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Automated subset identification
and characterization pipeline for multidimensional
flow and mass cytometry data clustering
and visualization
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When examining datasets of any dimensionality, researchers frequently aim to identify

individual subsets (clusters) of objects within the dataset. The ubiquity of multidimensional

data has motivated the replacement of user-guided clustering with fully automated clustering.

The fully automated methods are designed to make clustering more accurate, standardized

and faster. However, the adoption of these methods is still limited by the lack of intuitive

visualization and cluster matching methods that would allow users to readily interpret fully

automatically generated clusters. To address these issues, we developed a fully automated

subset identification and characterization (SIC) pipeline providing robust cluster matching

and data visualization tools for high-dimensional flow/mass cytometry (and other) data. This

pipeline automatically (and intuitively) generates two-dimensional representations of high-

dimensional datasets that are safe from the curse of dimensionality. This new approach

allows more robust and reproducible data analysis,+ facilitating the development of new gold

standard practices across laboratories and institutions.
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The traditional approach to locating clusters (subsets) in
high-dimensional (Hi-D) data sets such as those acquired
by flow cytometry is to reduce the data set dimensionality,

usually by linear and/or nonlinear one-/two-dimensional map-
ping or projection strategies. This Projection Pursuit approach
has proven to be very efficient for analyzing high-dimensional
data in a way that avoids a common pitfall, the curse of dimen-
sionality (see refs. 1,2; Supplementary Notes 1 and 2, Supple-
mentary Figs 1–3). Indeed, much of what is known about stem
cells, blood cells, and diseases, such as leukemia and AIDS, relies
on flow-cytometry data analyzed with these manual sequential
Projection Pursuit approaches, including the widely used meth-
ods offered by FlowJo (www.flowjo.com). Usually, cell subsets
identified in such user-guided manners are readily biologically
interpretable. However, the resolution of such subsets with
manual analysis tools is by no means routine. In fact, since these
manual analysis methods ultimately rely on user skills to define
subset boundaries, subset identification, and quantitation is still
more appropriately recognized as an art rather than a science,
and, as such, automating this data analysis process and making it
more objective is clearly desirable.

Several groups have recently developed fully automated com-
putational approaches that operate simultaneously in four or
more dimensions to identify the subsets (clusters) within a given
Hi-D data set3. These attempts are well motivated from a func-
tionality point of view. However, there are several issues asso-
ciated with the fully automated Hi-D clustering approach. First,
the reproducibility of clusters automatically generated from
simultaneous analysis of multiple dimensions is proving chal-
lenging;4 as we have shown previously, this irreproducibility is
partially caused by the curse of dimensionality (see ref. 5; Sup-
plementary Notes 1 and 2, Supplementary Tables 1–3). Second,
there is no widely accepted analytical framework to distinguish
spurious clusters from more stable entities, and presumably more
biologically relevant ones4. Finally, there is a lack of tools to
readily interpret fully automated clustering outcomes.

To facilitate statistical and biological inference from fully auto-
mated (and user-guided) clustering outcomes, we introduced a
pipeline of multidimensional cluster matching and display methods.
We based our pipeline on the quadratic form distance metric and
adaptive binning6. We previously demonstrated6 that a computa-
tionally efficient distance metric such as quadratic form, which takes
into account changes in both location and frequency rather than
just changes in one or the other, is the most suitable and accurate
method for comparing multivariate non-parametric flow/mass
cytometry data distributions. In addition, by coupling the quadratic
form metric with adaptive binning, we avoid the curse of dimen-
sionality in both cluster matching and data visualization. Together
with a clustering algorithm, our methods provide a complete pipe-
line for cluster (subset) recognition, display, and characterization.
The analysis pipeline we describe is readily applicable to any number
of dimensions and to any method that enables valid identification of

cellular (or other) subsets. Here, we emphasize that it is crucially
important to fuse/apply cluster matching and visualization modules
to valid methods of subset identification (i.e., those that avoid the
curse of dimensionality). We avoid the curse in cluster identification
here by coupling cluster matching and data visualization tools with
the fully automated Exhaustive Projection Pursuit (EPP) clustering
approach available at: www.cytogenie.org; http://cgworkspace.
cytogenie.org/GetDown2/demo/bCellMacrophageDiscoveryDemo.
pdf; (paper in preparation). Here, we apply these statistically robust
clustering and data visualization tools to both simulated and pre-
viously published flow/mass cytometry data sets and emphasize that
they are readily applicable to similar single- or multidimensional
data generated with other technologies.

Results
Cluster analysis and data visualization pipeline. In a simplified
example (Supplementary Data 1, and 2), we illustrate steps of the
cluster analysis and data visualization pipeline (Fig. 1) that we
develop.

Here, we used fully automated EPP clustering (www.cytogenie.
com) to locate subsets. This clustering method relies on the same
principles underlying the previous automated two-dimensional
(2D) Exhaustive Projection Pursuit approaches7. Briefly, EPP
takes the following stepwise approach: Hi-D data are presented as
a collection of 2D linear projections; every 2D projection is then
characterized by a numerical index that indicates the amount of
structure that is present;7,8 this index is then used as the basis for
a heuristic search to locate the most useful 2D projection; once
the projection with the most useful structure has been found, this
structure is then segmented and each portion is recursively
analyzed until there is no remaining structure detectable.

In general, Projection Pursuit methods are a big step toward
solving the problem of Hi-D data analysis because they avoid the
curse of dimensionality. However, the approaches advanced thus
far have some key limitations. For example, what constitutes
structures in data and how to make inferences from such
identified structures is neither obvious nor trivial to specify9.
To overcome these limitations, we are developing (paper
in preparation) a fully automated EPP method (its implementa-
tion is available at www.cytogenie.org) that uses the smallest
misclassification error across a decision boundary between
identified clusters (using the DBM approach, see Supplementary
Methods10) as an index to identify the most profitable 2D
projection.

The basic strategy underlying the EPP methods is a search for
an orthogonal 2D projection, in which the data are cleanly split
into subsets. Applied recursively, EPP carries out this strategy,
identifying subsets until no further splits are available (Fig. 2).
Thus, for a set of measurements, EPP: examines all possible 2D
projections using the density-based merging (DBM, see Supple-
mentary Methods)10 clustering method and assigns all

Cluster flow/mass
cytometry data

Match clusters with
QFMatch

Visualize cluster
analysis outcomes

User-guided
clustering
(“DBM”)

Fully automated 
clustering
(“EPP”)

Map of relative
positions
(“MDS”)

Phenogram
(“QF tree”)

Fig. 1 A flowchart displaying the steps of the Subset Identification and Characterization (SIC) pipeline. SIC pipeline does not require that the data be from
flow cytometers. However, the data must be numerical (not categorical) and it must be in an fcs file format
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Fig. 2 Exhaustive Projection Pursuit (EPP) applied to simulated data set. aWe simulated two three-dimensional sets of data (Sample A and Sample B). b To
identify clusters in these data sets, we applied EPP approach that, recursively, (1) projects the data in a collection of 2D linear projections, (2) characterizes
every given 2D projection by a numerical index that indicates the smallest misclassification error across a decision boundary (green line) between
identified clusters, (3) separates the data across the top-ranked decision boundary to produce two subsets, (4) repeats on both subsets until no splits are
found. Subsets that have no further splits (groups# 1–4) are final clusters identified by the EPP approach
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unclustered data (e.g., outliers) to the nearest cluster; finds all
suitable candidate decision boundaries; ranks them by estimated
classifier error; separates the data across the top-ranked decision
boundary to define two subsets; repeats the above on each of
the two subsets until no further splits are found.

To align (match) subsets identified by EPP (or another
clustering algorithm) in two or more comparable samples (e.g.,
samples A and B in Fig. 2), we used the quadratic form-based
cluster-matching algorithm (QFMatch) that we described

previously6,11. However, here, we extended the previous version
of QFMatch by adding an exhaustive cluster merging step.
Figure 3a–c illustrates the application of QFMatch to a three-
dimensional data set. Matched subsets in samples A and B are
highlighted with the same color (Fig. 4a). As we show in the next
section, QFMatch can be applied to match subsets identified
by different clustering approaches (e.g., user guided versus fully
automated, or to compare outcomes between different fully
automated algorithms) within one sample.
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Fig. 3 The steps of the QFMatch algorithm as applied in aligning clusters identified by the EPP approach. a–c. Merge the previously clustered samples
(panel a, samples were clustered as described in Fig. 2b) and perform adaptive binning (panel b) insuring 2lnN events per bin, where N is the number of
events in the smallest sample. Split the samples back while preserving the binning pattern (panel c). Calculate quadratic form dissimilarity6 between each
possible combination of cluster pairs (Groups #1-#4 from Sample A and Sample B), on which medians are located no more than four standard deviations
apart in every dimension (Table 1). Pairs with the smallest dissimilarity scores are considered as matched. The remaining clusters in each sample are
automatically treated as merging candidates (Table 2). If there is more than one merging candidate then all possible permutations of merging candidates
are considered.
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To visualize clustering outcomes in a composite figure, we
developed two data display alternatives that can supplement
each other.

We use a multidimensional scaling (MDS) method12 that
allows placement of each object (cluster) in two-dimensional
space such that the overall between-object distances in high-
dimensional space are well-preserved. To make the results more
visually interpretable, we apply this MDS method to the matrix of
distances between median values calculated for each of the
identified clusters (Fig. 4a). This reduces the effect of the
crowding problem13 and, importantly, allows computationally
efficient application of MDS.

We also created a tree-structure data display (Fig. 4b) that
allows agglomerative arrangement of identified clusters based on
their (dis)similarity in the space of measured parameters. This
data display method builds the hierarchy from the individual
clusters identified within one sample by progressively merging
clusters. In order to decide which clusters should be merged, a
measure of dissimilarity between sets of observations is required.
We used a combination of the multidimensional quadratic form
score described in our previous paper6 and Euclidean distance
between clusters’ medians as a dissimilarity measure to combine
identified clusters in a bottom up manner: the branching diagram
starts by placing clusters with the smallest pairwise dissimilarity
scores in the lowest branches of the diagram; these pairs of
clusters are progressively merged in the next branching level
of the diagram and then considered as one cluster; dissimilarity
scores are then recalculated for all of the clusters on this
branching level and the merging process is repeated. This process
is sequentially repeated until all of the clusters identified within
the sample are merged together. We named this tree-structure
data display QF-tree. Building such tree-structure display using
quadratic form distance measure+ Euclidean distance as a
measure of dissimilarity is computationally costlier than using
just Euclidean distance. But as we previously demonstrated6,
distance metrics (such as quadratic form) that take into account
changes in both location and frequency rather than just changes
in one or the other are the most suitable and accurate methods for
comparing multivariate non-parametric flow-cytometry data
distributions. Here, we add Euclidean distance to quadratic form
distance measure to ensure linear monotonic behavior for this
dissimilarity measure (see Fig. 1 in ref. 6).

We refer to the above computational pipeline (i.e., clustering
for subset identification, QFMatch for high-dimensional cluster
matching, and MDS or QF-tree for data display) as the subset
identification and characterization (SIC) pipeline. The algorithms
constituting this pipeline are available as parts of the AutoGate
software, which is freely available for download by not-for-profit
users (.edu,.org,.gov) at www.cytogenie.org.

We also provide a source code (python implementation) for
the prototypes of high-dimensional cluster matching and data
display algorithms (MDS and QF-tree) at https://github.com/
dyorlova/QFMatch_MDS_dendrogram. The python implementa-
tion provides alternative choices for MDS data display, including
the use of median values or adaptive bins that are calculated for
each of the identified clusters.

SIС pipeline identifies the well-known immune cell subsets
within the mouse PerС. To validate the SIC pipeline in a fully
automated manner, we applied it to a previously published data
set14 shown, by manual gating, to contain cells from the myeloid
(small and large peritoneal macrophages, and dendritic cells),
granuloid (eosinophils and neutrophils), and lymphoid (T, B, NK,
and NKT cells) lineages (Supplementary Fig. 4). We show that the
standard cell subset measurements (i.e., median fluorescence values
and cell frequencies) generated automatically by the SIC pipeline
(Fig. 5a; https://figshare.com/s/9c607084d6bab0d4e1ea, 10.6084/m9.
figshare.8115974) are in strong agreement with the measurements
described by the traditional manual gating method (user-guided
clustering) performed by highly skilled investigator14.

Such strong agreement in median fluorescence values and cell
frequencies between cell populations identified automatically by the
SIC pipeline and those identified with user-guided clustering implies
their substantial overlap in the space of measured parameters.
However, to verify this point, for every cell population identified
with the SIC pipeline, we performed backgating analysis to detect the
location of the identified cell population within the gating tree built
according to a conventional gating strategy. All of the cell
populations identified with the EPP approach and matched with
those identified by a user-guided approach had a strong overlap
(as expected) in their locations on the conventional gating tree (for
example, see https://figshare.com/s/9c607084d6bab0d4e1ea, 10.6084/
m9.figshare.8115974, where subsets identified with the EPP
approach are highlighted in yellow). We also show that the SIC
pipeline consistently detects the same immune cell subsets in the
peritoneal cavity (PerC) of another wild-type mouse strain (BALB/c)
even when a different staining panel is used (see Supplementary
Figs 5, 6).

In addition to identifying well-established immune cells
subsets, the SIC pipeline was able to identify other cell subsets
that were not considered within the established manual gating
strategy. For example, using the same set of parameters as in the
manual gating strategy, the SIC pipeline identified two subsets of
dendritic cells (DC) based on the expression levels of surface
CD11b (Supplementary Fig. 7).

Table 1 Pairwise quadratic form-based dissimilarity scores

Sample B

Sample A Group ID 1 2 3 4
1 0.0003 (match)
2 0.00004 (match)
3 0.86 0.73 (merg.candidate) 0.00016 (match)

Pairs with the smallest dissimilarity scores are marked as “match”. The merging candidate is marked as “merg. candidate”

Table 2 The merging process

Sample B

Sample A Group ID 1 2 3+ 4
1
2
3 0.17

If as a result of the merging process the initial dissimilarity score (see Table 1) decreases then
the presence of a cluster split is indicated, if not then the unmatched cluster is considered as
missing
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Figure 5b shows an agglomerative arrangement (the QF-tree)
of the cell subsets (identified by user-guided clustering) according
to their (dis)similarity in the space of measured parameters
(Forward Scatter, CD11b, CD11c, CD19, CD5, F4/80, IgD, and
IgM). In other words, QF-tree organized cells in a hierarchy of
related phenotypes. Although QF-tree can reliably reproduce
patterns of hematopoiesis from high-dimensional cytometry data,
its utility is limited by the choice of markers that are measured in
the experiment. For instance, if the tree structure is built with a
marker set that is not related to cellular progression, one might
not expect to recover the known lineage relationships.

To further test the SIC pipeline performance, we challenged
its ability to detect missing lymphocyte populations in the
PerC of RAG knockout (RAG−/−) mice. Using QFMatch,
we aligned cell subsets identified in the wild-type mice
(BALB/c) by the user-guided clustering (Supplementary Fig. 4)
with the cell subsets identified in the knockout mice
(RAG−/−) by the EPP clustering. The QFMatch algorithm
readily matched the non-lymphoid cells present in both
BALB/c and RAG−/− samples and correctly detected the lack
of T and B lymphocytes in the RAG−/− sample (Supplemen-
tary Fig. 8).
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Fig. 4 Visualization of cluster analysis outcomes. a Display of the EPP clustering outcomes using MDS method. Each circle represents one subset identified
by the EPP approach. The size of the circle directly correlates with the relative frequency of the subset in the sample. Subsets that match (identified using
QFMatch) between Sample A and Sample B are highlighted with the same color. X and Y axes are MDS coordinates. We ran MDS on a mixture of Sample
A and Sample B to display them in the same X/Y scale. Relative location of identified subsets in MDS space corresponds well with the Euclidean distances
between subsets’ (groups’) medians presented in Supplementary Table 4. b QF (quadratic form)-tree built for Sample B. To build this hierarchical tree from
individual clusters, we used the following modification of a multidimensional quadratic form score6 as a measure of dissimilarity to progressively merge
clusters: quadratic form+ c*DM, where DM is the Euclidean distance between clusters’ medians and c is a scaling factor ensuring that the smallest
quadratic form score and the biggest DM are numbers of the same order of magnitude. This branching diagram starts by placing clusters with the smallest
pairwise dissimilarity scores in the lowest branches of diagram; these pairs of clusters are further progressively merged in the next branching level of the
QF-tree and further considered as one cluster; dissimilarity scores are then recalculated for all of the clusters on this branching level and the merging
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SIС pipeline identifies various subsets of human peripheral B
lymphocytes. Using two samples of human peripheral blood
stained with the same panel of surface markers (Supplementary
Fig. 9), we explored the SIC pipeline’s ability to consistently
detect the various lymphoid, myeloid, and granuloid subsets.
We used the manual gating strategy shown in Supplementary
Fig. 9 to identify T cells, neutrophils, monocytes, naive B cells,
memory B cells, class-switched B cells, and transitional B cells.
We further used the QFMatch algorithm to align these subsets
with the subsets identified by fully automated EPP clustering.

The QFMatch algorithm successfully aligned the immune cell
subsets that were identified in a user-guided manner with those
that were identified by a fully automated EPP. QFMatch also
reported additional subsets that were not identified manually,
but were readily discriminated by EPP clustering (marked as
red squares on MDS display, Fig. 6). The SIC pipeline consistently
detected all the cell subsets that were identified by the manual
gating strategy (Fig. 6; Supplementary Fig. 10).

SIС pipeline readily identifies human HSCs in the bone mar-
row. Traditionally, human hematopoietic stem cells (HSCs) are
characterized by lineage negative, CD34+ , CD38−, CD90+
cells15. However, subsequent studies have shown that this
population is still heterogeneous and is, at best, enriched for
HSCs. Other markers, including CD49f, have been suggested16.
But, as shown in ref. 16 and here in Fig. 7 and Supplementary
Fig. 11a, CD49f alone is not sufficient to provide a clear separa-
tion of CD49f+HSCs from other cells, limiting the ability to
isolate and study highly purified human HSCs.

Here, we applied an unbiased SIC pipeline in which all
parameters are used to determine the best markers (and gating
strategies) that clearly separate phenotypically distinct subsets.
The SIC pipeline readily identified human HSCs in the bone
marrow (Fig. 7), defined as lineage negative, CD34+ , CD38−,
CD90+ , CD49f+ . As shown in Supplementary Fig. 11b, the
pipeline used the CD135 marker to better separate HSCs from
other progenitor cells.
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Fig. 6 SIC pipeline applied to human peripheral blood flow-cytometry data. The results of multidimensional QFMatch alignment between user-guided and
fully automated clustering outcomes for one of the samples (~200k live singlets). The following sets of measured parameters were used for user-guided
clustering, EPP clustering, cluster matching and data visualization of pregated live singlets: Side Scatter, Dump (CD3, CD14, CD16), CD19, CD20, CD38,
CD27, IgM, IgD. Unmatched cell subsets are indicated as red squares. These unmatched subsets are cell populations that were not identified by the user in
the manual gating strategy. User’s gating strategy was not exhaustive, i.e., it did not aim to identify all of the subsets present in the sample, and was limited
to identification of the cell populations listed on the left panel. In contrast, EPP is an exhaustive subset identification technique, i.e., all of the subsets
present in the sample were identified. These unmatched subsets are cell subsets that were not identified by the user in the conventional gating strategy,
but they can now be readily explored looking at: a the expression level in each channel via pathfinder tool (see Supplementary Fig. 7); b the gating strategy
that EPP built (see Supplementary Fig. 11b); c backgating with the highlighter tool (see Supplementary Fig. 7). This toolkit (a–c) was designed to interpret
the fully automated clustering outcomes and assign cell subset names to identified clusters. Also, this toolkit can help reveal the presence of a false cluster
created by the EPP approach. Essentially, this is a strategy that can be applied to identify and characterize new cell subsets using the SIC pipeline
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Fig. 7 SIC pipeline applied to human bone marrow flow-cytometry data. a QF-tree reflects phenotypic similarity (within the set of parameters used in
the conventional gating strategy) between the user-guided clustering results obtained with convential gating strategy (Supplementary Fig. 11a). b Fully
automated clustering (EPP) readily explores the full staining panel (sixteen colors) and finds the most optimal gating strategy (Supplementary Fig. 11b)
leading to clear separatation of HSCs subset. c HSCs subsets identified automatically by the SIC pipeline are in strong agreement (median fluorescence
values and cell frequencies) with those identified with user-guided clustering
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SIC pipeline applied to CyTOF clinical samples. We tested the
SIC pipeline on the publicly available CyTOF (mass cytometry)
data set collected from patients with acute myeloid leukemia
(AML) in a pathophysiology study17 to illustrate one of the
possible applications of the SIC pipeline in clinical/biomedical
studies: detection and quantification of a difference in subset
representation between healthy controls and AML patients’
samples.

We randomly selected three healthy controls (H) and three
AML patients (SJ) samples from the original study17 and
compared the representation of CD11bhiCD33low and
CD11bhiCD33hi myeloid cell subsets between these samples.
Supplementary Figure 12 (Healthy control) shows the gating
strategy used to identify the two myeloid cell subsets in sample
H4 with user-guided clustering. We then ran fully automated EPP
clustering on all six samples (H4, H5, H6, SJ11d, SJ14d, and
SJ15d) individually and matched the clustering outcomes for
these samples with the user-guided clustering outcomes for
sample H4. Figure 8 shows the difference (relative frequency) in
representation of CD11bhiCD33low and CD11bhiCD33hi myeloid
cell subsets between healthy controls and AML patients. To
validate the SIC pipeline performance, we further performed
user-guided clustering according to the gating strategy shown
in Supplementary Fig. 12 (AML patient) to verify whether
CD11bhi myeloid cells are absent in the AML patients. SIC
pipeline results shown in Fig. 8 correspond very well with the
results obtained with the user-guided clustering (see Supplemen-
tary Fig. 13).

Discussion
Modern multidimensional flow- and mass-cytometry data
undoubtedly require automation of its analysis. However, despite
the decent amount of efforts that have been recently made to
automate subset identification and characterization in flow-/
mass-cytometry data, these automated methods were not widely
adopted among biologists/clinicians. The majority of flow/mass
cytometry users still prefer manual gating (e.g., using FlowJo) to
automated clustering. One of the main reasons (apart from
the vulnerability to the curse of dimensionality) for the lack of
adoption of automated methods is their inability to display and
align clustering outcomes in a way that allows automatic
extraction of meaningful and readily applicable biologically/bio-
medically information. It is indeed a nontrivial challenge to
present the Hi-D clustering results in a way that is easy to
understand and interpret and then further align these clustering
outcomes between samples or between different clustering
algorithms.

Several methods creating two-dimensional visualization of high
(or low)-dimensional clustering outomes (e.g., viSNE/tSNE18,
SPADE19) have been developed to aid biologists interpreting Hi-
D cytometry data. These methods can provide rich information
about the high-dimensional relationship in the data. However,
they have some major drawbacks. Both viSNE/tSNE18 and
SPADE19 are prone to suffering from the curse of dimensionality
(see Supplementary Notes 1 and 2, Supplementary Figs 14–16)
and most importantly they require user-defined input parameters
that seriously affect clustering and visualization outcomes. In
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Fig. 8 SIC pipeline applied to human bone marrow mass-cytometry data. SIC pipeline reveals the absence of CD11bhi myeloid cells in the AML patients
(SJ11d, SJ14d, and SJ15d). However, these patients still maintain their CD33+ and CD11blow myeloid cells (see ref. 22 for further details)
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addition, as noted by Yang et al.20 “…[viSNE and SPADE] are
not intuitive to biologists who are accustomed to the two-
dimensional nested gating representations.”

Aiming to make clustering outcomes more intuitive to biolo-
gists, Yang et al.20 have recently developed the C2G data visua-
lization method. This method is able to generate a gating
hierarchy that captures the target populations (identified by any
clustering method) and present the hierarchy in nested two-
dimensional gating sequences that resemble the conventional
manual gating analysis. Presenting Hi-D data in a two-
dimensional nested tree structure may indeed help biologists
who are accustomed to the two-dimensional nested gating
representations. However, conventional (domain knowledge-dri-
ven) gating strategies do not always follow the best separation
path that underlies the gating strategy principle applied by the
C2G method20. Thus, a gating strategy that is built according to
the best separation principle may not be readily interpretable to
biologists. Moreover, it is not clear how to readily align the trees
that followed different gating strategies (e.g., trees that were built
from two different samples).

To facilitate statistical and biological inference from automated
clustering outomes, we present a pipeline of fully automated,
statistically robust cluster matching and data visualization tools
applicable to high- (or low-) dimensional data generated with
flow-/mass-cytometry and other technologies. The analysis
pipeline that we developed here consists of three modules: (1)
cluster matching with QFMatch, and (2–3) two-dimensional
display of cluster identification and cluster matching results with
MDS and/or QF-tree. We designed the cluster matching and data
visualization algorithms in a way that automatically produces
intuitive representations of Hi-D single-cell data while avoiding
the curse of dimensionality. Also, these methods do not require
user-defined tuning parameters and their utility is mainly limited
by the choice/availability of markers unsed in a particular staining
panel (e.g., QF-tree will not retrieve the known lineage relation-
ships if the chosen/available stainset panel does not include key
markers related to the cellular progression).

However, while the SIC pipeline provides statistically robust
cluster analysis tools, it still has a drawback that is common for all
analysis pipelines that rely on fully automated clustering: the
inability to automatically assign cell type to identified cluster. This
issue can potentially be resolved by parsing the literature for
known cell phenotypes and using this data to automatically name
clusters that were identified in our fully automated pipeline. But
there is no currently established gold standard database that could
be used for these purposes. OMIP database (https://onlinelibrary.
wiley.com/doi/pdf/10.1002/cyto.a.20916) is an initial effort
toward creating a collection of peer-reviewed and readily acces-
sible optimized panels to identify specific cell types, but it is so far
limited to just a few panels/cell types.

To mitigate this issue here, we supplement the SIC pipeline
with a toolkit (discussed in detail in the legend to Fig. 6) allowing
to readily make sense from fully automated clustering outcomes
and to assign cell subset names to identified clusters. We suc-
cessfully applied the SIC pipeline to both user-guided and fully
automated clustering outcomes using both flow and mass-
cytometry data sets from mouse and human/clinical samples.
We implemented this pipeline in the AutoGate (www.cytonegie.
org) software package, which supports a graphical user interface,
and the Python source code is provided at https://github.com/
dyorlova/QFMatch_MDS_dendrogram.

Methods
Experiment overview. We use DBM10 or EPP (www.cytonegie.org) to identify cell
subsets in simulated and flow-/mass-cytometry data, QFMatch6 to align subsets
between relevant samples (same staining panels), and MDS12 or QF-tree to

visualize user-guided and fully automated clustering outcomes within the biolo-
gical/biomedical data sets described below.

Flow/mass sample description. The mouse peritoneal cavity (Fig. 5) and human
bone marrow (Fig. 8) data sets were generated in previously published studies
(see refs. 14,17 for complete materials and methods).

The human peripheral blood data set (Fig. 6) was generated using a
combination of 16 monoclonal antibodies (Hi-D 18-parameter flow cytometry
panel): B220-PE (BD Biosciences, catalog # 553090), CD5-PE-Cy5 (BD
Biosciences, catalog # 555354), CD10-PerCP-Cy5.5 (BD Biosciences, catalog #
563508), CD19-BV785 (BioLegend, catalog # 302240), CD20-BV650 (BioLegend,
catalog # 302336), CD23-APCCy7 (BioLegend, catalog # 338520), CD27-BV421
(BioLegend, catalog # 356418), CD38-APC (BD Biosciences, catalog # 555462),
CD43-AF700 (BD Biosciences, catalog # 551457), CD95-BV605 (BioLegend,
catalog # 305628), CD132-BV711 (BD Biosciences, catalog # 563129), CD3/CD14/
CD16 (Dump)-BV570 (BioLegend, catalog # 300436/BioLegend, catalog # 301832/
BioLegend, catalog # 302036), CD45-AF488 (BioLegend, catalog # 304017), IgD-
PECy7 (BD Biosciences, catalog # 561314), IgM-PECF594 (BD Biosciences, catalog
# 562539), and Aqua Amine (viability) (BioLegend, catalog # 423102). After
informed consent, 10 mL of peripheral blood was drawn in evacuated tubes
containing EDTA (K2) (Vacutainer, BD Biosciences). The blood samples from
healthy adult volunteers were collected, de-identified, and kindly provided by the
Clinical and Translational Discovery Core (Biorepository) at Emory University and
Children’s Healthcare of Atlanta (http://www.pedsresearch.org/research/cores/
biorepository). These studies were exempt from the IRB review because they do
not meet the definition of clinical investigation or research with human subjects.
The data were collected for about 0,5 × 10−6 cells. No data were excluded.

The human bone marrow data set (Fig. 7) was generated using a combination
of 16 monoclonal antibodies (Hi-D 18-parameter flow-cytometry panel): CD133-
VioBright (Miltenyi Biotec, catalog # 130–113–673), CD49f-BV421 (BD
Biosciences, catalog # 747725), IgM-BV570 (BioLegend, catalog # 314517), CD135-
biotin (Qdot 605-SA) (BioLegend, catalog # 313312), CD45-BV650 (BioLegend,
catalog # 304044), CD5-BV711 (BD Biosciences, catalog # 563170), CD19-BV785
(BioLegend, catalog # 302240), CD3/CD14/CD16 (Dump)-AF647 (BioLegend,
catalog # 300416/ BioLegend, catalog # 325612/ BioLegend, catalog # 302020), IgD-
AF700 (BioLegend, catalog # 348230), CD43-APC-H7 (BD Biosciences, catalog
# 655407), CD34-PE (BD Biosciences, catalog # 345802), C-Kit-PECF594 (BD
Biosciences, catalog # 562407), CD41a-PE-Cy5 (BD Biosciences, catalog # 559768),
CD38-PerCP-Cy5.5 (BD Biosciences, catalog # 551400), CD90-PE-Cy7
(BioLegend, catalog # 328124), Zombie Aqua (BioLegend, catalog # 423102). The
optimal antibody concentration was determined by in-house serial titration using
human total peripheral blood. Fresh bone marrow mononuclear cells from adult
healthy donors were obtained commercially from AllCells, LLC (Quincy, MA, Cat
# ABM024). Data was collected for about 0.5–1.0 × 10−6 cells.

Instrument details. Information about instruments used to collect human and
mouse samples can be found in refs. 14,17. Human peripheral blood and bone
marrow cells were analyzed on the BD LSRII instrument (5-laser, 18-color) at
the Emory’s Pediatrics/Winship Flow Cytometry Core.

Data analysis details. The proposed workflow for analyzing all four data sets used
in this paper consists of three steps: Step 1. Transform the compensated data
(FlowJo v.10, fluorescence flow-cytometry data only) with the Logicle transfor-
mation21, and cluster the transformed data with DBM (user guided) [10, see Sup-
plementary Methods] or EPP (fully automated) clustering methods. The data
transformation and clustering utilities are available in AutoGate (www.cytonegie.
org). The data were pregated for live singlets before EPP clustering run. See figures
for gating sequences. The flow-/mass-cytometry data processing methods used here
do not require user input for parameters such as the number of clusters, the
number of grid bins, etc. Step 2. Use QFMatch to align cell populations between
samples or between different clustering outcomes for the same sample. The
QFMatch (quadratic form-based cluster-matching algorithm) is integrated into
AutoGate (www.cytogenie.org). Step 3. Use MDS and/or QF-tree to display clus-
tering and cluster-matching outcomes. Both visualization tools are integrated into
AutoGate (www.cytogenie.org).

QFMatch, MDS, and QF-tree require only one user input configuration
parameter, that is the set of markers (and/or light scatter signals) selected to match
and display clustering outcomes. Notably, QFMatch, MDS, and QF-tree work
independently of how the populations (clusters) were pre-defined. For example, the
clusters could be defined by using domain knowledge-driven manual gating, a
sequential automated clustering approach, or a simultaneous clustering approach.
For details regarding computational performance of QFMatch, MDS and QF-tree
methods refer to Supplementary Note 3.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The data sets generated during and/or analyzed during the current study (Figs. 5–8) are
available in the FlowRepository and Cytobank: https://flowrepository.org/id/
RvFrin9QJBrBl7euVYafJg8MBtow5TSn0Cbf6ibJFTQbutUCP8VbTKi70DJD7TJg,
https://flowrepository.org/id/
RvFrmp0uY05bFrRfQW6XgcLV360pTCjz5ieEKzaHHGsTDoWEWpBspy21QVrQhFxz,
https://flowrepository.org/id/
RvFr85dLvWpwdnNDGBkj5qCB8skivxce0qGYsDNtsb52uflvb6C21xDjujsOXnY8,
https://www.cytobank.org/nolanlab/reports/Levine2015.html

Code availability
The analysis pipeline described here is implemented in the AutoGate (www.cytonegie.
org) software package, which supports graphical user interface; Python source code is
available at: https://github.com/dyorlova/QFMatch_MDS_dendrogram.
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