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Background: Oral rotavirus vaccines (RVVs) are less efficacious in low-
income versus high-income settings, plausibly due to more enteropathogen 
exposure through poor water, sanitation and hygiene (WASH). We explored 
associations between enteropathogens and RVV immunogenicity and evalu-
ated the effect of improved WASH on enteropathogen carriage.
Methods: We detected stool enteropathogens using quantitative molecular 
methods and measured anti–rotavirus immunoglobulin A by enzyme-linked 
immunosorbent assay in infants enrolled to a cluster randomized 2 × 2 fac-
torial trial of improved WASH and improved infant feeding in Zimbabwe 
(NCT01824940). We used multivariable regression to explore associations 
between enteropathogens and RVV seroconversion, seropositivity and geo-
metric mean titer. We evaluated effects of improved WASH on enteropatho-
gen prevalence using linear and binomial regression models with generalized 
estimating equations.
Results: Among 224 infants with enteropathogen and immunogenicity data, 
107 (47.8%) had ≥1 pathogen and 39 (17.4%) had ≥2 pathogens detected at 
median age 41 days (interquartile range: 35–54). RVV seroconversion was 
low (23.7%). After adjusting for Sabin-poliovirus quantity, pan-enterovi-
rus quantity was positively associated with RVV seroconversion (relative 
risk 1.61 per 10-fold increase in pan-enterovirus; 95% confidence interval: 
1.35–1.91); in the same model, Sabin quantity was negatively associated 
with RVV seroconversion (relative risk: 0.76; 95% confidence interval: 
0.60–0.96). There were otherwise no meaningful associations between indi-
vidual or total pathogens (bacteria, viruses, parasites or all pathogens) and 
any measure of RVV immunogenicity. Enteropathogen detection did not 
differ between randomized WASH and non-WASH groups.
Conclusions: Enteropathogen infections were common around the time of 
rotavirus vaccination in rural Zimbabwean infants but did not explain poor 
RVV immunogenicity and were not reduced by a package of household-
level WASH interventions.
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The introduction of oral rotavirus vaccination has been a key 
factor in reducing the global burden of childhood diarrhea. 

However, rotavirus remains the leading cause of diarrheal mortality 
among children under 5 years of age.1 Moreover, studies consist-
ently show that oral rotavirus vaccines (RVVs) are less efficacious 
in low-income compared with high-income settings.2 In sub-Saha-
ran Africa, RVV efficacy against severe rotavirus gastroenteritis 
was only 39%3 and in South Asia 48%,4 compared with 85%–98% 
in Europe and United States.5,6 Although our understanding of oral 
vaccine failure remains incomplete, intestinal factors are believed 
to be important,7 including a high burden of enteropathogens in 
early infancy in low-income settings.8

Enteric infections around the time of vaccination might 
impede oral vaccines directly, through competition for recep-
tor binding and cell entry, or indirectly through induction of 
innate immunity, thereby hampering vaccine replication.9 One of 
the clearest examples of biologic interference is the association 
between non-polio enteroviruses (NPEV) and reduced oral polio 
vaccine (OPV) seroconversion.10 Similarly, coadministration of 2 
live vaccines (OPV and rotavirus) reduced RVV immunogenicity 
in trials from multiple countries.11 Two previous studies from Asia 
have explored associations between enteropathogen carriage and 
immune responses to RVV12,13; however, to our knowledge, there 
have been no studies from sub-Saharan Africa.

We recently reported findings from a cluster randomized 
trial of improved water, sanitation and hygiene (WASH) in rural 
Zimbabwe. Infants in the WASH arms of the trial, compared with 
the non-WASH arms, had a 50% increase in RVV seroconver-
sion (from approximately 20%–30%).14 We hypothesized that the 
WASH intervention reduced enteropathogen carriage, thereby 
increasing RVV immunogenicity. To explore this, we used quantita-
tive molecular methods to identify enteropathogens in stool speci-
mens to determine (1) the association between enteropathogens 
and RVV immunogenicity and (2) the effect of improved WASH on 
enteropathogen carriage around the time of rotavirus vaccination.
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MATERIALS AND METHODS

Study Participants
The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) 

trial was a 2 × 2 factorial cluster randomized trial assessing the inde-
pendent and combined effects of improved WASH and improved 
infant and young child feeding (IYCF) on stunting and anemia 
(NCT01824940). The study design has been described elsewhere.15 
Briefly, women becoming pregnant between November 2012 and 
March 2015 were eligible if they lived in clusters randomized to 
standard-of-care (SOC), IYCF, WASH or combined IYCF plus 
WASH. In the SOC arm, village health workers promoted early, 
exclusive and prolonged breast-feeding together with family plan-
ning, prevention of mother-to-child HIV transmission and infant 
immunization. WASH households, in addition to SOC interven-
tions, had a pit latrine16 and 2 hand-washing stations17 installed 
at approximately 20 weeks’ gestation, and received monthly liq-
uid soap, water chlorination solution and an infant play-space to 
separate children from animals. In the IYCF arm, women received 
all SOC interventions plus nutrition education and small-quan-
tity lipid-based nutrient supplement for infants between 6 and 18 
months of age. Women in the IYCF plus WASH arm received all 
interventions. The trial found a modest effect of the IYCF interven-
tion on linear growth and hemoglobin at 18 months of age but no 
effect of WASH on either primary outcome.18 Neither intervention 
reduced diarrhea.

Rotavirus Vaccination
In May 2014, oral monovalent RVV RotarixTM (GSK Bio-

logicals, Rixensart, Belgium) was introduced in Zimbabwe and 
given with OPV at 6 and 10 weeks of age. OPV (Sabin strain) is not 
routinely given at birth in Zimbabwe. Vaccination was undertaken 
at local clinics and not overseen by the trial; however, national rota-
virus vaccination coverage in 2015–2016 was 87%–91%.19 Trial 
staff recorded vaccination dates by reviewing child health cards. 
Each child’s final Rotarix vaccination status was categorized as 
complete (2 doses), incomplete (1 dose) or no vaccine (zero doses).

Substudy Population
From June 2014, infants were enrolled in a substudy with 

longitudinal specimen collection (including plasma and stool) at 
1, 3, 6, 12 and 18 months of age.20 For the current analysis, infants 
from the substudy were eligible if they were HIV-unexposed, had 
at least 1 plasma sample collected post-rotavirus vaccination and 
an available stool sample collected around the time of the first 
Rotarix dose. We permitted a 30-day window of stool collec-
tion pre- or postvaccination, hypothesizing that enteric infections 
before, during or soon after vaccination may contribute to vaccine 
interference. Infants were excluded if they had missing rotavirus 

vaccination data, had not received at least 1 dose of RVV or had 
invalid stool polymerase chain reaction (PCR) results. Where >1 
stool sample was available for a given child, the sample closest to 
the date of the first RVV dose was selected. Diarrheal stool samples 
were not included.

Anti–rotavirus Immunoglobulin A Assay
Plasma anti–rotavirus immunoglobulin A (IgA) was meas-

ured by enzyme-linked immunosorbent assay in the Zvitambo labo-
ratory, using methods previously described.21 Anti–rotavirus IgA is 
the most widely used marker of oral rotavirus vaccination or natural 
infection.22 Our primary outcome was seroconversion, defined as 
a postvaccine plasma concentration of anti–rotavirus IgA ≥20 U/
mL in infants who were seronegative (<20 U/mL) prevaccination.23 
Secondary outcomes included anti–rotavirus IgA titer and sero-
positivity, defined as a postvaccine titer ≥20 U/mL, regardless of 
prevaccine titer. We refer to these 3 outcomes collectively as RVV 
immunogenicity. The assay lower limit of detection was 7.5 U/mL 
as determined by the assay developers at Cincinnati Children’s 
Hospital Medical Center.

Molecular Enteropathogen Detection
Stool specimens from the 1- and 3-month visits were tested 

at the University of Virginia using custom-developed TaqMan 
Array Cards (ThermoFisher, Carlsbad, CA), which compartmental-
ize probe-based quantitative PCR (qPCR) assays for 29 enteropath-
ogens.24 Assay validation, nucleic acid extraction, qPCR conditions 
and quality control have been previously described.25,26 Pathogen 
quantities were defined by log

10
-copy numbers per gram of stool 

based on the qPCR cycle threshold. In addition, stools were tested 
using a cognate pan-enterovirus (EV) real-time qPCR; EV-positive 
stools were further tested by multiplex real-time qPCR to identify 
Sabin polioviruses. EV-positive but Sabin-negative stools were 
inferred to be NPEV, following previous approaches.27

Statistical Analysis
First, we investigated whether individual enteropathogens 

were associated with RVV immunogenicity. All enteropathogens 
with prevalence ≥1% were included and detection was categorized 
as yes or no (binary variable), based on a qPCR cycle threshold 
<35 (the analytic limit of detection).25 Stool detection of rotavirus 
was excluded from these analyses because we could not distinguish 
wild-type and vaccine strains. Second, for EVs alone, we also esti-
mated associations between Pan-EV quantity (continuous variable) 
and RVV immunogenicity adjusting for Sabin quantity to further 
explore the impact of NPEV on vaccine responses. We used mul-
tivariable generalized estimating equations to account for within-
cluster correlation with a log-binomial link to estimate relative 
risks (RRs) of rotavirus seroconversion and seropositivity and an 
identity link to estimate mean difference in anti–rotavirus IgA geo-
metric mean titers (GMTs). To handle zero-inflated semicontinuous 
GMT data, we employed a log-normal censored regression model 
(Tobit), with left censoring at 7.5 U/mL. Models were adjusted for 
birth weight, infant age at vaccination, exclusive breast-feeding sta-
tus at 3 months, maternal mid-upper arm circumference, detection 
of other enteropathogens, birth season, concurrent OPV receipt and 
randomization group, which were selected a priori based on bio-
logic plausibility.

Next, using similar methods, we assessed the relation-
ship between overall pathogen burden and RVV immunogenicity. 
We expressed pathogen burden as the total number of pathogens 
(excluding rotavirus and poliovirus) and the total number of bacte-
ria, viruses or parasites. We also explored mixed infection, which 
we defined as detection of ≥2 different pathogen classes.
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We conducted sensitivity analyses to account for variation in 
timing of stool collection, restricting analyses to stools collected 14 
days before the first RVV dose.

Finally, we evaluated the effects of improved WASH on 
enteropathogen prevalence around the time of RVV receipt. Anal-
yses were intention-to-treat with exposure defined by the rand-
omized interventions. Because the IYCF intervention started at 6 
months of age (beyond the window for rotavirus vaccination and 
stool collection), we compared the WASH group (WASH and IYCF 
+ WASH arms) and non-WASH group (SOC and IYCF arms). We 
used log-binomial regression for individual pathogens and Poisson 
regression for pathogen burden with generalized estimating equa-
tions and robust variance to account for within-cluster correlation. 
These models were adjusted for intervention arm and age at vac-
cine receipt.18

We accounted for multiple comparisons using the Benjamini–
Hochberg procedure to determine false discovery rate–adjusted P 
values.28 Statistical analyses used STATA v14 (StataCorp LP, College 
Station, TX) and Prism v7 (GraphPad Software Inc., San Diego, CA).

Ethics
Both the SHINE trial and this laboratory substudy were 

approved by the Medical Research Council of Zimbabwe and the 
Johns Hopkins Bloomberg School of Public Health Committee on 
Human Research. Written informed consent was obtained from all 
caregivers before enrolment in the trial.

RESULTS
Among 5280 pregnant women, there were 3989 live-born 

HIV-unexposed infants (see Fig., Supplemental Digital Content 1, 
http://links.lww.com/INF/D653). Eight hundred eighty-two infants 
had rotavirus immunogenicity measured and 224 (25.4%) of these 
had stool collected within 30 days of Rotarix receipt with valid 
stool qPCR results. Table 1 outlines the characteristics of the 224 
infants, together with maternal and household variables. Charac-
teristics were broadly similar to live-born HIV-unexposed infants 
not included in this analysis (see Table, Supplemental Digital Con-
tent 2, http://links.lww.com/INF/D654). Two hundred eighteen 
of 224 (97.3%) infants had documented receipt of 2 RVV doses. 

TABLE 1. Characteristics of Infants, Mothers and Their Households*

WASH
(Infants, N = 82)

Non-WASH
(Infants, N = 142)

All
(Mothers, N = 224)
(Infants, N = 224)

Infant characteristics    
        Gender, % female 48.8 41.6 44.2
        Birth weight, kg, mean (SD) 3.1 (0.4) 3.2 (0.5) 3.1 (0.5)
        Low birth weight (<2.5 kg), % 3.7 7.8 6.3
        Institutional delivery, % 92.7 95.7 94.6
        Normal vaginal delivery, % 92.7 96.5 95.1
        Born in rotavirus season, %† 45.1 35.9 39.3
        Exclusive breast-feeding, %‡ 94.9 92.8 93.5
        Receipt of concurrent OPV, % 100 99.3 99.5
Maternal characteristics    
        Age, yr, mean (SD) 27.2 (6.5) 26.8 (6.2) 26.9 (6.3)
        Parity, median (IQR) 2 (2–2) 2 (2–2) 2 (2–2)
        Height, cm, mean (SD) 160.0 (5.5) 160.5 (5.4) 160.3 (5.4)
        Mean upper arm circumference, cm,  

mean (SD)
27.8 (3.8) 27.0 (2.7) 27.3 (3.2)

        Married, % 93.9 96.4 95.5
        Completed years of schooling, median (IQR) 10 (9–11) 10.5 (9–11) 10 (9–11)
        Unemployed, % 82.7 92.7 89.0
        Religion    
         Apostolic, % 43.9 41.0 42.1
         Other Christian, % 36.6 41.0 39.4
         Other religion, % 19.5 18.0 18.6
        Wealth quintile, %    
         Lowest 12.4 11.7 11.9
         Second 22.2 22.6 22.5
         Middle 21.0 21.2 21.1
         Fourth 19.8 24.8 22.9
         Highest 24.7 19.7 21.6
Household characteristics    
        Household size, median (IQR) 5 (3–6) 5 (4–6) 5 (4–6)
        Electricity, % 1.2 4.4 3.2
        Open defecation, % 30.4 47.8 41.5
        Any latrine, % 59.7 44.4 50.0
        Improved latrine, % 58.4 36.3 44.3
        Improved water source, % 29.9 40.0 63.7
        Hand-washing station present, % 73.1 95.4 13.0
        Improved floor, % 63.8 54.1 57.7
        Owns chickens, % 86.4 81.8 83.5
        Livestock observed in house, % 48.8 39.3 42.8

*Baseline for maternal and household characteristics was 2 weeks after consent (≈14 weeks gestation); baseline for infants was at 
birth.

†Rotavirus season in Zimbabwe defined as April 1 to July 31.
‡Assessed at 3 months of age.
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The median age at vaccination was 6.3 weeks [interquartile range 
(IQR): 6.0–6.7] for dose 1 and 10.9 weeks (IQR: 10.1–11.7) for 
dose 2. The median timing of pre-RVV titer measurement was 9 
days (IQR: 6–14) before the first dose and for post-RVV titer meas-
urement was 27 days (IQR: 19–41) after the last dose. The median 
infant age at stool collection was 41 days of age (IQR: 35–54), 
corresponding to a median of 4 days (IQR: 10 to −7) before the 
first dose of RVV (see Fig., Supplemental Digital Content 3, http://
links.lww.com/INF/D655). There were no significant differences in 
infant characteristics between seropositive and seronegative chil-
dren (see Tables, Supplemental Digital Contents 4 and 5, http://
links.lww.com/INF/D656 and http://links.lww.com/INF/D657).

Overall Enteropathogen Prevalence
One hundred seven of 224 (47.8%) infants had at least 

1 detectable enteropathogen and 39 (17.4%) had >1 pathogen 
detected (excluding Sabin viruses and rotavirus). Enteroaggrega-
tive Escherichia coli (EAEC) was the most prevalent pathogen 
(23.7% stools), followed by NPEV (13.0%), atypical enteropath-
ogenic E. coli (6.7%) and Campylobacter (5.4%) (see Fig., Sup-
plemental Digital Content 6; http://links.lww.com/INF/D658). At 
least 1 Sabin virus was detected in 30.0% of stools and rotavirus in 
15.2%. Seventeen pathogens were present in <1% of samples and 
not included in individual pathogen analyses (see Table, Supple-
mental Digital Content 7, http://links.lww.com/INF/D659). Bacte-
rial pathogens [mean: 0.42 (SD: 0.68) detected per sample] were 
more common than viral pathogens [0.26 (0.51) per sample]; few 
children had parasites [0.04 (0.20) per sample].

Associations Between Enteropathogens and RVV 
Immunogenicity

Overall, there were few associations between enteropatho-
gens and RVV immunogenicity. The prevalence of individual 
enteropathogens was generally low, and estimates were impre-
cise. Among enteropathogens with overall prevalence ≥1%, there 
were no significant associations between individual pathogens and 

rotavirus seroconversion or seropositivity in unadjusted analyses 
(see Table, Supplemental Digital Content 8, http://links.lww.com/
INF/D660). After adjusting for prespecified variables, Campylo-
bacter spp. was positively associated with rotavirus seroconversion 
[RR: 3.35; 95% confidence interval (CI): 1.54–7.29; Benjamini–
Hochberg P = 0.008], but not with seropositivity (RR: 1.69; 95% 
CI: 0.69–4.17) or GMT (see Fig. 1 and Table, Supplemental Digital 
Content 8, http://links.lww.com/INF/D660).

There were no significant associations between pathogen bur-
den (bacteria, viruses, parasites or all pathogens) and any measure 
of RVV immunogenicity (Fig. 1). Similarly, there was no effect of 
mixed infection (≥2 pathogen classes detected) on immunogenicity.

To further explore the relative contributions of NPEV versus 
polio, we undertook an analysis of pan-EV and Sabin quantity, by 
including both together in a regression model (see Fig., Supple-
mental Digital Content 9, http://links.lww.com/INF/D661). In the 
unadjusted and adjusted models, pan-EV quantity was positively 
associated with RVV seroconversion [adjusted RR 1.61 per 10-fold 
increase in pan-EV (95% CI: 1.35–1.91)]; in the same model, there 
was also a negative association between Sabin quantity and RVV 
seroconversion (adjusted RR: 0.76; 95% CI: 0.60–0.96) (Table 2). 
The direction and magnitude of these associations were similar for 
rotavirus seropositivity and GMT (Table 2).

In a sensitivity analysis, restricting the timing of stool col-
lection to 14 days prevaccination, there remained weak evidence of 
a positive association between NPEV and RVV immunogenicity 
(see Table, Supplemental Digital Content 10, http://links.lww.com/
INF/D662). However, there were no other significant associations 
between stool enteropathogen detection and RVV immunogenic-
ity. Findings were similar in further sensitivity analyses, increasing 
the sample size to include all infants with available stool from the 
first 6 months of life (see Table, Supplemental Digital Content 11, 
http://links.lww.com/INF/D663) or excluding EAEC from patho-
gen burden analyses (see Table, Supplemental Digital Content 12, 
http://links.lww.com/INF/D664), as in previous studies.12

FIGURE 1. Associations between (A) individual pathogens and (B) grouped pathogens (grouped pathogen exposures 
do not include Sabin viruses and rotavirus) and oral rotavirus vaccine immunogenicity. Effect sizes and 95% confidence 
intervals shown are for the adjusted analysis. aEPEC indicates atypical enteropathogenic Escherichia coli; EAEC, 
enteroaggregative E. coli; NPEV, non-polio enterovirus.
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WASH Effects on Enteropathogen Prevalence
There were no meaningful differences between WASH and 

non-WASH groups in detection of any individual enteropathogen, or 
the overall number of pathogens (expressed either as total bacteria, 
total viruses, total parasites or all pathogens) (Table 3). Due to this 
low prevalence of detection, we did not go on to compare differ-
ences in pathogen quantity between WASH and non-WASH groups.

DISCUSSION
Using molecular diagnostic testing, enteropathogens were 

commonly detected around the time of oral rotavirus vaccination 
in rural Zimbabwean infants. However, we found no consistent 
associations between enteropathogens and RVV immunogenicity. 
Furthermore, improvements in household WASH did not reduce 
enteropathogen prevalence, suggesting that our previous finding 
of enhanced RVV immunogenicity among infants randomized to 
improved WASH is unlikely due to a reduction in enteropathogens 
around the time of vaccination.

Our data are consistent with recent studies8,29 reporting 
early and diverse enteropathogen exposure in low-income settings. 
For example, among nondiarrheal stool samples collected from 

Bangladeshi infants at 1 month of age, coinfections were highly 
prevalent (mean: 2.5 enteropathogens per stool).30 In our study, 
almost half of infants had at least 1 detectable pathogen and 17% 
had 2 or more pathogens in the first 3 months after birth, despite 
high rates of exclusive breast-feeding.31 By contrast, multiple 
enteric infections are rare in high-income settings.30

Some enteropathogens, particularly NPEVs, have previ-
ously been implicated in oral vaccine underperformance. In a meta-
analysis of 25 trials, concurrent NPEV infection was associated 
with reduced OPV1 responses.32 A subsequent Indian study, using 
molecular diagnostic testing, showed significantly higher detection 
of NPEVs in nonresponders to OPV compared with responders.10 
Associations between NPEV and rotavirus vaccination are more het-
erogeneous. Among Bangladeshi infants, pan-EV quantity was neg-
atively associated with rotavirus seroconversion and breakthrough 
rotavirus diarrhea.13 Conversely, among Indian infants, EV preva-
lence did not differ significantly by rotavirus seroconversion status, 
while quantity was in fact greater among responders.12 In our study, 
we similarly found that the quantity of pan-EV was positively asso-
ciated with RVV immunogenicity, after adjusting for Sabin quantity, 
across all 3 outcome measures (seroconversion, seropositivity and 
GMT). In the same model, Sabin quantity was negatively associated 

TABLE 2. Associations Between Enterovirus Quantity (Pan-enterovirus and 
Sabin Viruses) and Oral Rotavirus Vaccine Immunogenicity

Log Enterovirus  
Quantity*

Nonseroconverter
N = 106

Seroconverter
N = 33

Risk Ratio for  
Seroconversion

Mean (SD) Mean (SD)
Unadjusted

(95% CI)
Adjusted†
(95% CI)

Pan-EV 0.46 (1.06) 0.98 (1.64) 1.25 (1.15–1.35)
P < 0.001

1.32 (1.09–1.59)
P = 0.005

Sabin 0.51 (1.41) 0.53 (1.44) 1.00 (0.81–1.23)
P = 0.976

1.05 (0.84–1.31)
P = 0.657

Pan-EV (with Sabin 
in model)

0.46 (1.06) 0.98 (1.64) 1.52 (1.27–1.81)
P < 0.001

1.61 (1.35–1.91)
P < 0.001

Sabin (with Pan- 
EV in model)

0.51 (1.41) 0.53 (1.44) 0.74 (0.55–0.99)
P = 0.041

0.76 (0.60–0.96)
P = 0.024

Log Enterovirus  
Quantity*

Seronegative
N = 164

Seropositive
N = 60

Risk Ratio for  
Seropositivity

Mean (SD) Mean (SD)
Unadjusted

(95% CI)
Adjusted
(95% CI)

Pan-EV 0.97 (1.34) 1.08 (1.50) 1.04 (0.89–1.22)
P = 0.617

1.07 (0.90–1.27)
P = 0.469

Sabin 1.23 (1.90) 0.97 (1.72) 0.94 (0.83–1.07)
P = 0.379

0.96 (0.84–1.10)
P = 0.539

Pan-EV (with Sabin 
in model)

0.97 (1.34) 1.08 (1.50) 1.30 (1.09–1.56)
P = 0.003

1.35 (1.12–1.61)
P = 0.001

Sabin (with Pan- 
EV in model)

1.23 (1.90) 0.97 (1.72) 0.80 (0.68–0.94)
P = 0.008

0.79 (0.68–0.93)
P = 0.004

Log Enterovirus  
Quantity*

Risk Difference for GMT

Unadjusted
(95% CI)

Adjusted
(95% CI)

Pan-EV 1.17 (0.78–1.76)
P = 0.450

1.19 (0.77–1.82)
P = 0.436

Sabin 0.90 (0.65–1.24)
P = 0.518

0.90 (0.64–1.26)
P = 0.529

Pan-EV (with Sabin 
in model)

2.27 (1.11–4.62)
P = 0.023

2.47 (1.16–5.29)
P = 0.023

Sabin (with Pan- 
EV in model)

0.54 (0.31–0.93)
P = 0.026

0.50 (0.27–0.91)
P = 0.020

*Where each 1 unit increase corresponds to a 3.322 decrease in cycle threshold and where a cycle threshold of 35 = 0.
†Adjusted for age, sex, birth weight, season of birth, breast-feeding status, receipt of OPV, maternal mid upper arm 

circumference and WASH intervention.
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with RVV immunogenicity, which is in keeping with evidence that 
concurrent administration of OPV and RVV leads to lower serocon-
version to RVV.11,33 We also found a positive association between 
NPEV detection and RVV immunogenicity (measured as seroposi-
tivity, but not seroconversion) when the analysis was restricted to 
children whose stool samples were collected 14 days before the 
first dose of Rotarix (see Table, Supplemental Digital Content 10, 
http://links.lww.com/INF/D662). Interpretation here is hindered by 
the small sample size and the imprecise subtractive logic, which 
uses pan-EV and Sabin qPCR assays to estimate NPEV and fails 
to account for coinfections. The latter may be particularly relevant 
since over 70% of our pan-EV positive samples contained at least 
1 Sabin serotype, similar to the Indian study.12 Nevertheless, these 
observations provide an intriguing, albeit inconsistent, signal that 
EV detection close to the first dose of rotavirus vaccination is asso-
ciated with immune responses to RVV. The inconsistency may be 
attributable to different EV strains having distinct interactions with 
RVV, resulting in geographic variation. Next-generation sequencing 
would help discriminate between strains to better understand the 
precise relationship between EVs and RVV performance.

The relationship between other enteric pathogens and RVV 
immunogenicity also remains uncertain. In Bangladesh, there was no 
association between nonviral enteric pathogens and RVV seroconver-
sion.13 In India, RVV responses were increased among infants with 
detection of at least 1 bacterial pathogen,12 although this effect was 
contingent on the omission of EAEC (detectable in 47.9% of 6-week-
old infants) from their analyses. Overall, we found no correlation 
between bacterial burden and RVV immunogenicity, irrespective of 
EAEC inclusion (Table S8). In adjusted analyses, Campylobacter 
spp. were associated with increased vaccine seroconversion. How-
ever, we did not observe a positive association between Campylo-
bacter and rotavirus seropositivity or GMT, and these inconsistent 
findings suggest that the association is unlikely to be meaningful.

We recently reported that household improvements in 
WASH led to increased rotavirus immunogenicity.14 However, we 
found no evidence that WASH reduced enteropathogen prevalence 
around the time of vaccination, so this is unlikely to explain our 
results. It is possible that WASH had an impact on other intestinal 
factors, such as environmental enteric dysfunction34 or microbiota 

dysbiosis,35 which have both been implicated in oral vaccine fail-
ure. We previously showed that non-WASH infants in SHINE had 
higher baseline rotavirus seropositivity, suggesting more wild-
type rotavirus infection before vaccination at 6 weeks of age. The 
current study used molecular methods to detect rotavirus in stool 
(rather than immune responses to the virus). Among infants with 
specimens available in the 2 weeks prevaccination, detection of 
rotavirus was too seldom to make meaningful comparisons (4.2% 
non-WASH vs. 0% WASH infants). It remains plausible that the 
WASH intervention (which began antenatally) reduced neonatal 
rotavirus infection and thereby improved immune responses to the 
vaccine, although current dogma is that WASH does not substan-
tially reduce rotavirus transmission. Further studies, using molecu-
lar assays to distinguish wild-type rotavirus from Rotarix-specific 
nonstructural protein 2, are needed to explore this in more detail.36

Our study has several strengths. This was a well-charac-
terized cohort of infants from a large, community-based, cluster 
randomized trial. The alarmingly low level of RVV seroconver-
sion (23.7% overall) suggests that the study population is suitably 
representative of children in whom oral vaccines are poorly effica-
cious. To our knowledge, this is the first study in Africa to evaluate 
associations between enteropathogens and RVV immunogenicity, 
and we used sensitive molecular detection methods. However, the 
study also has several limitations. First, it remains unclear how rota-
virus-specific IgA titers relate to protection in low-income settings, 
although it remains the best available measure of immunogenicity.37 
Second, our ability to detect associations between enteropathogens 
and vaccine immunogenicity was reduced by low rates of serocon-
version and a relatively small sample size because we restricted the 
inclusion of stool samples to a narrow window around the time of 
rotavirus vaccination. However, our inferences remained unchanged 
in sensitivity analyses which liberalized the window for stool col-
lection. Finally, the low prevalence of some pathogens means that 
the magnitude of exposure was difficult to compare between infants. 
However, it is unlikely that pathogens detected in such small quan-
tity contribute to the substantial oral vaccine efficacy gap.

Despite frequent pathogen detection around the time of 
vaccination, we found few consistent associations between enter-
opathogens and RVV immunogenicity. There was no evidence that 

TABLE 3. Differences in Individual Pathogen Prevalence and Pathogen Burden 
Associated With the WASH Intervention Among 224 Infants in the Substudy

Individual Pathogen

WASH
(n = 82)

N (%) With  
1+ Detections

Non-WASH
(n = 142)

N (%) With  
1+ Detections

 
Unadjusted* Prevalence  

Difference (95% CI)

Campylobacter spp. 4 (4.9) 8 (5.6) −0.01 (−0.06 to 0.04)
aEPEC 4 (4.9) 11 (7.8) −0.03 (−0.11 to 0.05)
EAEC 21 (25.6) 32 (22.5) 0.03 (−0.10 to 0.15)
ETEC 2 (2.4) 3 (2.1) 0 (−0.04 to 0.05)
Adenovirus 40/41 5 (6.1) 4 (2.8) 0.03 (−0.02 to 0.09)
Astrovirus 0 (0) 3 (2.1) −0.02 (−0.04 to 0)
Enterovirus (pan) 41 (50.0) 55 (38.7) 0.08 (−0.04 to 0.21)
Poliovirus (Sabin 1/2/3) 32 (39.0) 35 (24.7) 0.11 (−0.01 to 0.24)
NPEV 9 (11.0) 20 (14.1) −0.03 (−0.12 to 0.07)
Norovirus 2 (2.4) 8 (5.6) −0.03 (−0.09 to 0.02)
Sapovirus 2 (2.4) 5 (3.5) −0.01 (−0.06 to 0.03)
Cryptosporidium 2 (2.4) 1 (0.7) 0.02 (−0.02 to 0.06)
Giardia 0 (0.0) 6 (4.2) −0.04 (−0.07 to −0.01)
Pathogen Burden Mean (SD) Score Mean (SD) Score Unadjusted Score Difference (95% CI)
All pathogens* 0.66 (0.79) 0.75 (0.96) −0.09 (−0.30 to 0.15)
Bacteria 0.41 (0.65) 0.42 (0.70) −0.03 (−0.23 to 0.16)
Viruses* 0.22 (0.52) 0.28 (0.51) −0.08 (−0.17 to 0.08)
Parasites 0.02 (0.16) 0.05 (0.22) −0.04 (−0.07 to 0.03)

*Excluding Sabin viruses and rotavirus.
aEPEC indicates atypical enteropathogenic Escherichia coli; ETEC = enterotoxigenic E. coli.

http://links.lww.com/INF/D662
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a household-level WASH intervention reduced enteropathogens, 
meaning our previous finding of improved RVV immunogenicity 
with WASH is unlikely due to reduced pathogen exposure. More 
mechanistic studies are needed to better understand the interplay 
between the intestinal environment and oral vaccine responses.
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