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Abstract: Loss of heterozygosity (LOH) for KRAS, in which a wild-type KRAS allele is progressively
lost, promotes invasive and migratory abilities of pancreatic ductal adenocarcinoma (PDAC) cells
and tissues. Moreover, the occurrence of KrasG12D-LOH activates nonclassical glutamine metabolism,
which is related to the malignant behavior of PDAC cells. Herein, we aim to demonstrate the regula-
tory link between hypoxia-inducible factor-2α (HIF-2α) and glutamine metabolism that mediates
malignant phenotypes in KrasG12D-LOH PDAC cells. HIF-2α-shRNA knockdown lentivirus transfec-
tion and metabolite analysis were performed in KrasG12D-LOH and KrasG12D cell lines, respectively.
Cell proliferation, migration, and invasion were examined using Cell Counting Kit-8, colony forma-
tion, and Transwell assays. Cell cycle phase and apoptosis were determined using flow cytometry.
Western blotting and real-time quantitative PCR were also performed. Additionally, a subcutaneous
xenograft mouse model was established. LOH stimulated HIF-2α activity and transactivated c-Myc,
which has a central regulatory effect on glutamine metabolism independent of hypoxia. Meanwhile,
HIF-2α silencing repressed KrasG12D-LOH PDAC cell proliferation, invasion, and migration. HIF-2α
knockdown inhibited glutamine uptake and GOT1 expression via a c-Myc-dependent pathway. Col-
lectively, KrasG12D-LOH can activate HIF-2α to regulate c-Myc-mediated glutamine metabolism and
promote malignant phenotypes. Moreover, targeting HIF-2α-c-Myc regulated nonclassical glutamine
metabolism, providing a new therapeutic perspective for KrasG12D-LOH PDAC.
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1. Introduction

Pancreatic cancer is one of the most common malignant gastrointestinal cancers and is
characterized by late diagnosis, early metastasis, lack of a specific targeted treatment, and
poor prognosis [1]. Moreover, the prognosis of pancreatic ductal adenocarcinoma (PDAC)
has not significantly improved over the past few decades; it has a five-year survival rate of
only 6%. Moreover, the specific pathogenesis of pancreatic cancer remains unclear [2,3]. Patients
with PDAC usually have no obvious symptoms and are diagnosed at an advanced stage of
the disease, which is the primary cause of the associated low survival rate [4,5]. Diagnosed
patients are eligible for surgery, chemotherapy, radiotherapy, and immunotherapy; however,
there is currently a lack of effective targeted therapies [6]. As such, research has focused
on the molecular mechanisms of pancreatic cancer, which may be of great significance for
accurate diagnosis, efficient treatment, and improved prognosis.

Current studies indicate that pancreatic cancer is mainly regulated by tumor-suppressor
gene inactivation and oncogene activation [7]. The KRAS gene is one of the most frequently
mutated oncogenes in many cancers, and can be found in nearly all PDAC cases [8–10].
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KRAS belongs to a class of genes that encodes guanosine triphosphatase and regulates
downstream signaling pathways through growth factor receptors [11]. In addition to
KRAS, TP53, CDKN2A, and SMAD4 tumor suppressor genes are significantly mutated
in pancreatic cancer [12–14]. Moreover, loss of heterozygosity (LOH), which refers to the
transformation of a heterozygous allele to a homozygous state, is a common oncogenic
mutation associated with the occurrence and development of various tumors [15,16]. In our
previous experiment, we found that KrasG12D-LOH exists in transgenic mice and human
pancreatic cancer cells, wherein heterozygous PDAC cells lose their wild-type KRAS allele
through mutation (Figure 1a). Furthermore, KrasG12D-LOH PDAC cells have a stronger
ability to proliferate and invade than PDAC cells without LOH [17–19]. The specific
downstream-signaling mechanism of KrasG12D-LOH responsible for its high proliferation
and invasion remains unclear and requires further study.
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analysis showed that KrasG12D-LOH is expressed in 897 and 907 cell lines, but not in the 399 and 403 
cell lines. (b) Relative expression of HIF-2α in KrasG12D-loss of heterozygosity (LOH) cells (897 and 
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HIF-2α in KrasG12D-LOH cells (897 and 907 cells) and KrasG12D cells (399 and 403 cells) under 
normoxia. (d) Relative mRNA levels of HIF-2α expressed in pancreatic tumor tissues and normal 
pancreatic tissues from the Gene Expression Profiling Interactive Analysis database. Data are ex-
pressed as the mean ± standard deviation (SD), based on three independent experiments. * p < 0.05; 
** p < 0.01; PAAD pancreatic adenocarcinoma. 

Figure 1. HIF-2α expression in each experimental cell line and pancreatic cancer tissue. (a) PCR
analysis showed that KrasG12D-LOH is expressed in 897 and 907 cell lines, but not in the 399 and
403 cell lines. (b) Relative expression of HIF-2α in KrasG12D-loss of heterozygosity (LOH) cells
(897 and 907 cells) and KrasG12D cells (399 and 403 cells) under normoxia. (c) Relative mRNA
expression of HIF-2α in KrasG12D-LOH cells (897 and 907 cells) and KrasG12D cells (399 and 403 cells)
under normoxia. (d) Relative mRNA levels of HIF-2α expressed in pancreatic tumor tissues and
normal pancreatic tissues from the Gene Expression Profiling Interactive Analysis database. Data
are expressed as the mean ± standard deviation (SD), based on three independent experiments.
* p < 0.05; ** p < 0.01; PAAD pancreatic adenocarcinoma.

Warburg defined tumors as metabolic diseases in the 1920s. It was suggested that
even under aerobic conditions, glucose does not participate in the tricarboxylic acid cy-
cle but instead obtains adenosine triphosphate through lactic acid formation via aerobic
glycolysis [20]. Glutamine (Gln) is a nonessential amino acid abundant in plasma and
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contributes to cancer cell genesis, proliferation, and metastasis [21,22]. Gln metabolism can
provide carbon and nitrogen sources for tumor cells and participates in the synthesis of
biological macromolecules, including lipids, proteins, and other amino acids, which play
an important role in the maintenance of cell redox homeostasis, activation of cell-signaling
pathways, and regulation of glucose and lipid metabolism [23]. Previous studies have
shown that PDAC cells are heavily dependent on Gln metabolism for their growth needs
and highly sensitive to Gln deprivation [24,25]. Moreover, unlike other tumor cells entering
the tricarboxylic acid cycle by glutamate dehydrogenase-mediated deamination, glutamate
is converted to aspartate by aspartate aminotransferase (GOT1) in PDAC cells. Glutamate-
derived aspartate is transferred to the cytoplasm to generate oxaloacetate, which in turn
produces malate by malate dehydrogenase (MDH1) and pyruvate by malic enzyme (ME1).
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is generated to
restore oxidized glutathione during this pathway is vital for maintaining the intracellular
redox balance. Pancreatic tumor cells metabolize Gln via a nonclassical pathway, which is
mediated by KRAS [26]. In our previous study, LOH for KrasG12D stimulated glutaminol-
ysis in PDAC cells [19]. KrasG12D-LOH can increase protein and mRNA levels of related
molecular markers, including GLS1, GOT1, GOT2, MDH1, and ME1, under both normoxic
and hypoxic conditions [19]. However, the specific mechanism underlying KrasG12D-LOH
and Gln metabolism remains unclear.

Hypoxia-inducible factors (HIFs) serve as the main regulators of a series of molecu-
lar biological changes in tumor cells, including angiogenesis, erythropoiesis, glycolysis,
and subsequent tumor progression [27]. HIF-α can be regulated by oxygen and consists
of three subunits: HIF-1α, HIF-2α, and HIF-3α [28]. Current studies have shown that
HIF-2α correlates with normal cell proliferation, differentiation, energy metabolism, ery-
thropoiesis, stem cell maintenance, inflammation, tumor proliferation, metastasis, and
angiogenesis [29]. HIF-2α is hydroxylated by prolyl hydroxylase and degrades rapidly
under aerobic conditions after binding to von Hippel–Lindau tumor suppressor protein
(pVHL) [30]. The degradation of HIF-α is inhibited in response to hypoxia, and HIF-2α
can initiate transcription of the target gene by binding to the hypoxia response elements of
target genes to form a transcription-initiation complex [31,32]. Meanwhile, intracellular lac-
tate signaling, which imitates a response to hypoxia, reportedly promotes Gln metabolism
through the HIF-2α-signaling pathway in oxidative cancer cells in a manner dependent on
c-Myc activation [33]. Similarly, studies have shown that HIF-2α affects PDAC cell growth
by regulating Gln metabolism under prolonged hypoxia [34].

Our aim was to determine the role of HIF-2α in the KrasG12D-LOH-mediated malignant
phenotype and examine the relationship between KrasG12D-LOH and HIF-2α-regulated
Gln metabolism that occurs independently of hypoxia.

2. Results

2.1. KrasG12D-LOH Elevated HIF-2α Expression in PDAC Cells at Both Protein and mRNA Levels

To confirm the regulatory role of HIF-2α in Gln metabolism, we investigated HIF-2α
protein and mRNA expression under normoxic conditions. Notably, both HIF-2α protein
and mRNA expression were significantly elevated in KrasG12D-LOH PDAC cells compared
with KrasG12D PDAC cells without LOH under normoxic conditions (p < 0.05, p < 0.01;
Figure 1b,c). We used the Gene Expression Profiling Interactive analysis (GEPIA) database
(http://gepia.cancer-pku.cn/ accessed on 16 April 2021) to analyze the HIF-2α mRNA level
in pancreatic cancer tissues and normal pancreatic tissues and found that HIF-2α mRNA
levels were significantly higher in pancreatic cancer tissues than in normal pancreatic
tissues (p < 0.05; Figure 1d).

2.2. KrasG12D-LOH Triggered HIF-2α-Dependent c-Myc Activation

Mitochondrial glutaminase and Gln metabolism can be enhanced by c-Myc via sup-
pression of miR-23 [35]. However, a specific link between LOH and c-Myc has not yet
been reported. Notably, c-Myc protein and mRNA levels were significantly higher in

http://gepia.cancer-pku.cn/
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KrasG12D-LOH cells than in KrasG12D cells without LOH (p < 0.01; Figure 2a,b). KrasG12D-
LOH promoted c-Myc activity, and HIF-2α knockdown repressed c-Myc expression both
at the protein and mRNA levels (p < 0.01; Figure 2c,d). The LOH-induced elevation of
c-Myc expression was blocked by HIF-2α silencing. According to these findings, LOH acti-
vated HIF-2α, which further stabilized c-Myc activity via a signaling pathway independent
of hypoxia.
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control groups. Data are expressed as the mean ± SD, based on three independent experiments.
* p < 0.05; ** p < 0.01.
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2.3. LOH-Activated HIF-2α-c-Myc Signaling Enhanced Noncanonical Gln Metabolism

To determine the role of HIF-2α and c-Myc in Gln metabolism, we transfected shRNA
lentivirus targeted with c-Myc and shRNA targeted with HIF-2α into KrasG12D and KrasG12D-
LOH cells, respectively. HIF-2α or c-Myc silencing repressed GOT1 protein and mRNA
levels in KrasG12D-LOH cells (p < 0.05 and p < 0.05, respectively; Figure 3a,b). LOH-activated
GOT1 expression in KrasG12D-LOH PDAC cells was independently repressed by sh-HIF-2α
or sh-c-Myc compared with that in the shRNA-NC and control groups. HIF-2α or c-Myc
knockdown significantly decreased Gln consumption in KrasG12D-LOH PDAC cells (p < 0.01
and p < 0.05; Figure 3c). Moreover, we observed a reduction in NADPH levels in sh-HIF-2α-
and sh-c-Myc KrasG12D-LOH PDAC cells; specifically, improved NADP+ ratios and reactive
oxygen species (ROS) levels were observed (p < 0.05, and p < 0.05, respectively; Figure 3d,e).
These findings suggest that inhibition of HIF-2α attenuated nonclassical Gln metabolism in
KrasG12D-LOH pancreatic cancer cells, possibly in a c-Myc-dependent manner.
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(897 and 907 cells) compared with that in the shRNA-NC and control groups. (b) Relative protein ex-
pression of GOT1 in sh-HIF-2α- or sh-c-Myc-transfected KrasG12D-LOH cells (897 and 907 cells)
compared with that in the shRNA-NC and control groups. (c) Glutamine consumption rate.
(d) NADPH:NADP+ ratio. (e) Reactive oxygen species (ROS) levels. Data are expressed as the
mean ± SD, based on three independent experiments. * p < 0.05; ** p < 0.01.

2.4. HIF-2α Knockdown Impaired KrasG12D and KrasG12D-LOH PDAC Cell Growth

As we confirmed that HIF-2α had a regulatory effect on nonclassical Gln metabolism,
we further investigated whether the malignant behavior of KrasG12D-LOH PDAC cells
was associated with HIF-2α knockdown. CCK-8 analysis revealed that HIF-2α silencing
reduced the proliferation rate of sh-HIF-2α KrasG12D cells and KrasG12D-LOH cells (p < 0.01;
Figure 4a). Similarly, a colony formation assay showed a decreased colony number in
KrasG12D PDAC cells and KrasG12D-LOH PDAC cells (p < 0.05 and p < 0.01, respectively;
Figure 4b). Overall, HIF-2α knockdown halted the proliferation of both KrasG12D-LOH and
KrasG12D PDAC cells.
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viability according to CCK-8 assay. (b) Cell proliferation measured by colony formation assay. Data
are expressed as the mean ± SD, based on three independent experiments. * p < 0.05; ** p < 0.01.

2.5. HIF-2α Knockdown Suppressed Invasion and Migration of KrasG12D and KrasG12D-LOH
PDAC Cells

According to the results of Transwell assay, HIF-2α silencing reduced the invasion of
KrasG12D and KrasG12D-LOH cells (p < 0.01; Figure 5a). Consistently, the sh-HIF-2α group
had a lower number of invaded KrasG12D and KrasG12D-LOH cells than the shRNA-NC and
control groups (p < 0.01; Figure 5b). These findings demonstrate that HIF-2α silencing can
inhibit the migration and invasion of KrasG12D and KrasG12D-LOH PDAC cells.
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2.6. HIF-2α Knockdown Increased Cell Cycle Arrest and Apoptosis of KrasG12D and
KrasG12D-LOH PDAC Cells

The cell cycle assay results showed that the proportion of cells in the S phase was
significantly lower in sh-HIF-2α KrasG12D-LOH and sh-HIF-2α KrasG12D groups than in
the control and shRNA-NC groups, whereas HIF-2α knockdown induced G1 phase arrest
(p < 0.01; Figure 6a). In addition, the sh-HIF-2α groups of KrasG12D-LOH and KrasG12D

cells had an increased apoptosis rate (p < 0.01; Figure 6b). These results confirmed that the
proliferative capacity of KrasG12D and KrasG12D-LOH PDAC cells was inhibited following
HIF-2α knockdown.
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experiments. ** p < 0.01.
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2.7. Role of HIF-2α in KrasG12D and KrasG12D-LOH PDAC Cells In Vivo

We further demonstrated the exact role of HIF-2α in malignant behavior and non-
classical Gln metabolism in vivo. After subcutaneous injection of HIF-2α-targeted shRNA-
infected cells into nude mice, we observed that the weight of the removed tumor in the
sh-HIF-2α group was significantly lower than that in the shRNA-NC group (p < 0.05;
Figure 7a,b). In addition, immunohistochemistry revealed that HIF-2α silencing decreased
the number of Ki67-positive PDAC cells compared with that in the shRNA-NC group
(p < 0.01; Figure 7c). Consistent with the in vitro results, we noted that HIF-2α silencing
inhibited LOH-induced c-Myc and GOT1 expression at both mRNA and protein levels
(p < 0.01; Figure 7d,e). Overall, these results demonstrate that HIF-2α silencing may re-
press the malignant phenotype of KrasG12D-LOH PDAC cells in vivo, and HIF-2α-c-Myc
signaling may regulate nonclassical Gln metabolism.
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and KrasG12D mice. (b) Weight of tumors removed from the KrasG12D-LOH and KrasG12D mice.
(c) Ki67 immunostaining of tumors. (d) Relative mRNA expression of c-Myc and GOT1 in KrasG12D-
LOH tumor tissues. (e) Relative protein expression of c-Myc and GOT1 in the KrasG12D-LOH tumor
tissues. Data are expressed as the mean ± SD, based on three independent experiments. * p < 0.05;
** p < 0.01.

3. Discussion

This study mainly explored the role of HIF-2α in the KrasG12D-LOH cell-mediated
malignant phenotype of pancreatic cancer. In particular, we investigated the downstream
targets of KrasG12D-LOH and found that the protein and mRNA levels of HIF-2α in KrasG12D-
LOH PDAC cells were significantly higher than those in KrasG12D PDAC cells. These results
suggest that HIF-2α plays a key role in regulating the malignant phenotype and Gln
metabolism in KrasG12D-LOH pancreatic cancer.

Hypoxia is among the fundamental factors regulating the HIF-signaling pathway [36].
Some studies have found that malignant tumor cells can promote the activation of the HIF-
signaling pathway by inducing HIF-2α mRNA transcription, maintaining protein stability
and regulating upstream and downstream target genes in various pathways [37,38]. In
addition, mutation of VHL or inactivation of prolyl hydroxylase can promote HIF-2α
expression [39]. Prolyl hydroxylation can be inhibited by ROS, nitric oxide, and specific
oncogenes, such as activated RAS and v-Src [40,41]. The PI3K/AKT/mammalian target of
rapamycin (mTOR) pathway activates HIF signaling by increasing HIF-α subunit protein
translation [42]. Similarly, in the present study, we found that HIF-2α expression was
significantly higher in KrasG12D-LOH pancreatic cancer cells than in KrasG12D pancreatic
cancer cells under normoxia. Furthermore, the occurrence of LOH in KrasG12D PDAC
cells was found to promote HIF-2α expression. The LOH for KrasG12D stabilizes HIF-2α
expression, which was confirmed in the experimental 897 and 907 cell lines without hypoxia
signaling. We successfully constructed sh-HIF-2α and shRNA-NC lentiviruses to transfect
KrasG12D-LOH and KrasG12D pancreatic cancer cells. The results showed that inhibition
of HIF-2α can suppress the proliferation, migration, and invasion of KrasG12D-LOH and
KrasG12D pancreatic cancer cells. Moreover, HIF-2α silencing can block the cell cycle and
promote apoptosis. Therefore, HIF-2α plays a crucial role in the regulation of malignant
phenotypes in KrasG12D-LOH and KrasG12D pancreatic cancer cells.

Pancreatic cancer cells metabolize Gln via a nonclassical pathway. Gln-derived glu-
tamate yields aspartate through GOT1, which is then transferred to the cytoplasm to
produce oxaloacetate, malic acid, and pyruvate by MDH1 and ME1 [26]. In contrast
to those in KrasG12D pancreatic cancer cells, the Gln uptake rate and NADPH/NADP+

ratio of KrasG12D-LOH pancreatic cancer cells were significantly decreased after HIF-2α
downregulation, whereas ROS levels increased compared with those in the control and
shRNA-NC groups. HIF-2α-mediated Gln metabolism was more apparent in KrasG12D-
LOH PDAC cells. In addition, LOH activated c-Myc protein and mRNA levels, which had
a regulatory effect on Gln metabolism; moreover, HIF-2α downregulation inhibited c-Myc
expression. The suppression of HIF-2α or c-Myc significantly decreased GOT1 levels in
the Gln metabolic pathway compared with those in the control group. The occurrence
of LOH first increases HIF-2α expression; HIF-2α then enhances c-Myc activity, which
regulates Gln metabolism in a pathway independent of hypoxia. These results suggest
that HIF-2α knockdown can significantly repress Gln metabolism in KrasG12D-LOH pan-
creatic cancer cells in a manner dependent on c-Myc, without a significant change in Gln
metabolism in KrasG12D pancreatic cancer cells. KrasG12D-LOH can promote Gln metabolism
in KrasG12D-LOH pancreatic cancer cells by regulating the HIF-2α-c-Myc pathway, and
HIF-2α plays an important role in regulating Gln metabolism in KrasG12D-LOH pancreatic
cancer cells. Furthermore, the regulatory trend of nonclassical Gln metabolism is con-
sistent with the malignant behavior of KrasG12D-LOH pancreatic cancer cells, suggesting
that KrasG12D-LOH may regulate the malignant phenotype of pancreatic cancer through
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HIF-2α/c-Myc-mediated Gln metabolism. However, the precise mechanism by which the
occurrence of LOH stimulates the HIF-2α pathway and hypoxia signaling requires further
exploration in future research. In addition, clinical data must be collected and analyzed to
confirm the regulatory role of HIF-2α in KrasG12D-LOH PDAC. Although HIF-2α knock-
down results in a similar phenotype in KrasG12D and KrasG12D-LOH cells, this is not the
case for KrasG12D-LOH cells. Because KrasG12D-LOH cell lines have a higher proliferation
and metastasis capability, they were more effective at inhibiting the malignant phenotype
than KrasG12D cells after HIF-2α knockdown. In addition, the regulation mechanism of
HIF-2α in KrasG12D cell phenotypes requires further investigation. We hypothesize that
additional pathways regulate the malignant phenotype of KrasG12D and KrasG12D-LOH cell
lines simultaneously.

In conclusion, the findings of this study suggest that HIF-2α silencing in KrasG12D-LOH
pancreatic cancer cells significantly decreases Gln metabolism and inhibits cell proliferation
and invasion. Meanwhile, although downregulation of HIF-2α expression has minimal
effects on Gln metabolism in KrasG12D pancreatic cancer cells, it inhibits cell proliferation
and invasion, suggesting that KrasG12D-LOH regulates the malignant biological behavior of
pancreatic cancer in HIF-2α-mediated Gln metabolism. Therefore, HIF-2α can be activated
by KrasG12D-LOH to regulate Gln metabolism and participate in malignant phenotypes.

4. Materials and Methods
4.1. Cell Culture and Transfection

KrasG12D-(herein designated as 399 and 403 cells) and KrasG12D-LOH cells (herein
designated as 897 and 907 cells) were obtained from transgenic mice, generously provided
by Bo Kong (Technical University of Munich, Munich, Germany). As previously described,
all four cell lines are were isolated from transgenic p48Cre/+; LSL-KrasG12D/+; Tsc1fl/+

mice [43]. The four experimental cell lines were cultured as described previously [19].
Four experimental PDAC cells were seeded in 96-well plates (1 × 104 cells/well) and
cultured until reaching 40–60% confluence. Transfection experiments were conducted
using lentiviruses (GenePharma Co., Shanghai, China) targeting HIF-2α or c-Myc with the
addition of 5 µg/mL polybrene, following the manufacturer’s instructions. Fresh medium
containing puromycin (2 µg/mL) was added daily for 2–3 weeks. HIF-2α shRNA sequences
were as follows: (sense, 5′–3′) CGACAGAATCTTGGAACTGAT and (antisense, 5′–3′)
ATCAGTTCCAAGATTCTGTCG. c-Myc shRNA sequences were as follows: (sense, 5′–3′)
GCCTACATCCTGTCCATTCAA and (antisense, 5′–3′) TTGAATGGACAGGATGTAGGC.

4.2. Polymerase Chain Reaction (PCR)

RNAiso Plus reagent (Takara Biotechnology, Dalian, China) was applied for the
isolation of total RNA, and reverse-transcription of the isolated RNA to cDNA was
performed using an RT Master Mix for qPCR (MedChemExpress, Monmouth Junction,
NJ, USA), strictly following the manufacturer’s instructions. Genomic DNA was ex-
tracted using a PureLinkTM Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA).
Real-time quantitative PCR was performed, and results were analyzed using an ABI
7500 PCR system (Thermo Fisher Scientific, Waltham, MA, USA) using SYBR Green
qPCR Master Mix (MedChemExpress). The primers used were as follows: HIF-2α, 5′-
ATCCCTATGGACGGCGAG-3′ (forward), and 5′-CAACTGCTGCGGGTACTTAT-3′ (re-
verse); c-Myc, 5′-AAACGACAAGAGGCGGACAC-3′ (forward) and 5′-
TGGTCACGCAGGGCAAAA-3′ (reverse); GOT1, 5′-CGAGTACCTGCCCATCCTG-3′ (for-
ward) and 5′-ACCATCGCCCTAAGAAGTCA-3′ (reverse); and β-actin, 5′-
CACCCCATTTGATGTTAGTG-3′ (forward) and 5′-CCATTTGCAGTGGCAAAG-3′ (re-
verse). In addition, PCR was performed on a StepOnePlusTM Real-Time PCR system to
distinguish the wide-type Kras and activated KrasG12D mutant alleles. Genotyping was
confirmed by agarose gel electrophoresis. The primers used were as follows: Krasboth,
5′-AGGCCTGCTGAAAATGACTG-3′ (forward), and 5′-TGGT TCCCTAACACCCAGTT-
3′(reverse).
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4.3. Western Blotting

RIPA buffer, which contained a protease inhibitor (Cell Signaling Technology, Danvers,
MA, USA), was applied for cell lysis. The protein concentrations were determined using
a BCA protein assay kit (KeyGEN BioTECH, Nanjing, China). SDS-PAGE (8–10%) was
used to separate the proteins, which were then transferred to PVDF membranes (Merck
Millipore, Billerica, MA, USA). The primary antibodies included HIF-2α (1:500, ab109616,
Abcam, Cambridge, UK), c-Myc (1:500, #13987, Cell Signaling Technology), GOT1 (1:1000,
#14886-1-AP, Proteintech, Rosemont, IL, USA), and β-actin (1:5000, #AP0060, Bioworld,
Bloomington, MN, USA). Enhanced chemiluminescence (Merck Millipore) was used to
evaluate the signal, and analysis was performed using the ImagePro Plus software (Me-
dia Cybernetics, Rockville, MD, USA). Each target gene protein was semi-quantitatively
estimated, compared with β-actin as an internal loading control.

4.4. Measurement of Gln Consumption, the NADPH:NADP+ Ratio, and Intracellular ROS Levels

Four experimental cell lines were seeded in 6-well (105/well) plates for 48 h. A col-
orimetric assay kit (Biovision, Milpitas, CA, USA), NADPH/NADP+ assay kit (Jiancheng
Bioengineering Institute, Nanjing, China), and ROS detection kit (Jiancheng Bioengineering
Institute) were used to measure Gln consumption, the NADPH:NADP+ ratio, and intracel-
lular ROS levels, respectively, according to the manufacturers’ instructions. The specific
methods were described previously [19].

4.5. Cell Viability, Colony Formation, Transwell, Cell Cycle, and Apoptosis Assays

The relevant methods are described in our previous studies [19] and the Supplemen-
tary Materials.

4.6. Xenograft Mouse Model

Female BALB/c nude mice (4 ± 1 week old, 14 ± 5 g) were injected with 200 mL
(1 × 106 cells) of sh-HIF-2α-transfected KrasG12D and KrasG12D-LOH cells. Additionally,
shRNA-NC cells (5 mice per group) were subcutaneously injected into the right axillary
fossa. Subsequently, each animal was sacrificed by cervical dislocation 14 days after
inoculation, and the tumors were retrieved. The animal experiments complied with the
ARRIVE guidelines and were approved by the Ethics Committee on Animal Care and Use
of Southeast University (No. 20200101003).

4.7. Immunohistochemistry

The tumors retrieved from BALB/c nude mice were fixed in formalin and embedded
in paraffin; 4 µm-thick sections were prepared. The sections were first incubated with a
primary antibody for Ki67 (1:200, 12202T, Cell Signaling Technology, Boston, MA, USA)
overnight at 4 ◦C and subsequently incubated at 37 ◦C for 30 min with a corresponding
secondary antibody (1:2000, 111-035-003, Jackson ImmunoResearch Inc, West Grove, PA,
USA) at 37 ◦C. Finally, the sections were re-stained with hematoxylin and observed under
a microscope (Nikon Eclipse, Tokyo, Japan).

4.8. GEPIA Database Analysis

Analysis of HIF-2α mRNA expression in pancreatic cancer tissues and normal pan-
creatic tissues was conducted using the GEPIA (http://gepia.cancer-pku.cn/ accessed on
16 April 2021) database.

4.9. Statistical Analysis

All experiments were independently conducted at least three times. The results are
presented as the mean ± standard deviation (SD). The obtained experimental data were
analyzed using one-way analysis of variance and Student’s t-test. The SPSS software (IBM
Corp., Armonk, NY, USA) was used for all experimental analyses. p-values < 0.05 were
considered statistically significant.

http://gepia.cancer-pku.cn/
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