or insulin resistance (IR), such that they show
different clinical complications and different metabolic pathways. In this review, we compare
metabonomic differences observed between these two groups before and after testosterone therapy
(TRT) in order to obtain information on whether the two hormones testosterone and insulin are
synergistic or antagonistic. IS hypogonadism uses glucose as the main biofuel, while IR activates
gluconeogenesis by the degradation of branched-chain amino acids. The Krebs (TCA) cycle is active
in IS but connected with glutaminolysis, while in IR the TCA cycle stops at citrate, which is used
for lipogenesis. In both cases, the utilization of fatty acids for energy (β-oxidation) is hampered by
lower amounts of acetylcarnitine, although it is favored by the absence of insulin in IR. Increased free
fatty acids (FFAs) are free in the blood in IS, while they are partially incorporated in triglycerides
in IR. Thus, upon TRT, the utilization of glucose is increased more in IS than in IR, revealing that
in IR there is a switch from preferential glucose oxidation to lipid oxidation. However, in both
cases, a high production of lactate and acetyl-CoA is the final result, with these levels being much
higher in IR. Lactate is used in IS in the glucose–lactate cycle between the liver and muscle to
produce energy, while in IR lactate and acetyl-CoA are biotransformed into ketone bodies, resulting
in ketonuria. In conclusion, the restoration of testosterone values in hypogonadism gives better
results in IS than in IR patients: in IS, TRT restores most of the metabolic pathways, while in IR TRT
impairs insulin, and when insulin is inactive TRT activates an ancestral molecular mechanism to
produce energy. This evidence supports the hypothesis that, over time, hypogonadism switches
from IS to IR, and in the latter case most of the insulin-related metabolisms are not reactivated, at
least within 60 days of TRT. However, testosterone therapy in both IS and IR might be of benefit
given supplementation with metabolites that are not completely restored upon TRT, in order to help
restore physiological metabolisms. This review underlines the importance of using a systems biology
approach to shed light on the molecular mechanisms of related biochemical pathways involving
insulin and testosterone.

Keywords: insulin resistance; testosterone therapy; hypogonadism; ketone bodies; metabolisms;
ketosis; lactate

1. Introduction

Male hypogonadism is a disorder characterized by low levels of the hormone testos-
terone [1]. Two main types of hypogonadism have been documented: primary hypogo-
nadism, due to testicular defects, and secondary hypogonadism, where the defect could be
in the hypothalamus or in the pituitary gland. It is known that serum testosterone levels
decrease after 50 years of age and that at 70 years of age the production rate of testosterone
decreases to less than 50% of that of a younger male [1,2]. Hypogonadism affects 6–12% of
men aged between 40 and 69 years. Clinically, testosterone deficiency is associated with
reduced insulin sensitivity, impaired glucose tolerance, increased fat mass, and elevated
triglyceride (TG) and total cholesterol but low HDL cholesterol levels. Hypogonadism is
strongly associated with metabolic disorders, including obesity, hypertension, diabetes
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and dyslipidemia, which are significantly more frequent in hypogonadal male than in
eugonadal subjects [2–4]. Other symptoms associated with testosterone deficiency include
sexual dysfunction, decreased motivation, depressed mood and fatigue [5,6], indicating
that testosterone has an influence on the maintenance of bone and muscle mass. Testos-
terone also exerts a wide range of beneficial physiological effects on body-fat composition,
playing a significant role in glucose homoeostasis and lipid metabolism [7]. However,
recent evidence suggests that the metabolic alterations revealed in hypogonadism occur
through different mechanisms [8–11], depending on whether patients have high or low
insulin levels (regardless of diabetes) [8,12]. For this reason, hypogonadal patients have
been classified into insulin-resistant (IR) and insulin-sensitive (IS) categories according to
their HOMAi (Homoeostatic Model Assessment for Insulin Resistance index) measures,
insulin resistance being defined as the impairment of insulin-mediated glucose disposal by
the body [12,13]. This division has induced researchers to gain a better understanding of the
biochemical and clinical differences between the two subgroups. Recent studies [13] have
shown a positive correlation between testosterone levels and insulin sensitivity. Clearly, in
these two different groups the inflammatory mediators increase differently and interfere
with insulin signaling in different ways. Low testosterone levels were found to induce
insulin resistance (IR) [13,14]. An accumulation of fat can lead to insulin resistance and sub-
sequently to diabetes [15–21]. In support of this, at low testosterone concentrations, reduced
expression of genes associated with glucose transport was observed, including insulin
receptor substrate 1 (IRS-1), insulin receptor beta subunit (IR-β), glucose-transporter-type
4 (GLUT4) or AKT serine/threonine kinase-2 (AKT2) and solute carrier family 2 member
4 (SLC2A4) [13,22]. Thus, nowadays it is commonly accepted that young patients with
hypogonadism may initially present insulin-sensitivity (IS) states but that, over time, their
blood insulin concentrations may increase, leading to insulin resistance (IR) [23] and type 2
diabetes [24].

Cardiac, striated muscular and adipose tissues are insulin-dependent, having higher
levels of glucose transporter 4 (GLUT-4). Thus, testosterone treatment of hypogonadal men
improved insulin signal transduction [25], since the GLUT-4 receptor is activated in the
presence of insulin but modulated by testosterone [26]. In patients with hypogonadism,
administration of testosterone in gel formulation for long time periods is effective, with
monitoring of effects every 3 to 6 months in the first year and at yearly intervals there-
after [27]. However, the use of TRT is still controversial, showing some benefits, such
as better sexual function, better bone mineral density and increased strength, but also
increased cardiovascular risk as a result of heart disease.

Currently, little is known about the effect of testosterone on the metabolic and lipidomic
pathways, which knowledge could help clinicians to evaluate doses and treatment times. In
this regard, a metabonomic comparison of metabolites present in the blood of hypogonadal
patients before and after TRT could reveal how tissues respond to testosterone recovery.
This might help us better understand the synergy or antagonism between the two hormones
and how an endocrinologist should intervene. Recently, an analysis of metabolites present
in plasma from two different patient groups, IS and IR, showed different metabolic path-
ways [28,29]. Through high-resolution mass spectrometry (HRMS) methods [30], a huge
number of spectral features in human plasma were revealed and compared [28,29]. It
is of note that, since testosterone has a complex and unique regulatory influence on the
metabolism of the major tissues involved in insulin action (including liver, adipose and
muscle tissues), the metabolomic analysis of plasma, the final collector of all tissues, al-
lowed a holistic investigation, highlighting the importance of a systems biology approach.
Finally, since synergic and/or antagonistic interactions between testosterone and insulin
exist, by comparing plasma metabolisms recorded in IS and IR hypogonadism patients
before testosterone restoration (where testosterone is low in both sets of patients and insulin
function in the one case is normal while the other is characterized by insulin resistance) and
after testosterone restoration (where testosterone is normal in both but insulin functions
are different), interesting information can be obtained on the contributions of the two
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hormones, both separately and together. Thus, in this review, by comparing metabonomic
analyses of IS and IR patients, a comprehensive, simultaneous and systematic profiling of
many metabolite concentrations and their fluctuations in response to testosterone therapy
will be discussed.

2. Metabolomic Comparison between IS and IR Hypogonadism

Figure 1 summarizes and compares the main metabolic pathways recorded in the
plasma of IS and IR hypogonadism patients before TRT. The arrows indicate increased
or decreased metabolisms in the two hypogonadal subgroups, as well as alterations in
intensity. In the absence of an arrow, the metabolism represents a control.
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Figure 1. Schematic representation of the metabolisms affected by testosterone deficiency in the
three main tissues affected by hypogonadism. Boxes show the metabolisms notoriously altered by
testosterone deficiency, the arrows indicating increases or decreases, as well as alterations in terms
of intensity. This figure also shows that plasma from a male with hypogonadism is the biofluid in
which the metabolites are passively excreted from all other tissues.

2.1. Carbohydrate Metabolism

In IS patients, as expected given the presence of insulin activity, glucose was used
in muscle, adipose and liver as the main biofuel. However, imbalances in several other
pathways were found, such as the pentose phosphate pathway (PPP), the glycerol shuttle,
the malate shuttle, the TCA cycle and lipid metabolism. On the contrary, in the case
of IR, glucose metabolism was strongly reduced, and, in the liver, gluconeogenesis was
activated, fueled by the conversion of amino acids into glycolytic precursors, branched-
chain amino acids (BCAAs) in particular. This explains the individuals with lean body mass
and increased fat mass. This different behavior was expected, since GLUT4 expression
is reduced in both muscle and adipose tissue in IR hypogonadism [31,32]. As a result,
glucose accumulates in plasma, reaching values 2.5 times higher than control values
and with respect to IS hypogonadisms [33]. On the contrary, in the liver tissue, where
glucose uptake may occur via the GLUT2 transporter, the expression of which is modulated
by testosterone as well as glycogen phosphorylase activity [34–36], glucose is produced
through gluconeogenesis, in agreement with Martin et al. [37].
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PPP was strongly upregulated in IS but not in IR, indicating oxidative stress in IS,
as also confirmed by increased oxidized glutathione (GS-SG) accumulation, in agreement
with Haymana et al. [38].

Interestingly, IS hypogonadism is associated with significant lactate production, which
is probably related to the correlation between lactate and testosterone production in rat
Leydig cells [14,39]. Surprisingly, in IR, lactate levels were abnormally low [29], because in
these patients lactate enters the liver to fuel gluconeogenesis. In both IS and IR, levels of
acetyl-CoA were slightly reduced (in IR by 80%). As a consequence, reduced amounts of
acetyl-CoA entered the TCA cycle. Particularly in IS, the cycle is downregulated in the first
steps: 2-oxoglutarate is replenished via glutaminolysis [29]—a process by which glutamine
is converted into glutamate. The activation of glutaminolysis represents an adaptive
reaction of cells to produce energy when testosterone is deficient but insulin is active, as
in IS but not in IR [29]. Glutamate accumulation in the liver stimulates gluconeogenesis
and contributes to the development of glucose intolerance, as described by Newgard
et al. [40] for obese subjects. Interestingly, glutaminolysis is upregulated in tumor cells
and represents the main source of energy in cancer cells [41], glutaminolysis increasing
insulin release. However, glutaminolysis leads to an activation of the malate–aspartate
cycle, and in IS patients higher levels of NADH and ATP were recorded. On the contrary,
in IR the TCA cycle was strongly reduced, being hindered at the citrate–isocitrate level,
which is prevalently used for lipogenesis. Consequently, a reduction in ATP production
and increased AMP in the plasma was recorded [28], probably because insulin resistance in
muscle cells stimulates the expression of oxidized phosphorylation genes [42].

2.2. Lipid Metabolism

It is known that when mammals cannot use carbohydrates to generate ATP, glucose
is mostly converted into fatty acids (lipogenesis) for synthesis and storage of TGs in the
liver and white adipose tissue [43]. In fact, insulin promotes glucose uptake and regulates
triglyceride catabolism through the inhibition of hormone-sensitive lipase [43], indicating
that insulin plays a strong role in modulating lipogenesis. Moreover, elevated production
of triglycerides in non-adipose tissues, such as the liver, induces the overexpression of
lipoprotein lipase and contributes to insulin resistance [43]. Higher free fatty acid concen-
trations were indeed recorded [42,44], indicating a shift in glycerol consumption toward
triglyceride formation. Thus, the livers of males with IR hypogonadism are more prone to
lipogenesis, since the higher insulin levels are, the stronger the stimulation of lipogenesis.
TG production increases in IR (118.4 mmol/L in IS; 226 mmol/L in IR) [29]. Consequently,
in IR obesity increases significantly, as well as BMI, with a value of 30.48 kg/m2 recorded
with respect to the control value of 22.02 kg/m2 [29]. On the contrary, in IS hypogonadism,
3-phosphoglycerol phosphate was not diverted to produce TGs, which decreased, but used
prevalently in the glycerol shuttle.

Finally, acyl-carnitine, which is essential for the import of fatty acids into mitochondria,
is not produced from acetyl-CoA in IS and IR hypogonadism. Thus, reduced β-oxidation
of fatty acids was recorded in both cases, suggesting a possible role of testosterone. β-
oxidation of short- and medium-chain fatty acids does not therefore represent an energy
source in hypogonadism, while long and branched fatty acids are used. This justifies the
increase in fat mass and explains the moderately increased dyslipidemia and increase in
body mass index (BMI) observed in hypogonadism. Interestingly, in IR male hypogonadism,
more acetyl-CoA is transformed into cholesterol, which increases up to 243 mg/dL [29].

In IR, hypogonadism was associated with a significant increase in sphingomyelin (SM),
whereas phosphatidylcholine (PC) was mainly cleaved by activated phospholipase-A2
into Lys-phosphatidylcholine (LPC). In hypogonadal patients, arachidonic acid (AA), also
produced through the latter cleavage, was prevalently bio-transformed into leukotriene
B4 (LTB4) and not into endoperoxides, from which prostaglandins and thromboxane are
derived [45].
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2.3. Amino Acid Metabolism

In IS hypogonadism subjects, most amino acids do not undergo strong alterations,
since amino acids are not employed for energy production. On the contrary, in IR amino
acids play a main role, BCAAs (valine and leucine/isoleucine) in particular, which were
significantly depleted in plasma and utilized to produce energy through glycolysis and the
TCA cycle. BCAAs account for nearly 35% of the essential amino acids in muscle proteins;
therefore, their utilization to produce energy in IR causes a decrease in muscle mass.
Recent metabolome profiling of obese versus lean humans revealed increased catabolism
of BCAAs correlated with insulin resistance [40,46]. In fact, individuals with a lower body
mass index but who were considered obese had higher metabolic rates of BCAAs and
increased resistance to insulin relative to lean individuals. High BCAA levels in plasma
contribute to the development of obesity-associated IR [40,46].

Proline and lysine increase in both IS and IR hypogonadism. These two amino acids
participate in collagen fiber formation, and their accumulation in plasma is an indication
of slower bone formation and of reduced collagen synthesis. This explains the osteoporo-
sis in hypogonadism [47,48], which is strongly related to testosterone deficiency [49,50],
independent of insulin activity.

2.4. Other Metabolisms

Degradation of uracil produces β-alanine, the precursor of carnosine. This metabolism
is significantly decreased in both IS and IR hypogonadism [28,29], suggesting an effect of
testosterone deficiency. Thus, muscle weakness, fatigue and mental confusion increase
in hypogonadism. This is in line with Penafiel et al. [51] and Varanoske et al. [52], who
reported that high intramuscular carnosine may attenuate fatigue during isokinetic and
isometric exercise. In agreement with this, upon orchiectomy, significantly decreased
carnosine levels in male mice [51] were easily restored by testosterone replacement. Thus, it
is not surprising that β-alanine is a popular supplement used primarily to enhance athletes’
performance, as well as muscle growth, strength and power.

3. Metabolomic Comparison between IS and IR Hypogonadism after TRT

Upon the administration of TRT for three months, testosterone levels were restored
in both IS and IR hypogonadal patients [53,54], but in IR insulin was slightly reduced
(decreasing from 17 to 15 µU/mL), in agreement with Kapoor [23]. Since synergic and/or
antagonistic action between testosterone and insulin exists [55,56], it is not surprising that
this partial insulin reduction can limit the total restoration of all metabolisms, except for
those in muscle and adipose tissue, which were shown to benefit.

3.1. Carbohydrate Metabolism

Glycolysis was significantly upregulated upon TRT, better in IS than in IR, indicating
improved glucose utilization (Figure 2). In this regard, it has been reported that testosterone
increases the expression of GLUT4 in cultured skeletal muscle cells, hepatocytes and
adipocytes [39,56], as well as membrane translocation, promoting glucose uptake in adipose
and skeletal muscle tissue [57]; therefore, both muscles and adipose tissues benefit from
testosterone restoration.

As expected, in IS the pentose phosphate pathway was reduced upon TRT and was
paralleled by a decrease in oxidized glutathione (GS-SG). This indicates lower oxidative
stress related to testosterone supplementation. In IR, gluconeogenesis (which is the main
energy source for hypogonadal IR before TRT) stopped after treatment, confirming the role
of testosterone. Biodegradation of branched-chain amino acids stopped, confirming that
their increase is correlated with insulin resistance [40,46] and modulated by testosterone.

In both IS and IR, the TCA cycle was not completely used, confirming that in hypog-
onadism energy is not produced through canonical pathways. In IS, glutaminolysis was
stopped and more glutamate was available, blocking the malate–aspartate shuttle. NADH
and ATP were restored to control levels. In IR, as a result, although the glycerol shuttle was
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re-activated upon TRT, total NAD and NADH were significantly lower, as were ATP levels,
revealing that, in terms of energy, IS showed a greater benefit than IR (Figure 3).
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Interestingly, in both IS and IR, after TRT there were significant increases in lactate
and acetyl-CoA production (Figure 4), which were much (ten times) higher in IR [53,54].
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Lactate increase represented the first response to testosterone supplementation, in
agreement with Enoki et al. [58] and Burns [59]. Lactate and testosterone cause reciprocal
effects in Leydig cells [39,60], where lactate stimulates testosterone production and testos-
terone stimulates lactate production. An increase in lactate was recently associated with
type 2 diabetes and insulin resistance [61]. Testosterone deficiency, induced by progres-
sive stages of diabetes mellitus in rodent models, impairs glucose metabolism, favoring
metabolic reprogramming toward glycogen synthesis [62].

In both IS and IR, acetyl-CoA increased significantly but was not related to increased
b-oxidation of fatty acids, as commonly observed during fasting or when the glucose
pathway is hampered, due to several causes. First of all, in both cases, the TCA cycle
is strongly reduced. In IR, accumulation of acetyl-CoA exhibits feedback inhibition of
lactate dehydrogenase in the absence of insulin. Consequently, the rate of conversion of
pyruvate to lactate is decreased and pyruvate is converted into acetyl-CoA by PDH enzymes
(see below), commonly downregulated by insulin [63]. Finally, in IR the degradation of
leucine/isoleucine also contributes to increase in acetyl-CoA [54], these being two well-
known ketogenic amino acids [64,65]. Since leucine/isoleucine and valine account for
nearly 35% of the essential amino acids in muscle proteins, after TRT, a higher protein
catabolism of skeletal proteins occurred, causing a decrease in muscle mass. In conclusion,
in IR, levels of acetyl-CoA are higher and the molecules are completely bio-transformed
into ketonic bodies.

3.2. Lipid Metabolism

In IS, glycerol 3-phosphate was consumed preferentially with respect to lipid synthesis,
reacting with fatty acids and producing more glycerophospholipids and phosphatidyl-
choline (PC) [45,53]. Lower levels of acetyl-carnitine were still recorded, in agreement with
Fukami et al. [66]. Since acetyl-carnitine is fundamental in transporting fatty acids from the
cytoplasm to mitochondria for β-oxidation, fatty acids increased and more triglycerides
were produced. As a result, lipid accumulation might occur, with a consequent decline
in the availability of energy in the heart, skeletal muscles and kidneys [39]. On the con-
trary, in IR, lower glycerol levels reduced triglyceride formation, increasing the number
of fatty acids (FFAs), which were not bio-transformed into ketone bodies by b-oxidation
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but released into the blood upon TRT. However, in IR, upon TRT, testosterone should
stimulate lipolysis in adipose tissue, with increased release of fatty acids, rather than in
muscle, with impaired glucose storage. This is the main defect in IR, although some fatty
acids are incorporated into triglycerides due to the excess of glycerol. Interestingly, in
IR the altered sphingomyelin (SM), phosphatidylcoline (PC) and phospholipase C (LPC)
levels were completely restored to control levels [45], and SM, PC and LPC returned to
levels similar to those of the controls. In addition, arachidonic acid was newly converted
into prostaglandin-A2, thromboxane-A2 and 5(S)-hydroxyeicosatetraenoic acid (HETE),
suggesting that testosterone probably plays a role in controlling the hypogonadal alter-
ations reported above. Finally, cholesterol, HDL and lipid metabolism did not show any
improvements at 60 days; probably these metabolisms require longer times.

3.3. Amino Acid Metabolism

In IS, more histidine was prevalently catabolized into carnosine, which increased,
supporting the role of both insulin and testosterone in this metabolism (Figure 3). In IS,
skeletal protein catabolism was reduced, and fewer branched-chain amino acids were
released into the blood. This agrees with D’Antona [67], who demonstrated the anti-aging
role of the BCAAs leucine/isoleucine and valine in mitochondrial biogenesis in mammals,
supporting the role of testosterone in the control of muscle protein synthesis [51,68].

In IR, a higher protein catabolism of skeletal proteins was recorded after TRT [54],
causing a decrease in muscle mass. A recent metabolome profiling study revealed a
correlation between BCAA and insulin resistance [40,46], which remains after TRT. This
explains the muscle weakness reported by all patients.

Finally, higher concentrations of proline and lysine were also recorded in both IS
and IR, suggesting a positive influence of testosterone on the synthesis of collagen fibers,
independently of the presence or absence of insulin. Reduced bone loss and excretion
of bone-degradation parameters, such as hydroxyproline, were also recorded [54], in
agreement with Tenover [69] and Wang et al. [70].

Figure 5 summarizes the effects of testosterone therapy on glycolytic, lipidic and
amino acid metabolisms.
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4. Discussion

The data reported indicate that, in the case of testosterone deficiency in IS hypogo-
nadism, glycolysis and glutaminolysis produce energy, probably due to the fact insulin
increases ATP and NADH levels and promotes glutaminolysis. In IR, instead, the main
source of energy is gluconeogenesis, fueled by amino acids, branched-chain amino acids in
particular, and the malate–aspartate shuttle [53,54]. However, comparisons revealed that,
upon TRT, not all metabolisms were completely restored, and metabolic re-programming
was observed in both IS and IR.

The TCA cycle was partially restored in both cases, but ATP levels as well as NADH
production were low, indicating that testosterone therapy did not resolve the energy supply
through canonical pathways.

Lactate and acetyl-CoA increased in both IS and IR upon TRT. In IS, the reactivation of
GLUT4 in muscles induced the activation of an anomalous glucose–lactate cycle, where
alanine was excluded from the cycle [53]. This activation included the participation of
glucose, which is possible in these patients thanks to insulin still being active. The glucose–
lactate cycle becomes the main energy source in highly oxidative cells (e.g., heart, brain
and lung cells), and the lactate produced can in turn be converted into glucose in the liver
and kidneys for use by muscles.

The higher concentration of acetyl-CoA recorded in IR after treatment with testosterone
is due to several causes. It is the result of the balance between the deficiency of acyl-
carnitine, essential for the transport of fatty acids from the cytoplasm into the mitochondria
(and therefore the b-oxidation of fatty acids cannot occur), and the absence of the inhibitory
effect of insulin on their transport into the mitochondria. Probably, in IR hypogonadal
patients, b-oxidation takes place but in a reduced rate such that it cannot be the main
cause of acetyl-CoA production during fasting or glucose pathway reduction. In both
IS and IR, the accumulation of acetyl-CoA recorded is also due to its reduced utilization
in the TCA cycle. Moreover, acetyl-CoA, when increased, exhibits feedback inhibition
of lactate dehydrogenase in the absence of insulin. Consequently, the rate of conversion
of pyruvate to lactate is decreased and pyruvate is converted into acetyl-CoA by PDH
enzymes (Figure 6) commonly downregulated by insulin [63]. Moreover, as a consequence
of lactate increase, lactate dehydrogenase exhibits feedback inhibition; therefore, the rate of
conversion of pyruvate to lactate is decreased, and, for the most part, pyruvate is converted
into acetyl CoA by PDH enzymes, which are not downregulated by insulin (Figure 6).
Finally, the degradation of leucine/isoleucine also contributes to increased acetyl-CoA [54],
these being two well-known ketogenic amino acids [64,65].

In the case of IR, the higher concentrations of acetyl-CoA were preferentially biotrans-
formed into the ketone bodies [54] acetoacetate and 3-hydroxybutyrate (Figure 5). This
reaction was catalyzed by 3-hydroxy-3methylglutarylCoa synthase (mtHMGCoA synthase),
an enzyme which is inhibited by insulin but overexpressed by testosterone [71]. In agree-
ment, a decrease in 3-hydroxybutyrate was documented upon inhibition of testosterone
production in Leydig cells by ethanol [72].

It is of note that ketone bodies were produced only in IR [29] hypogonadism and
that the rate of production increased upon TRT, while their production was not observed
in IS hypogonadism, neither before nor after TRT [28,53]. It is clear that insulin plays a
role in inhibiting ketone body formation. Thus, ketosis seems to be an alternative route
for energy supply, having the same metabolic effects as insulin but at the metabolic or
primitive control level, bypassing the complex signaling pathway of insulin. Thus, both
insulin and ketones seem to produce the same effects on both the metabolites in the first
one-third of the TCA cycle and on mitochondrial redox states, increasing the hydraulic
efficiency of the well-perfused working heart [73]. It has been reported that the hydraulic
efficiency of the heart is 28% greater via the metabolism of ketone bodies compared with a
heart that metabolizes glucose alone [74], explaining the adaptative route for energy supply.
Unfortunately, after TRT, IR patients showed clinical symptoms related to ketonuria, similar
to those shown by individuals following a ketogenic diet, the so-called “keto flu” [75], with
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psychiatric problems [76]. This must be taken into account before the administration of
TRT to IR hypogonadal patients. Recently, circulating ketone bodies have been recorded in
individuals with type 2 diabetes [77].
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5. Conclusions

In conclusion, comparing the metabolisms recorded in cases of IS and IR hypogo-
nadism before testosterone restoration, we can affirm that, independently of the presence or
absence of insulin, testosterone deficiency results in lactate decrease, acetyl-CoA decrease,
TCA cycle reduction, blockage of the production of acetyl-carnitine (and consequently
blockage of the β-oxidation of fatty acids) and blockage of collagen synthesis and carnosine
production. In support of this, testosterone therapy, independently of the presence or
absence of insulin, induces lactate and acetyl-CoA production, TCA cycle modulation,
reduced muscle skeletal protein catabolism, reduced branched-chain amino acid (leucine,
isoleucine, and valine) release into the blood, collagen synthesis and carnosine production.
Interestingly, upon TRT, acetyl-carnitine metabolism, and consequently β-oxidation of fatty
acids, is not activated in the presence or absence of insulin, at least over short time periods.

The reported analysis supports the hypothesis that if hypogonadal patients who
still have active insulin (IS) are treated with TRT, IS will not worsen and lead to insulin
resistance (IR) such that the metabolisms related to testosterone and insulin cannot be
easily recovered. This should prompt endocrinologists to impose testosterone therapy
on hypogonadal patients before insulin resistance sets in. Clearly, testosterone deficiency,
which can occur in individuals who already have insulin resistance for other reasons than
hypogonadism, results in loss of the ability to reactivate all metabolisms.
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6. Future Directions

This review underlines the importance of using a systems biology approach to elu-
cidate metabolic pathway changes in hypogonadism and for better understanding of the
mechanism of “metabolic syndrome” correlated with low levels of testosterone and associ-
ated insulin resistance. The new findings will help in selecting patients who will respond to
hormone treatment and provide accurate biomarkers for evaluating responses to treatment,
eventually leading to better strategies in preventing systemic complications in patients not
fit for hormone replacement therapy.

Clinically, testosterone therapy of IR should be integrated with the development
of gluconeogenesis precursors as well as supplementation with amino acids, especially
leucine, isoleucine and valine. The addition of citrate and other amino acids could help.
Carnosine and β-alanine should be supplemented.

The negative effects of the absence of insulin in IR could be better attenuated by
administration of metformin.

Carnitine and/or acetyl-carnitine supplementation is recommended for both sub-
groups of patients. In support of this, it has been shown that carnitine addition inhibits
the development of cardiovascular disease, ameliorates aging-related sexual dysfunction,
and reduces levels of free fatty acids [66]. Several studies have emphasized the effect of
carnitine as a replacement therapy in the treatment of hypogonadism to improve male
re-productive function, making carnitine an appropriate candidate for the therapy of
symptoms associated with aging [74,75].

Regarding the ketosis observed in IR after TRT, this could be managed by the utiliza-
tion of remedies previously proposed for “keto flu” [77]: increasing sodium supplements
with electrolytes, drinking broth (including bone broth and stock cubes) and increasing
magnesium, potassium and dietary fat intake (including avocadoes, MCT, olives, butter,
nuts and fat bombs), as well as increasing water intake.
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