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Abstract: The search for generation approaches to robust chaos has received considerable attention
due to potential applications in cryptography or secure communications. This paper is of interest
regarding a 1-D sigmoidal chaotic map, which has never been distinctly investigated. This paper
introduces a generic form of the sigmoidal chaotic map with three terms, i.e., xn+1 = ∓Af NL(Bxn)
± Cxn ± D, where A, B, C, and D are real constants. The unification of modified sigmoid and
hyperbolic tangent (tanh) functions reveals the existence of a “unified sigmoidal chaotic map”
generically fulfilling the three terms, with robust chaos partially appearing in some parameter ranges.
A simplified generic form, i.e., xn+1 = ∓f NL(Bxn) ± Cxn, through various S-shaped functions, has
recently led to the possibility of linearization using (i) hardtanh and (ii) signum functions. This study
finds a linearized sigmoidal chaotic map that potentially offers robust chaos over an entire range
of parameters. Chaos dynamics are described in terms of chaotic waveforms, histogram, cobweb
plots, fixed point, Jacobian, and a bifurcation structure diagram based on Lyapunov exponents.
As a practical example, a true random bit generator using the linearized sigmoidal chaotic map is
demonstrated. The resulting output is evaluated using the NIST SP800-22 test suite and TestU01.

Keywords: robustification; unification; linearization; chaotic map; sigmoid; robust chaos; true
random bit generator

1. Introduction

In 1993, Majumdar and Mitra [1] first coined the phrase “robust chaos” in dynamic optimization
models represented by a quadratic map family. Later in 1996, a search for robust chaos in a discrete-time
neural network was conducted by R. Dogaru et al. [2] to discover a compact set of parameters,
included in a weight space, that could sustain chaotic behaviors but remain unchanged. In 1998,
S. Banerjee et al. [3] defined robust chaos as “the absence of periodic windows and coexisting attractors in some
neighborhood of the parameter space.” Such a definition implies that any changes or variations in system
parameters would not result in the fragility of chaos. A practical example of robust chaos in a 2-D
piecewise smooth system was also demonstrated through a current-mode controlled boost converter.

A search for robust chaos generation approaches has been of considerable interest due to the
suitability of robust chaos in practical applications in science and engineering, such as cryptography
and secure communications [4–9]. Andrecut and Ali [10,11] reconstructed 2-D smooth unimodal maps
via non-integer powers for robust chaos by means of mapping a critical point into an unstable fixed
point that was not in the basin of attraction of a periodic attractor where, consequently, no periodic
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attractors occurred. G. Perez [12] has further analyzed the linear interpolation between fully chaotic
logistic and quartic maps suggested by S. Thomae, and the results reveal a bifurcation diagram without
any periodic windows.

Recently, several approaches to the generation of robust chaos have been reported, involving
techniques relating to (i) the determination of critical behavior of the Lyapunov exponent near the
transition to robust chaos via type-III intermittency for a 1-D singular map [13], (ii) two methods
for a prescribed invariant measure and varying Lyapunov exponent as well as a prescribed constant
invariant measure and varying Lyapunov exponent [14], (iii) a structural synthesis of a state space
energy-based adaptive controller [15], (iv) the basis of symmetry violations in attractors [16], and (v) the
invariant center manifold [17].

In 2012, the open problem on “Is a unifying chaotic dynamic system possible?” was raised by Z. Elhadj
and J. C. Sprott [18], and a multifunction mathematical model, a so-called unified chaotic map,
was proposed with the capability of generating hyperbolic, Lorenz-type, and quasi-attractors [19].
J.C. Sprott [20] also introduced a particular 2-D unified piecewise smooth map that contained Hénon
and Lozi maps. It is remarkable to note that the unification of a piecewise smooth map could exhibit
robust chaos in some portions of a bifurcation parameter region, which is, in fact, a transition between
Hénon and Lozi maps.

In accordance with [19,20], it is natural to wonder whether there is a possibility of the unification of
a category of simple 1-D smooth chaotic maps that can generate robust chaos. Exhaustive searches and
investigations into a family of S-shaped functions have led to a generic form for a smooth sigmoidal
chaotic map, presented in this paper. The unification and simplification of the generic smooth sigmoidal
chaotic map will be discussed. The linearization of a simplified smooth sigmoidal chaotic map using
either the hardtanh or the signum function potentially exhibits robust chaos over an entire range of
parameters. Chaos dynamics will be described in terms of apparent time-domain chaotic waveforms
and their histogram, cobweb plots, frequency spectrum, equilibria, Jacobian, bifurcation structure
diagram based on Lyapunov exponents, bifurcation diagram, and recurrence plot (RP). As for practical
examples, a true random bit generator (TRBG) with statistical tests results from the NIST SP800-22 test
suite and TestU01 using the linearized sigmoidal chaotic map will be demonstrated.

2. Generic One-Dimensional Sigmoidal Chaotic Maps

2.1. Unification of Generic Sigmoidal Chaotic Map

The proposed unification process commences by considering a generic sigmoidal chaotic map,
which can be preliminarily defined by the recurrence relation of the form

xn+1 = ∓A fNL(Bxn)± Cxn ± D, (1)

where xn is a real variable, f NL(xn) is a sigmoidal function, and the parameters A, B, C, and D are real
constants. With reference to (1), this paper initially considers a typical sigmoid function, which exhibits
S-shaped transfer function characteristics within the range (0, 1) throughout an entire domain (−∞, +∞).
In other words, a mathematical model is f (x) = 1/(1 + exp(−x)). Nonetheless, the substitution of the
sigmoid function as f NL(xn) in (1) could not induce chaos. Therefore, this paper realizes a modified
sigmoid function f mod(x) as follows:

fmod(x) = 2
(

1
1 + e−x

)
− 1 (2)

It is seen in (2) that the range of f ms(x) is a typical sigmoid function where the function is doubled and
shifted down to be (−1, 1). Notice that the nonlinearity in (2) apparently associates to a hyperbolic
tangent (tanh) function, i.e.,
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f (x) = tan h (x) =
1− e−2x

1 + e−2x = 2
(

1
1 + e−2xn

)
− 1 (3)

Note that the constant 2 is essential as a result of the mathematical transformation. Realizing functions
(2) and (3) in the generic sigmoidal chaotic map results in a unified sigmoidal chaotic map that contains
modified sigmoid and tanh functions given by

xn+1 = ±2
(

1
1 + e−Bxn

)
∓ Cxn ∓ 1 (4)

It is clear that Equation (4) provides three complete mathematical terms to the generic sigmoidal
chaotic map described in (1), where parameters A and D are 2 and 1, respectively, while parameters B
and C are assigned as bifurcation parameters. Equation (4) also comprises a conjugate of two unified
sigmoidal chaotic maps as follows:

xn+1 = 2
(

1
1 + e−Bxn

)
− Cxn − 1 (5)

xn+1 = −2
(

1
1 + e−Bxn

)
+ Cxn + 1 (6)

In order to investigate the chaotic dynamics of the unified sigmoidal chaotic maps, the Lyapunov
exponent (LE) is calculated. The LE is defined as a quantitative measure that characterizes the rate of
separation of infinitesimally close trajectories, and can be described as

LE = lim
N→∞

1
N

N

∑
n=1

log2
dxn+1

dxn
(7)

where N is the number of iterations. A positive LE typically indicates chaotic behaviors, and a larger
value of LE results in a higher degree of chaoticity. The LEs of the system are calculated by using
100,000 iterations of data. Figure 1 illustrates plots of a bifurcation structure of parameters C versus
B of the unified sigmoidal chaotic map in (5), where the heat diagram indicates a positive LE and a
white color represents a non-chaotic region while the black color represents the maximum LE of 1.
The shading means that the LE increases correspondingly from yellow to red. Within the region of
parameters 0 < B < 100 and 1 < C < 2, the white color roughly indicates where LE ≤ 0, and it appears
in a few regions. However, there is some partial portion of parameter space that appears to be robust.
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Figure 1. Plots of a bifurcation structure of parameters C versus B of the unified sigmoidal chaotic map
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Entropy 2018, 20, 136 4 of 15

Figure 2 shows the characteristics of time-domain chaotic waveforms and the histogram, cobweb,
and frequency spectrum using periodogram plots at specific parameters B = 75 and C = 1.9, arbitrarily
selected from the chaotic region. The waveforms in the time domain are apparently chaotic but are
slightly different. The histograms for both Equations (5) and (6), obtained from 100,000 iterations, are
very similar. However, the characteristics of the cobweb plots are significantly different. Equation (5)
exhibits a superimposed square pattern, while Equation (6) reveals a hexagon pattern. It can be seen
from the frequency spectrum that both Equations (5) and (6) offer a flat spectrum feature.
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Figure 2. Characteristics of chaotic waveforms in time domain and plots of histogram, cobweb, and
frequency spectrum using periodogram at specific parameters B = 75 and C = 1.9; (a–d) characteristics
of Equation (5), (e–h) characteristics of Equation (6).

2.2. Simplification of Generic Sigmoidal Chaotic Map

With reference to a generic sigmoidal chaotic map in (1), it is also possible to simplify a
mathematical model through the utilization of other S-shaped nonlinear functions through the specific
parameters A = 1 and D = 0. In other words, the simplified generic sigmoidal chaotic map is

xn+1 = ∓ fNL(Bxn)± Cxn (8)

Table 1 summarizes six simplified chaotic maps based on (8), the results of utilizing nonlinear
functions f NL(x) with S-shaped transfer function characteristics. With respect to the mathematical
aspects, the cases NM1, NM2, and NM3 are based on inverse trigonometric properties. Meanwhile,
the case NM4 is a special function in the form of an integral, which is originally derived from a
Gaussian function, while NM5 and NM6 are special differentiable algebraic functions.

Table 1. Summary of six simplified sigmoidal chaotic maps involving nonlinear functions f NL(x) with
S-shaped transfer function characteristics.

Cases Descriptions f NL(x) with No Parameters Chaotic Maps

NM1 Inverse Tangent Function fNL1(x) = tan−1(x)
xn+1 =

∓ tan−1(Bxn)± Cxn

NM2 Inverse Hyperbolic Sine Function fNL2(x) = sin h−1(x)
xn+1 =

∓sin h−1(Bxn)± Cxn

NM3 Gudermannian Function fNL3(x) = tan−1(sinh (x))
xn+1 =

∓ tan−1(sin h (Bxn))± Cxn

NM4 Error Function fNL4(x) = 2√
π

∫ x
0 e−t2

dt
xn+1 =

∓ 2√
π

∫ Bx
0 e−t2

dt± Cxn

NM5 Soft Signum Function fNL5(x) = x
1+|x| xn+1 = ∓ Bxn

1+|Bxn | ± Cxn

NM6 Specific Algebraic Function fNL6(x) = x√
1+x2

xn+1 = ∓ Bxn√
1+(Bxn)

2
± Cxn
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In order to investigate and compare S-shaped transfer function characteristics, Figure 3 depicts
plots of transfer functions of the six nonlinear functions. It is apparent that only NM4 has a range in
the y-axis in the region (−1, 1), which closely resembles nonlinearity in a unified sigmoidal chaotic
map, whereas the range of NM2 appears to be (−∞, +∞). The ranges of the four remaining cases are
limited at certain specific levels. This phenomenon implies that the S-shaped nonlinearity that plays
an important role in inducing chaos occurs in a short domain of approximately (−2, 2), and, therefore,
the parameter B, which was introduced in the generic sigmoidal chaotic map, consequently becomes a
significant factor in determining the chaos dynamics.
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3. Linearization of Simplified Sigmoidal Chaotic Map for Robust Chaos

Regarding (8), rather than utilizing any S-shaped nonlinear functions, the linearized sigmoidal
functions including the hardtanh and signum functions are employed. In other words, the proposed
linearized sigmoidal chaotic maps are as follows:

xn+1 = ∓hardtanh (Bxn)± Cxn (9)

xn+1 = ∓sgn (Bxn)± Cxn (10)

where the hardtanh and signum are defined as

hardtanh (x) =


−1; x < −1

x; −1 ≤ x ≤ 1
1; x > 1

(11)

sgn (x) =


−1;x < −1

0;x = 0

1;x > 1

=

{
x
|x| ; x 6= 0

0; x = 0
(12)

The linearized sigmoidal chaotic map based on the hardtanh function in (9) is a conjugate of two
chaotic maps, i.e.,

xn+1 = hardtanh (Bxn)− Cxn (13)

xn+1 = −hardtanh (Bxn) + Cxn (14)

Meanwhile, the linearized sigmoidal chaotic map for (10), based on the signum function, is also the
conjugate of two chaotic maps and can be expressed as

xn+1 = sgn (Bxn)− Cxn (15)
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xn+1 = −sgn (Bxn) + Cxn (16)

In order to investigate the chaotic dynamic of the linearized sigmoidal chaotic maps, the Jacobian
of the linearized sigmoidal chaotic map, which can be calculated through a first derivative as
|J(xn)| = f ’(xn), is considered. Typically, the discrete time system becomes unstable in the condition of
|J(xn)| > 1, while the chaotic map needs to operate under an unstable condition in order to induce
the chaos. With reference to (9), the unstable region of the linearized sigmoidal chaotic maps based
on the hardtanh function, which is the parameter region where the chaos can occur, is calculated and
provides the following result,

|C| > 1∪ |C− B| > 1 (17)

whereas the unstable region of the linearized sigmoidal chaotic maps based on the signum function in
(10) is calculated and results in

|C| > 1 (18)

Within the region of parameters 0 < B < 15 and 1 < C < 3, Figure 4 depicts the plots of the unstable
and chaos regions, where the grey region represents the unstable region regarding (17), while the
chaos region, which is considered a subset of the unstable region, is represented by the blue region.
The chaos region in Figure 4 corresponds to the plots of the bifurcation structure of parameters C
versus B with regard to the linearized sigmoidal chaotic maps based on the hardtanh function in (13),
as shown in Figure 5. Nonetheless, the plots of the bifurcation structure of parameters C versus B
for the linearized sigmoidal chaotic map based on the signum function in (15), which is illustrated in
Figure 6, shows the exact same values of LE for any values of B with respect to the signum function in
(12). It is noticeable that the bifurcation structure in Figures 5 and 6 illustrate the results according to
the unstable regions in (17) and (18), respectively.
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The chaotic map, considered the system xn+1 = f (xn), typically has a point where x* = f (x*) and is
considered a fixed point (equilibrium). Table 2 summarizes the fixed points of the linearized sigmoidal
chaotic maps based on the hardtanh function in (13) and (14) and the signum function in (15) and
(16), all of which appear to have three fixed points. Figures 7 and 8 show the characteristics of
the chaotic waveforms in the time domain as well as the histogram and cobweb plots at specific
parameters, which were arbitrarily selected with regard to the chaotic regime, as seen in the bifurcation
structure in Figures 5 and 6. The characteristics of the cobweb plots are associated with the fixed
points of the chaotic maps, as shown in Table 2. In the case where the fixed point is 0, it is a globally
asymptotically stable point, as in |J(0)| = 0. The stability of the fixed point appears in the cobweb
plot, where the inward spiral corresponds to the attraction of the stable fixed point, while the outward
spiral corresponds to the repelling of the unstable fixed point. The complex closed loops in the
cobweb represent a high period of orbit, which indicates an infinite number of non-repeating values.
The cobweb plots also relate to the boundary values of xn+l, which depend upon the nonlinear term of
the chaotic map, and for both cases of the linearized sigmoidal chaotic map in (9) and (10), the values
of xn+l fall into the region (−1, 1).
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Table 2. Summary of the fixed points of the linearized sigmoidal chaotic maps.

Chaotic Map Equations x* = f (x*) Fixed Points x*

(10) x∗ = hardtanh (Bx∗)− Cx∗ 0, 1
C−1 and − 1

C−1
(11) x∗ = −hardtanh (Bx∗) + Cx∗ 0, 1

C+1 and − 1
C+1

(12) x∗ = sgn (Bx∗)− Cx∗ 0, 1
C−1 and − 1

C−1
(13) x∗ = −sgn (Bx∗) + Cx∗ 0, 1

C+1 and − 1
C+1

The linearized sigmoidal chaotic maps based on the hardtanh function offer robust chaos over
the entire range of parameters where B > 3 and 1 < C < 2, while the linearized sigmoidal chaotic map
based on the signum function shows robust chaos over the entire range of parameters where 1 < C < 2.

Other than the proposed measurement tool, the bifurcation diagram is employed as a tool for a
qualitative measure. A plots bifurcation diagram and LEs were used to identify the chaotic behavior
as well as the continuity of the proposed chaotic maps as shown in Figure 9. While parameter C is
considered a bifurcation parameter, the bifurcation diagrams of the linearized sigmoidal chaotic maps
in (13) and (15), as shown in Figure 9b–c, illustrate chaotic behavior over the entire range of parameters
where 1 < C < 2, which corresponded to the LEs in Figure 9e–f. In other words, the linearized sigmoidal
chaotic maps can offer robust chaos over the entire range of parameters. Conversely, the bifurcation
diagrams and the LEs of the unified sigmoidal chaotic maps in (5) as shown in Figure 9a appear to
have some periodic windows and illustrate intermittently chaotic behavior, which means the unified
sigmoidal chaotic maps can only offer robust chaos for some partial portion of the parameter.

The chaotic dynamics of the chaotic maps can also be described through a recurrence plot (RP) [21],
as a typical random time series exhibits the RP with no structure while a periodic system causes the
RP to exhibit some pattern. Figure 10 shows the RPs of the signum-based linearized sigmoidal for two
different dynamic regimes. The purpose of the RP is to visualize the behavior of trajectories in phase
space through a two-dimensional plot, which is especially beneficial in the case of high-dimensional
systems. A dynamic system is represented by the trajectory (

→
x i) in d-dimensional phase space; hence,

the recurrence plot, which can be viewed as the recurrence of a state at time i at a different time j, is
defined by the matrix

Ri,j = Θ
(

ε− ‖→x i −
→
x j‖
)

, i, j = 1, . . . , N, (19)

where Θ(·) is the Heaviside function, N is the number of points
→
x i, and ε is a threshold. Figure 9a

illustrates the RP which appear to be a dot pattern as a result the system that operated in the periodic
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regime, while Figure 10b illustrates the RP while the system is operated in the chaotic regime which
results in a RP with no structure.
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sigmoidal chaotic map in (13), (c,f) signum-based linearized sigmoidal chaotic map in (15).
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4. True Random Bit Generation Based on the Proposed Linearized Sigmoidal Chaotic Map

4.1. Random Bit Generator

The proposed true random bit generator (TRBG) is designed with respect to the typical structure
of a true random bit generator, which consists of an entropy source, an entropy harvester, and a
post-processor, as shown in Figure 11. The linearized sigmoidal chaotic map based on the signum
function, which is driven by a sample and hold, is employed as the entropy source, and a comparator
that acts as a 1-bit analog to the digital converter is considered the entropy harvester, while a quasi-shift
register (QSR) is selected as the post-processor.
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4.1.1. Entropy Source

Theoretically, a chaotic map is deterministic, which means that if the initial condition of a chaotic
map is exactly known, the output behavior can be exactly predicted. However, chaotic maps in
practical implementation operate without the initial condition by inherent noise of the system and are
amplified in the positive gain feedback loop by the iteration of the output signal in the map function.
The output of the chaotic map will be unpredictable and suitable for true random bit generation.

A chaotic map can typically be considered as an entropy source of true random bit generation [22–24]
though the robustness of the chaotic map is a concern. The robust chaos means the absence of a periodic
window, and the existence of the periodic windows in the range of parameters of the chaos region
implies that a small variation of the parameters would remove the system from the chaotic regime and
discontinue the chaotic behavior [25].

Figure 12 shows the designed circuit of the chaotic map as the entropy source of the proposed
TRBG, with reference to the signum-based linearized sigmoidal chaotic map in (15). The circuit consists
of three operational amplifiers, (i) a comparator, (ii) a non-inverting operational amplifier, and (iii) a
differential amplifier. The comparator operational amplifier is employed as the signum function, and it
can be defined as

comp(V+) =

{
+Vcc; V+ > V−
−Vcc; V+ < V−

(20)

where V+ and V− are the inverting and non-inverting input of the comparator, respectively. The V+
can be considered an input xn of the signum function, as a result of specifying the V−, which is
a reference voltage of the comparator, as 0. In order for the comparator to perform as the signum
function, the circuit is supplied with +1V and −1V as +Vcc and –Vcc, respectively.

Regarding the chaotic map in (15), the input xn is amplified by the non-inverting operational
amplifier gain, as Vout = Vin(1 + R2/R1), where R3, R4, R5, and R6 are set to be equal. The subtraction of
the output of the comparator from the amplified input axn results in the output of the chaotic map, xn+1.
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4.1.2. Entropy Harvester

The comparator with threshold T, which is the entropy harvester, as shown Figure 11, digitizes
the generated signal from the chaotic map; this can be expressed mathematically as

com(x) =

{
0; x ≤ T

1; T ≤ x
(21)

The threshold is carefully chosen in order to generate numbers with a high level of randomness, or in
other words, to harvest the entropy where it is at its maximum. Shannon’s entropy is defined as

H = −
1

∑
i=0

Pi log2 Pi (22)

The entropy is calculated over the entire range of parameters, where 1 < C < 2, resulting in the
three-dimensional plot in Figure 13. The entropy is plotted versus the threshold value and parameter
C of the signum-based linearized sigmoidal chaotic map in (15); note that the maximum entropy can
be achieved when the threshold value is at 0 for any value parameter C in the chaotic regime.
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4.1.3. Post-Processor

Even though the result from the entropy harvester is a random bit sequence, the post-processor
is still required to improve the statistical imperfections of the generated sequences. Although there
are many post-processing methods, the quasi-shift register was selected as the post-processor in the
proposed TRBG due to its simple structure [26], with only a single input required, and its property of
reducing the imperfection of the random bit sequences while still maintaining its generation rate. The
structure of the quasi-shift register comprises four shift registers, A, B, C, and D, with a selected length
n = 8, as depicted in Figure 14. The post-processor initially starts by memorizing the generated bit
from the TRBG into the shift register A, and then it performs XOR operation between shift registers.
These processes are repeated several times in order to increase the complexity of the bit sequence.
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4.2. Randomness Performance Evaluation

4.2.1. NIST SP800-22 Test Suite

The random bit sequence from the TRBG was examined according to the properties of a random
sequence that can be described in terms of probability. Although there are a variety of statistical tests,
the NIST SP800-22 test suite [27] is the statistical test most widely used to investigate the randomness of
the output sequence from the TRBG. The NIST test suite, issued by the National Institute of Standards
and Technology, is a statistical test package consisting of 15 tests; it is generally accepted as a standard
test suite for any random number generators. The test can be used to examine the bit sequence by
detecting a pattern of values that indicates the non-randomness (periodic) of the sequences, resulting
in the probability values (P-values). The P-values for each test indicate a randomness of the bit
sequences, and, typically, the test is considered to be passed for P-values greater than 0.01; otherwise,
they are rejected.

The performance of the proposed TRBG was evaluated through the NIST statistical test suite with
100 Mbit data. The generated bit sequence is divided into 100 sequences with the length of 1Mbit for
each block. The calculated P-values, as shown in Table 3, indicate that the proposed TRBG can pass all
the tests.

Table 3. National Institute of Standards and Technology (NIST) statistical test suite.

Test Methods P-Value Proportion Result

Frequency (monobit) 0.7981 0.99 Pass
Block Frequency 0.5544 0.99 Pass
Runs 0.6163 1.00 Pass
Longest Run 0.7399 1.00 Pass
Binary Matrix Rank 0.2133 1.00 Pass
Discrete Fourier Transform 0.7791 1.00 Pass
Non-overlapping Template Matching 0.4980 0.99 Pass
Overlapping Template Matching 0.9114 0.98 Pass
Universal Statistical 0.7597 0.99 Pass
Linear Complexity 0.6579 0.99 Pass
Serial 0.4983 0.98 Pass
Approximate Entropy 0.3669 1.00 Pass
Cumulative Sums 0.5139 0.99 Pass
Random Excursions 0.3322 0.98 Pass
Random Excursions Variant 0.3384 0.99 Pass

4.2.2. TestU01

TestU01 is a software library for statistically testing random bit generators [28]. The TestU01
library provides several test batteries, while each test battery also contains a collection of empirical
statistical tests. Each statistical test can generate a P-value as well as the NIST test suite, which is
considered as an indicator of passing the test. The test is considered passed if the generated P-value
from the test falls into the interval [0.001, 0.999].
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Three binary sequences with lengths 220, 225, and 230 bits were generated from the proposed
TRBG. The bit sequences were applied to the batteries Rabbit, Alphabit, and BlockAlphabit to evaluate
the randomness. Each battery contains a different number of test. The Alphabit contains 17 statistical
tests while the BlockAlphabit applies the Alphabit repeatedly to the reordered bits with the 6 different
blocks sizes which are 1, 2, 4, 8, 16, and 32. In other words, the BlockAlphabit contains a total number
of 17 × 6 = 102 statistical tests. The Rabbit applies 38, 39, and 40 test to the bit sequence with lengths
220, 225, and 230 bits, respectively. The results of the TestU01 are presented in Table 4. The proposed
TRBG can pass all the tests.

Table 4. TestU01. TRBG = true random bit generator.

Random Bit
Generator

Test Batteries

Rabbit Alphabit BlockAlphabit

220 bits

Proposed TRBG 38/38 17/17 102/102

225 bits

Proposed TRBG 39/39 17/17 102/102

230 bits

Proposed TRBG 40/40 17/17 102/102

5. Conclusions

In this paper, the unified and simplified forms of the generic sigmoidal chaotic map and the
linearized sigmoidal chaotic map were presented. Chaos dynamics were described in terms of chaotic
waveforms, histogram, cobweb plots, fixed point, Jacobian, and a bifurcation structure diagram based
on Lyapunov exponents; these revealed that both hardtanh function-based and signum function-based
linearized sigmoidal chaotic maps have the potential to offer robust chaos over the entire range of
parameters. In other words, it can be summarized that based on a linearized sigmoidal, the proposed
sigmoidal chaotic map can offer robust chaos over the entire range of parameters. The true random bit
generator based on the linearized sigmoidal chaotic map was demonstrated as a practical example;
hence, the robust chaotic map is suitable as an entropy source. The resulting random bit sequence
passed the NIST statistical test suite and the TestU01. Performance test results from both statistical
tests show that the proposed linearized sigmoidal chaotic maps are suitable for application such as
a TRBG.
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