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ABSTRACT
Coronavirus Disease 2019 (COVID-19) has infected more than thirty five million people worldwide and
caused nearly 1 million deaths as of October 2020. The microorganism causing COVID-19 was named
as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or 2019-nCoV). The aim of this study
was to investigate the interactions of twenty-three phytochemicals belonging to different flavonoid
subgroups with the receptor binding domain (RBD) of the spike glycoprotein of 2019-nCoV, and cellu-
lar proteases [transmembrane serine protease 2 (TMPRSS2), cathepsin B and L (CatB/L)]. The com-
pounds interacted more strongly with CatB and CatL than with the other proteins. Van der Waals and
hydrogen bonds played an important role in the receptor-ligand interactions. As a result of RBCI (rela-
tive binding capacity index) analysis conducted to rank flavonoids in terms of their interactions with
the target proteins, (-)-epicatechin gallate interacted strongly with all the proteins studied. The results
obtained from molecular dynamics and molecular mechanics Poisson-Boltzmann surface area (MM/
PBSA) methods also supported this data. According to Lipinski’s rule of five, (-)-epicatechin gallate
showed drug-likeness properties. Although this molecule is not capable of crossing the blood-brain
barrier (BBB), it was concluded that (-)-epicatechin gallate can be evaluated as a candidate molecule in
drug development studies against 2019-nCoV since it was not the substrate of P-gp (P-glycoprotein),
did not inhibit any of the cytochrome Ps, and did not show AMES toxicity or hepatotoxicity on eukary-
otic cells.
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1. Introduction

Coronavirus Disease 2019 (COVID-19), which first appeared in
the Wuhan region of China and then spread all over the
world rapidly, has infected more than thirty five million peo-
ple worldwide and caused nearly 1 million deaths as of
October 2020 ( Worldometers.info, 2020; F. Wu et al., 2020b;
Zhu et al., 2020 ). The microorganism causing COVID-19 was
named as new type Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2 or 2019-nCoV) ( F. Wu et al.,
2020b; Zhou et al., 2020; Zhu et al., 2020 ). Some outbreaks
caused by SARS-CoV and MERS-CoV in various parts of the
world over the past decade were recorded. 2019-nCoV was
the third important member of the coronavirus family that
caused severe respiratory disease and human deaths (Zaki
et al., 2012; Zhong et al., 2003).

The SARS-CoV and 2019-nCoV classified in the sarbecovi-
rus subgenus of Coronaviridae were called human SARS-

related coronaviruses (SARSr-CoV). Genome analysis has
shown that the genetic material of this virus is a single-
stranded RNA molecule consisting of approximately 30.000
nucleotides. As a result of genomic analysis, the genes
encoding the four basic proteins of 2019-nCoV were clarified
as follows: nucleocapsid protein, envelope protein, mem-
brane protein, and spike glycoprotein (A. Wu et al., 2020a).
Spike glycoprotein is actually a type I glycoprotein that
extends out of the surface of the virus and is the first com-
ponent to come into contact with the host cell. Since the
spike glycoprotein is the main component the virus uses to
bind to receptors on the host cell surface, it is of great inter-
est in the development of the treatment strategies of COVID-
19 (Luan et al., 2020).

Angiotensin converting enzyme 2, also known as ACE2,
binds to the receptor binding domain (RBD) of SARS-CoV.
Thus, this enzyme acts as the receptor that the virus uses to
enter the cell (F. Li et al., 2005; W. Li et al., 2003). ACE2
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shows a wide distribution in many tissues in the body, espe-
cially intestine, kidney, testis, liver, lungs, and heart. ACE2 is
known to play an important role in regulating blood pres-
sure. In addition, depending on the control of blood pres-
sure, it also has important physiological tasks in the
regulation of kidney and heart functions (Anguiano et al.,
2017). Since the RBD of 2019-nCoV interacted with human
ACE2, many studies have shown that human ACE2 plays a
critical role in the entry of 2019-nCoV into cells (Letko et al.,
2020; Zhou et al., 2020).

The receptor-ligand relationship is vital in host specificity
and the life cycle of the virus. Some researchers claim that
2019-nCoV was transferred from bats to humans (Zhou et al.,
2020). However, what we know about the intermediate host,
which was thought to play a role in this transfer process, is
still limited. Some studies suggested that pangolin may have
played an important role in the evolution of 2019-nCoV (Lam
et al., 2020; Wong et al., 2020). As can be understood from
these speculative findings, the questions of which animal
was involved in the evolution of 2019-nCoV and which other
animal species were infected by the virus are still
unanswered. The interaction between spike glycoprotein and
ACE2 has been clarified as a result of studies on what amino
acids bound to ACE2 in the receptor-binding domain of
2019-nCoV (Andersen et al., 2020). According to these stud-
ies, Leu455, Phe486, Glu493, Ser494, Asp501, and Tyr505
were the amino acids that interacted with mammalian ACE2.
Considering the interaction between the 2019-nCoV spike
glycoprotein and ACE2, it was understood that both SARS-
CoV and 2019-nCoV have the capacity to infect many mam-
malian species such as Chinese hamsters, pangolin, dogs,
cats, etc. (Luan et al., 2020).

Besides ACE2, the transmembrane protease, serine 2
(TMPRSS2) and cathepsins (CatB and L) were also thought to
mediate the entry of both SARS-CoV and SARS-CoV-2 into
the host cell. TMPRSS2 is an androgen-responsive serine pro-
tease that cleaves the spike glycoprotein from the S1/S2
region, facilitating viral entry and activation (Hoffmann et al.,
2020). CatL is an important lysosomal endopeptidase. It plays
a critical role in initiating protein breakdown. There is evi-
dence that this cysteine protease mediated the entry of
SARS-CoV and related viruses into the host cell (Hoffmann
et al., 2020; Huang et al., 2006; Sudhan & Siemann, 2015).

Plants produce a wide variety of compounds to perform
their normal physiological functions. These include important
phytochemicals such as tannins, lignans, phytoalexins, poly-
phenols, and flavonoids. Polyphenols and flavonoids make
up the largest group of secondary metabolites and are abun-
dant in many sources such as spices, nuts, seeds, fruits, vege-
tables, stems, red wine, and tea that people consume
frequently (Middleton et al., 2000). Plants synthesize these
compounds in response to abiotic and biotic stress condi-
tions such as UV rays, pathogens and insects (Carletti et al.,
2014; Mandal et al., 2010). Studies have revealed that flavo-
noids have a wide range of biological/pharmacological prop-
erties such as antifungal, antibacterial, anticancer, anti-
inflammatory, and antioxidant. In recent in vivo and in vitro

studies, some flavonoids have been also found to exhibit
considerable antiviral activity (Zakaryan et al., 2017).

The aim of this study was to determine the interaction of
certain flavonoids (Figure 1) with the spike glycoprotein of
2019-nCoV, and host proteases (TMPRSS2, CatB and CatL). As
a result of the receptor-ligand interactions, binding affinities
and inhibition constant (Ki) values were determined. In order
to rank flavonoids in terms of their interactions with all tar-
get proteins, RBCI (relative binding capacity index) analysis
were conducted and ‘hit’ flavonoids were determined.
Results of the docking analysis of the best molecules were
also confirmed by subjecting them to the molecular dynam-
ics simulations for 150 ns with all receptor proteins with sub-
sequent estimation of the binding free energy using
molecular mechanics Poisson-Boltzmann surface area (MM/
PBSA) methods. Drug-likeness properties according to the
Lipinski’s rule of five, ADMET (absorption, distribution,
metabolism, excretion, and toxicity) profiles and intracellular
target predictions of the flavonoids were also given.

2. Material and methods

2.1. Structural optimization of ligands

The protein data bank (pdb) files of all the ligands (quer-
cetin, kaempferol, isorhamnetin, rutin, myricetin, resveratrol,
naringenin, hesperidin, naringin, eriodictyol, genistein, daid-
zein, glycitein, apigenin, luteolin, tangeretin, epicatechin gall-
ate, catechin, delphinidin, malvidin, peonidin, pelargonidin,
petunidin) have been downloaded from PubChem (https://
pubchem.ncbi. nlm.nih.gov) using Vega ZZ 3.2.0.9 download
module. In the Vega ZZ platform, the atom types and elec-
trical charges of the ligands were optimized with MMFF94
force field and Gasteiger-Marsili parameters (Pedretti
et al., 2004).

2.2. Energy minimization of 2019-nCoV ACE2-RBD,
TMPRSS2, CatB/L using nanoscale molecular
dynamics (NAMD)

The structure of the spike glycoprotein was gained by
removing the ACE2 subunit from the angiotensin-converting
enzyme 2 - 2019nCoV RBD complex in the Vega ZZ environ-
ment. This model was downloaded from the following URL:
https://swissmodel.expasy.org/interactive/HLkhkP/models/03
(PDBID: model_03. pdb) (Camacho et al., 2009; Remmert
et al., 2012). Since the structure of the spike glycoprotein in
model_03 shows a sequence identity of 100% to the 2019-
nCoV ACE2 binding domain, this model was chosen as an
appropriate 3D structure in the molecular docking analyses.
During the protein preparation step, the atom types and
electrical charges of the spike glycoprotein were fixed using
CHARMM22_PROT force field and Gasteiger-Marsili charges.
Next, for the energy minimization of the spike glycoprotein
with NAMD, each parameter was loaded from a template file.
The number of time steps (number of minimization steps)
were set to 10.000 and CHARMM22_PROT was set as the
force field. When the energy minimization was completed,
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the 3D structure corresponding to the last minimization step
was saved as the lowest energy conformation. Also, to keep
the spike glycoprotein structurally closer to the original crys-
tallographic data, atom constraints were also applied to the
protein backbone. In the energy minimization of TMPRSS2,
CatB, and CatL, the same steps described above for the mini-
mization of the 2019-nCoV spike glycoprotein were applied.

2.3. Homology modeling of TMPRSS2

The crystallographic data of TMPRSS2 enzyme structure has
not been resolved until today, therefore we generated a
homology model of this enzyme to utilize in further molecu-
lar docking and molecular dynamics analyses. The amino
acid sequence of TMPRSS2 was downloaded from UniProtKB
(https://www.uniprot.org/uniprot/O15393). Template search
for TMPRSS2 catalytic domain was performed against the
SWISS-MODEL template library with BLAST and HHBlits.
BLAST was used to search the TMPRSS2 catalytic domain tar-
get sequence against the primary amino acid sequence in
the SMTL. As a result of the BLAST search, a total of 788
templates were found. An initial HHblits profile has been
built using the procedure as described in (Remmert et al.,
2012). This procedure was followed by 1 iteration of HHblits
against NR20. The obtained profile was then searched
against all profiles of the SMTL and, finally, a total of 1167
templates were found.

ProMod3 was used to carry out model building for
TMPRSS2 catalytic domain based on the target-template
alignment. The rest of the procedure was carried out as pre-
viously described (Guex et al., 2009).

The model quality (global and per-residue) of TMPRSS2
obtained was evaluated with the QMEAN scoring function
(Studer et al., 2020). A near-zero QMEAN score is a good
value in terms of the quality of the fit between model struc-
ture and the experimental structure. According to the
QMEAN score, however, scores of 4.0 and below indicate
that the model is of poor quality. Therefore, among the top
5 TMPRSS2 models we obtained as a result of homology
modeling, we determined the 5ce1.1.A (model 06) model as
the target structure in the molecular docking analysis.

In addition, whether our model has an energetically favor-
able conformation, we generated a Ramachandran plot
(Figure S2) using the PROCHECK web server (Laskowski et al.,
1993). Also, ERRAT web-based tool (Figure S1) was also
deployed to calculate the overall quality factor (OQF) for
non-bonded atomic interactions (Colovos & Yeates, 1993).

2.4. Molecular docking analyses

Firstly, we thought that it could be helpful to explain more
clearly the expressions of RBM (receptor binding motif) and
RBD (receptor binding domain) in the literature: Spike’s RBD is
the smallest part of this protein which is supposed to be able to
capture the interaction with the receptor, hACE2. The RBD itself
is on its hand composed by a core (residues 333–438 and resi-
dues 507–527) and a Receptor Binding Motif (RBM, residues
438–506). This RBM is the part of the RBD which is directly

interacting with the hACE2 ( de Andrade et al., 2020; Lan et al.,
2020; Omotuyi et al., 2020; Y. Wang et al., 2020; Woo et al., 2020
). In this sense, throughout this study, we envisioned that RBM
is a kind of "active site" of the RBD.

Molecular docking analyses between the target structures
and the ligands were performed using AutoDock 4.2.6 and
the corresponding docking scores (binding free energies) of
the ligands with 2019-nCoV RBM, TMPRSS2, CatB (PDB ID:
1GMY), and CatL (PDB ID: 2YJ9) were calculated.
AutoDockTools-1.5.6 was used to prepare the target and lig-
and molecules and also the parameters prior to initiating the
docking analysis using AutoDock 4.2.6 (Sanner, 1999). In this
study, the grid box coordinates used in molecular docking
analyzes were adjusted to ensure that all the tested phyto-
chemicals interact with amino acids in the active sites of the
enzymes in question (Andersen et al., 2020; Greenspan et al.,
2001; Hardegger et al., 2011; Wilson et al., 2005).

Prior to molecular docking analyzes, polar hydrogen
atoms in the receptor and the ligand molecules were
retained, while nonpolar hydrogens were merged and then,
the Gasteiger charges of the ligands were calculated with
AutoDockTools (Morris et al., 2009; Nasab et al., 2017;
Sanner, 1999). Also, the Kollmann charges were added for
the receptor. During the docking experiments, all the rotat-
able bonds of the ligands were allowed to rotate and then
the optimized protein (rigid) and ligand (flexible) structures
were saved in PDBQT format. Grid box coordinates were
adjusted as: a) 80� 90� 40Å points for the spike glycopro-
tein; b) 60� 110� 86Å points for TMPRSS2; c) 86� 84� 44Å
points for CatB; and d) 54� 52� 60Å points for CatL. These
grid box sizes were previously determined to cover the
active amino acid residues of the enzymes in question.

In all docking analyses, 50 genetic algorithm (GA) runs
using an initial population of 150 individuals, maximum
number of 2.500.000 energy evaluations, and a maximum
number of 27.000 generations were selected. The values of
0.02 and 0.8 were chosen as the default parameters for
mutation and crossover rates, respectively. After 50 inde-
pendent docking runs, all the possible binding modes (con-
formations) of the ligands were clustered by the program
and were ranked based on the most negative binding free
energy (kcal/mol) of the ligand conformation. The best dock-
ing poses obtained using the AutoDock 4.2.6 between the
ligand and receptor structures were analyzed with the
BIOVIA Discovery Studio Visualizer 2016.

Furthermore, according to the results obtained from
molecular docking experiments, heatmaps of ligands
(Supplementary Figures S3, S4, S5 and S6) that interact with
specific amino acid residues of each receptor were created.
Heatmaps are built on the logic of how many times each ligand
interacts with each residue (regardless of bond type). Thus,
heatmaps provide an overview of the frequency of interactions
of 23 different ligands with certain amino acids of
these receptors.

2.5. Success criteria set in docking analysis

In the current study, the lowest of all clusters in terms of the
binding free energy was considered as the energetically
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most stable configuration and taken as reference (Morris &
Lim-Wilby, 2008). The calculated inhibition constant (Ki)
obtained with AutoDock 4.2.6 for each docked phytochem-
ical were also represented.

2.6. Calculation of relative binding capacity index
(RBCI) values

In this study, we have developed a new analysis method
called RBCI and applied it to statistically rank the activity
potentials of phytochemicals by using binding free energy
and inhibition constant values obtained from the docking
analyses (Istifli et al., 2020). Using the RBCI parameter, it is
possible to compare statistically related data with different
scientific meanings. If the ranking of the interactions of the
ligands with proteins is done only in light of one parameter
(e.g. binding free energy or inhibition constant only), the
molecules can only be ordered in terms of their potential in
this parameter. However, ranking based on only one of these
parameters cannot represent the full activity potential of
these molecules. The most common method used to calcu-
late the interaction between the receptor and the ligand in
multiple measurements is the ’central tendency’, in which
the components are ranked based on the average value of
each component. However, since the units and scales of the
data obtained from each parameter are different, it is not
possible to obtain a universal value for all components.

If the values in each data set (binding energy and inhib-
ition constant) are converted to standard scores, it is possible
to compare them with each other. In order to calculate the
arithmetic mean values, first of all, binding energy and inhib-
ition constant data of each phytochemical were used regard-
less of their units and raw values were obtained. These raw
values calculated for each component were subtracted from

the arithmetic mean and divided by standard deviation, and
standard scores were obtained (see equation given below)
(Sharma, 1996). RBCI values of each phytochemical were cal-
culated by averaging these standard scores obtained separ-
ately for each protein target.where ‘x’ is the raw data, ‘l’ is
the mean, and ‘r’ is the standard deviation.

Although RBCI is a relative index and does not represent
the specific binding capacities of the components, it makes
it possible to rank components reasonably based on their
binding energy and inhibition constant values. Therefore, it
can be used as an integrated approach to evaluate the
molecular interaction of the components, considering
all parameters.

2.7. Molecular dynamics of top-ranked receptor-
ligand complexes

The configurations with the highest affinity (most negative
binding free energy) obtained from the docking of receptor-
ligand complexes were stored and prepared for the molecular
dynamics simulations as follows: The receptor coordinates files
were converted from pdbqt format to pdb format using Babel
(O’Boyle et al., 2011) and thereafter to use in molecular
dynamics simulations using standard GROMACS (Abraham
et al., 2015) tools, choosing the AMBER03 force field (Duan
et al., 2003). The ligand coordinates files were read with
AutoDockTools (Morris et al., 2009) to add the hydrogen
atoms, and the obtained pdb files were then submitted to the
Acpype online server (Sousa da Silva & Vranken, 2012) to gen-
erate GROMACS topology files, employing the parameters of
the General Amber Force Field, GAFF (J. Wang et al., 2004) and
AM1-BCC partial charges (Jakalian et al., 2002). The topologies
and coordinates of receptors and ligands were then combined
to construct the topologies and coordinates of the complexes.

Table 1. PubChem CID, molecular weight and molecular formula of the compounds.

No Compound PubChem CID Molecular weight (g/mol) Molecular formula

Flavonols
1 Quercetin 5284452 302.23 C15H10O7

2 Kaempferol 5280863 286.24 C15H10O6

3 Isorhamnetin 44259381 478.40 C22H22O12

4 Rutin 5280805 136.23 C27H30O16

5 Myricetin 5281672 318.23 C15H10O8

6 Resveratrol 445154 228.24 C14H12O3

Flavanones
7 Naringenin 932 272.25 C15H12O5

8 Hesperidin 10621 610.60 C28H34O15

9 Naringin 442428 580.50 C27H32O14

10 Eriodictyol 102370911 450.40 C21H22O11

Isoflavones
11 Genistein 5280961 270.24 C15H10O5

12 Daidzein 5281708 254.24 C15H10O4

13 Glycitein 5317750 284.26 C16H12O15

14 Apigenin 5280443 270.24 C15H10O5

15 Luteolin 5280445 286.24 C15H10O6

16 Tangeretin 68077 372.40 C20H20O7

17 (-)-Epicatechin gallate 107905 442.40 C22H18O10

18 (þ)-Catechin 9064 290.27 C15H14O6

Anthocyanidins
19 Delphinidin 68245 338.69 C15H11ClO7

20 Malvidin 159287 331.30 C17H15O7
þ

21 Peonidin 441773 301.27 C16H13O6
þ

22 Pelargonidin 440832 271.24 C15H11O5
þ

23 Petunidin 73386 352.72 C16H13ClO7
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The complexes were then solvated using TIP3P water mole-
cules (Jorgensen et al., 1983) as well as sodium and chloride
ions corresponding to physiological concentration in cubic
boxes under periodic boundary conditions. The van der Waals
interactions were calculated until a cutoff of 1.2 nm and the
electrostatic interactions were calculated using the PME
method (Darden et al., 1993; Essmann et al., 1995). The sys-
tems were initially energetically minimized using the steepest
descent algorithm, submitted to a 500 ps simulation employ-
ing position restraints for both receptor and ligand and to a
sequence of three unrestricted molecular dynamics simula-
tions with 5 ns each in temperatures of 200 K, 240 K and 280 K

for the thermalization (heating) of the system. After these
steps, 150 ns long production simulation runs were carried
out. The simulation sampled the NPT ensemble, employing a
Nos�e-Hoover thermostat (Hoover, 1985; Nos�e, 1984) and a
Parrinello-Rahman barostat (Parrinello & Rahman, 1981). The
trajectories were analyzed to quantify the structural and
thermodynamic stability of the complexes and to identify the
pattern of intermolecular interactions.

Detailed qualitative visual analyses of the time evolution of
the interactions in the trajectories were also carried out. The
strength of the interactions between ligands and receptors was
estimated with Molecular mechanics Poisson-Boltzmann Surface

Figure 1. Chemical structures of the flavonoids.
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Area (MM/PBSA) binding free energy calculations (Baker et al.,
2001; Homeyer & Gohlke, 2012). Sets of 150 configurations for
each systemwere obtained from 1ns spaced snapshots obtained
from the molecular dynamics trajectories. The calculations were
carried out with g_mmpbsa (Kumari et al., 2014) using a grid-
space of 0.5 A, salt concentration of 0.150M, solute dielectric con-
stant of 2 and using the solvent acessible surface area (SASA) as
estimate of the nonpolar solvation energy.

2.8. Drug-likeness, ADMET profile and target prediction

The drug-likeness, ADMET and target profiles of potential hit
compounds are very important in terms of reducing side
effects in the pharmaceutical industry. In the current study,
web-based SwissADME, SwissTargetPrediction and pkCSM

tools were used to determine such effects of flavonoids ana-
lyzed (Daina et al., 2017, 2019; Pires et al., 2015).

3. Results and discussion

In this study, the molecular interactions of twenty-three phy-
tochemicals belonging to four different flavonoid subgroups
(flavonols, flavanones, isoflavones, and anthocyanidins) (Table
1, Figure 1) with the RBD of the spike glycoprotein of 2019-
nCoV, TMPRSS2, CatB and CatL were analyzed.

3.1. Molecular docking analysis

In receptor-ligand interactions, binding energy can vary
depending on the three-dimensional structure of the

Figure 2. RBCI values of the flavonoids.

Figure 3. Top ranked conformations of (-)-epicatechin gallate. (A- RBM of the spike glycoprotein of 2019-nCoV, B- TMPRSS2, C- CatB, D- CatL).
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Figure 4. Top ranked conformations of naringin. (A- RBM of the spike glycoprotein of 2019-nCoV, B- TMPRSS2, C- CatB, D- CatL)

Figure 5. Top ranked conformations of peonidin. (A- RBM of the spike glycoprotein of 2019-nCoV, B- TMPRSS2, C- CatB, D- CatL).
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receptor, the type of amino acids present in the active center
and their locations. Therefore, different binding energy pro-
files were detected in each of the receptor-ligand pairs ana-
lyzed in the current study (Tables S1, S2, S3, and S4).
According to these results, (-)-Epicatechin gallate, naringin,
peonidin, pelargonidin showed high affinity to target pro-
teins. On the other hand, rutin was one of the compounds
with the lowest affinity for almost all protein targets. Ligands
showed higher affinity to CatB and CatL than other proteins.

In order to determine the effective concentrations of
ligands on protein targets, inhibition constants were calcu-
lated by AutoDock 4.2.6. The predicted inhibition constants
of the flavonoids on the spike glycoprotein, TMPRSS2, CatB,
and CatL were found to be in the ranges of 0.02-0.58, 0.04-
339.73, 0.001-11.82 and 0.001-11.04mM, respectively.
(-)-Epicatechin gallate was found to be highly effective
against all receptors.

Van der Waals interactions played an important role in
receptor-ligand interplay. Classical and non-classical H bonds,
hydrophobic and electrostatic interactions were also fre-
quently found.

In the interaction between flavonoids and the RBD of the
spike glycoprotein, the interaction with the amino acid resi-
dues of the receptor binding motif (RBM) inside the RBD
such as Phe486 and Leu455 remained weak, while the
ligands interacted with other residues of the RBM such as
Tyr505, Asn501, Ser494, and Gln493 more effectively.
Flavonoids also interacted intensely with Arg403, which is
not one of the amino acid residues of the RBM of the spike
glycoprotein (Figure S3).

Flavonoids interacted with His296 and Ser441, active
amino acid residues of TMPRSS2, but did not establish any
interactions with Asp 345. Other amino acids that interacted
with flavonoids were Val280, Lys300, Tyr337, Lys340, Thr341,
and Lys342 (Figure S4).

Cys29, Gly27, His111, His199, and Trp221, active amino
acid residues, played an important role in the interaction of
flavonoids with CatB (Figure S5).

Cys25, Trp26, Gly68, Leu69, Met70, Ala135, Met161, and
Asp162, active amino acid residues, played an important role in fla-
vonoid/CatL interactions. Asp114, His163, Gly164, Ala214, Ala215,
and Ser216, which are not active amino acid residues of CatL, also
contributed significantly to these interactions (Figure S6).

As a result of the RBCI analysis, (-)-epicatechin gallate was
the most effective molecule against all protein targets (Figure
2). It was followed by naringin, peonidine and pelargonidine,
respectively. The top ranked conformations of these flavonoids
(‘hit’ compounds) were given as Figures 3–6, respectively.

3.2. Drug-likeness properties and ADMET profiles
of flavonoids

The drug-likeness properties of flavonoids were given in
Table 2. Although rutin, hesperidin and naringin have three
violations (MW > 500, N or O> 10, NH or OH > 5) and myri-
cetin, (-)-epicatechin gallate and delphinidin have one viola-
tion (NH or OH > 5), all other flavonoids were found to have
drug-likeness properties without any violation.

Figure 6. Top ranked conformations of pelargonidin. (A- RBM of the spike glycoprotein of 2019-nCoV, B- TMPRSS2, C- CatB, D- CatL).
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ADMET profiles of flavonoids were also given in Table
3. According to the data given in the table, it was under-
stood that only quercetin, resveratrol, daidzein, and tan-
geretin could cross the blood-brain barrier. Rutin,
hesperidin, naringin, (-)-epicatechin gallate, (þ)-catechin,
delphinidin, and petunidine did not have inhibitory effect
on any of cytochrome P. None of the flavonoids showed
hepatotoxicity. Apart from resveratrol, all other flavonoids

were also found to show no AMES toxicity. LD50 values of
the compounds in rats were in the range of 1.791-
2.558mol/kg.

3.3. Target predictions of ‘hit’ flavonoids

The possible intracellular targets of (-)-epicatechin gallate,
naringin, peonidine, and pelargonidine, were given in

Table 2. Drug-likeness properties of docked flavonoids.

No Compound
Number of

rotatable bonds TPSA1
Consensus
Log P

Log S
(ESOL2) Drug-likeness (Lipinski’s rule of five)

1 Quercetin 1 131.36 Å2 1.23 �3.16 Yes (0 Violation)
2 Kaempferol 1 111.13 Å2 1.58 �3.31 Yes (0 violation)
3 Isorhamnetin 2 120.36 Å2 1.65 �3.36 Yes (0 violation)
4 Rutin 6 269.43 Å2 �1.12 �3.30 No (3 violations; MW > 500, N or O> 10, NHorOH > 5)
5 Myricetin 6 151.59 Å2 0.79 �3.01 Yes (1 Violation; NH or OH > 5)
6 Resveratrol 2 60.69 Å2 2.48 �3.62 Yes (0 Violation)
7 Naringenin 1 86.99 Å2 1.84 �3.49 Yes (0 Violation)
8 Hesperidin 7 234.29 Å2 �0.72 �3.28 No (3 violations; MW > 500, N or O> 10, NH or OH > 5)
9 Naringin 6 225.06 Å2 �0.79 �2.98 No (3 violations; MW > 500, N or O> 10, NH or OH > 5)
10 Eriodictyol 6 107.22 Å2 1.45 �3.72 Yes (0 Violation)
11 Genistein 1 90.90 Å2 2.04 �3.72 Yes (0 Violation)
12 Daidzein 1 70.67 Å2 2.24 �3.53 Yes (0 Violation)
13 Glycitein 2 79.90 Å2 2.30 �3.57 Yes (0 Violation)
14 Apigenin 1 90.90 Å2 2.11 �3.71 Yes (0 Violation)
15 Luteolin 1 111.13 Å2 1.73 �3.71 Yes (0 Violation)
16 Tangeretin 6 76.36 Å2 3.02 �4.11 Yes (0 Violation)
17 (-)-Epicatechingallate 4 177.14 Å2 1.23 �3.70 Yes (1 violation; NH or OH > 5)
18 (þ)-Catechin 1 110.38 Å2 0.85 �2.22 Yes (0 Violation)
19 Delphinidin 1 134.52 Å2 �0.79 �3.89 Yes (1 violation; NH or OH > 5)
20 Malvidin 3 112.52 Å2 0.71 �2.86 Yes (0 Violation)
21 Peonidin 2 103.29 Å2 0.76 �2.81 Yes (0 Violation)
22 Pelargonidin 1 94.06 Å2 0.73 �2.76 Yes (0 Violation)
23 Petunidin 2 123.52 Å2 �0.55 �3.36 Yes (0 Violation)
1TPSA: Topological polar surface area.
2ESOL: Estimated aqueous solubility.
Data source: https://www.swissadme.ch.

Table 3. ADMET profiles of flavonoids.

No Compound
BBB1

permeation�
P-gp

substrate2� CYP3 inhibitionϯ AMES Toxicityϯ Hepatotoxicityϯ
LD50 in

rat (mol/kg)ϯ

1 Quercetin Yes No Yes (CYP1A2, CYP2D6, CYP3A4) No No 2.471
2 Kaempferol No No Yes (CYP1A2, CYP2D6, CYP3A4) No No 2.449
3 Isorhamnetin No No Yes (CYP1A2, CYP2D6, CYP3A4) No No 2.407
4 Rutin No Yes No No No 2.491
5 Myricetin No No Yes (CYP1A2, CYP3A4) No No 2.497
6 Resveratrol Yes No Yes (CYP1A2, CYP2C9, CYP3A4) Yes No 2.529
7 Naringenin No Yes Yes (CYP1A2, CYP3A4) No No 1.791
8 Hesperidin No Yes No No No 2.506
9 Naringin No Yes No No No 2.495
10 Eriodictyol No Yes Yes (CYP3A4) No No 2.030
11 Genistein No No Yes (CYP1A2, CYP2D6, CYP3A4) No No 2.268
12 Daidzein Yes No Yes (CYP1A2, CYP2D6, CYP3A4) No No 2.164
13 Glycitein No No Yes (CYP1A2, CYP2D6, CYP3A4) No No 2.170
14 Apigenin No No Yes (CYP1A2, CYP2D6, CYP3A4) No No 2.450
15 Luteolin No No Yes (CYP1A2, CYP2D6, CYP3A4) No No 2.455
16 Tangeretin Yes No Yes (CYP2C9, CYP3A4) No No 2.368
17 (-)-Epicatechin gallate No No No No No 2.558
18 (þ)-Catechin No Yes No No No 2.428
19 Delphinidin No Yes No No No 2.548
20 Malvidin No Yes Yes (CYP1A2) No No 2.346
21 Peonidin No Yes Yes (CYP1A2) No No 2.408
22 Pelargonidin No Yes Yes (CYP1A2) No No 2.432
23 Petunidin No Yes No No No 2.453
1BBB: Blood Brain Barrier.
2P-gp: P-glycoprotein substrate.
3CYP: Cytochrome P.�https://www.swissadme.ch.
ϯhttp://biosig.unimelb.edu.au/pkcsm/prediction.
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Figure 7(A–D), respectively. (-)-Epicatechin gallate appeared
to act on proteases and kinases. While naringin was effective
on proteases, oxidoreductases and electrochemical transport-
ers, peonidine had an effect on lyase. Pelargonidine also
appeared to be effective on many intracellular enzymes,
especially oxidoreductases.

3.4. Results of the molecular dynamics analysis of
‘hit’ flavonoids

The complex (-)-epicatechin gallate (ECG)-spike protein
remained stable and the ECG molecule remained in the prox-
imity of the receptor during all the simulation, with small
rearrangements (Figure 8(A)). The ECG molecule started inter-
acting with the RBM of the spike protein (mainly with resi-
dues Gln493, Ser494, Gly496, and Tyr505), but also with
Glu406, Lys417 and Tyr453. During the simulation, the ECG
molecule remained interacting in the RBM, which suffered
only small rearrangements. At the end of the simulation the
ECG molecule interacted with essentially the same residues
as in the beginning, losing only the interactions with Lys417
and Gly496, but interacting with Ile418. The number of

hydrogen bonds remained roughly conserved through the
simulation (Figure 8(A)).

The complex ECG-TMPRSS2 was stable during the simula-
tion, with the ligand keeping essentially the same place
interacting with the receptor (Figure 8(B)). The ECG molecule
started interacting mainly with the residues His296, Tyr337,
Asp338, Lys340, Thr341, Leu419 and Trp461 of the protein
TMPRSS2. The molecule changed only slightly the position,
although some structural rearrangements took place. At the
end of the simulation the molecule interacted with the same
residues as in the beginning (but losing the interaction with
Asp338). There was some fluctuation on the number of
hydrogen bonds along the simulation, nevertheless the inter-
actions remained strong (Figure 8(B)).

The ECG molecule interacted strongly with the CatB,
maintaining the distance and the majority of the interactions
along the simulation (Figure 8(C)), as well as the high num-
ber of H-bonds. The ECG molecule remained almost in the
same place: it started interacting with the residues Ser25,
Cys26, Gly27, Asn72, Gly73, His110, Gly121, Glu122, Ser178,
Met196, Gly197 and Gly198 of the receptor. At the end of
the simulation, the interactions with Ser25 and Cys26 were
lost, but new interactions with Trp30, His199 and Ala200

Figure 7. Target predictions of A- (-)-epicatechin gallate, B- Naringin, C- Peonidin, and D- Pelargonidin.
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appeared, with the ECG molecule migrating slightly from the
surface to a position more buried inside the protein.
However, there were almost no structural changes on the
protein (Figure 8(C)).

ECG and CatL, the interactions were moderately strong
and some structural changes occurred (Figure 8(D)).
There was some loss of hydrogen bonds along the

simulation, with a recovery at the end. In the beginning
of the simulation the ECG molecule was interacting
mainly with the residues Ser4, Val5, Asp6, Trp7, Arg8,
Glu9 and Lys10. The ECG molecule migrated at about
135 ns, losing contacts with the residues 4 until 9 and
starting to interact with Gly11, Tyr12, Val13, Thr14 and
Pro15 (Figure 8(D)).

Figure 8. Time evolution of the structure and interactions in the complexes of (-)-epicatechin gallate (ECG) with A- RBD of the spike glycoprotein of 2019-nCoV, B-
TMPRSS2, C- CatB, and D- CatL in molecular dynamics simulations. In the left the root-mean-square deviation (RMSD) of atomic positions of the receptor (black)
and of the complex ligandþ receptor (red) are shown, whereas in the right the number of hydrogen bonds between ligand and receptor is shown.
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The binding free energies calculated using the MM/PBSA
method (Table 4) agree with the findings of the docking and
molecular dynamics: there are favorable interactions between
ECG and all receptors, as can be seen in the negative bind-
ing free energies. The strongest interaction was found for
ECG with CatB and the weakest for ECG with CatL, in agree-
ment with the time evolution of the number of hydrogen
bonds and with the qualitative analyses of the simulations.

Results of the molecular dynamics and binding free
energy analysis of other ‘hit’ flavonoids (naringin, peonidin
and pelargonidin) were also given in Figures S7, S8 and S9
and Table S6, respectively in the Supplementary file.

It is impossible to discuss the literature data on all flavo-
noids studied in the current study. Instead, it would be more
logical to discuss the literature data of ‘hit’ flavonoids on tar-
get proteins. Literature data obtained from the docking ana-
lysis of the phytochemicals analyzed in the current study
was also presented in Table S5 in detail (Supplementary file).

Some recent studies have shown that catechins can be
used as alternative agents in COVID-19 infection. According
to Maiti and Banerjee (2020), catechins, such as epigallocate-
chin gallate or theaflavin gallate, interact more strongly with
the amino acids of the spike protein than hydroxychloro-
quine. There are also some data in the literature that some
catechins, such as theaflavin digallate, epigallocatechin gall-
ate and gallocatechin gallate, inhibit the main protease of
2019-nCoV together with the spike glycoprotein (Manish,
2020; Peterson, 2020; Sayed et al., 2020; Tallei et al., 2020). In
addition to 2019-nCoV, molecular docking studies performed
on (-)-epicatechin 3-O-(30-O-methyl) gallate, a green tea poly-
phenol, showed that the molecule in question can inhibit
TMPRSS, a cellular protease (Rahman et al., 2020). Catechins
such as (-)-catechin-3-gallate, (þ)-epicatechin-3-gallate and
(-)-epigallocatechin-gallate also have an inhibitory effect on
cathepsins, a group of lysosomal enzymes (Majumdar et al.,
2011; Zhang et al., 2012). In a study carried out by Devika
and Prince (2008), a significant decrease in cathepsin B and
D activities were detected in Wistar rats given epigallocate-
chin gallate at a dose of 30mg/kg for 21 days compared to
the control group. However, there are no reports in the lit-
erature directly about the effect of epicatechin gallate itself
on CatB and especially CatL. Therefore, data presented in the
current study on the interaction of (-)-epicatechin gallate
with CatB and CatL could be assumed as the first record for
the literature.

In the literature, there were no reports of the interaction
of peonidine and pelargonidine with target proteins. On the
other hand, only one study was found regarding the inter-
action of naringin with the RBD of the spike protein of 2019-

nCoV (Bhowmik et al., 2020). According to the results of this
study conducted using PyRx and iGEMDOCK, it was deter-
mined that the binding affinity of naringin to spike protein
was �8.3 kcal/mol.

4. Conclusion

In this computational study, the interactions of 23 different
phytochemicals belonging to different flavonoid subgroups
with the RBD of the spike glycoprotein of 2019-nCoV,
TMPRSS2, CatB and CatL were analyzed. Anthocyanidins, iso-
flavones and flavanones were found to have more powerful
interactions with the target proteins. Considering the interac-
tions of phytochemicals with all target proteins, it was con-
cluded that (-)-epicatechin gallate was more effective than
other compounds. This molecule showed drug-likeness prop-
erties according to Lipinski’s rule of five. Although (-)-epicate-
chin gallate cannot cross the blood-brain barrier, it was
concluded that it can be considered as a candidate molecule
in the drug development processes against 2019-nCoV since
it did not have any toxic effect on eukaryotic cells.
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