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Abstract

Background: The development of high-throughput sequencing technologies has revolutionized the field of
microbial ecology via the sequencing of phylogenetic marker genes (e.g. 16S rRNA gene amplicon sequencing).
Denoising, the removal of sequencing errors, is an important step in preprocessing amplicon sequencing data. The
increasing popularity of the lllumina MiSeq platform for these applications requires the development of appropriate

denoising methods.

Results: The newly proposed denoising algorithm IPED includes a machine learning method which predicts
potentially erroneous positions in sequencing reads based on a combination of quality metrics. Subsequently, this
information is used to group those error-containing reads with correct reads, resulting in error-free consensus reads.
This is achieved by masking potentially erroneous positions during this clustering step. Compared to the second
best algorithm available, IPED detects double the amount of errors. Reducing the error rate had a positive effect on
the clustering of reads in operational taxonomic units, with an almost perfect correspondence between the
number of clusters and the theoretical number of species present in the mock communities.

Conclusion: Our algorithm IPED is a powerful denoising tool for correcting sequencing errors in lllumina MiSeq 16S
rRNA gene amplicon sequencing data. Apart from significantly reducing the error rate of the sequencing reads, it
has also a beneficial effect on their clustering into operational taxonomic units. IPED is freely available at http://
science.sckcen.be/en/Institutes/EHS/MCB/MIC/Bioinformatics/.
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Background

The development of high-throughput sequencing tech-
nologies has revolutionized the field of microbial ecology
by offering a cost-efficient method to assess microbial
diversity at an unseen depth. Initial ecological applica-
tions mainly relied on the usage of the 454 pyrosequenc-
ing platforms, resulting in an impressive repository of
bioinformatics analysis tools for processing this kind of
data, as used for example in 16S rRNA gene amplicon
sequencing data. Linking different tools developed for
the preprocessing of amplicon sequencing data has re-
sulted in frequently used analysis pipelines such as
mothur [1], QIIME [2] and UPARSE [3].
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Due to the recent advances in other high-throughput
sequencing technologies regarding throughput and read
length, and the announcement of Roche to shut down
its 454 services by 2016, sequencing platforms provided
for example by Pacific Biosciences and Illumina gain im-
portance for assessing microbial diversity using amplicon
sequencing. However, analysis pipelines developed for
454 pyrosequencing data cannot be translated into an
Ilumina MiSeq specific pipeline in a straightforward
way due to fundamental differences between both se-
quencing technologies.

Indeed, the 454 pyrosequencing technology has diffi-
culties in predicting the exact length of homopolymers,
as such mainly leading to indel errors [4, 5]. lllumina se-
quencing data do not suffer from indel errors to the
same extent, but rather from nucleotide substitutions
(miscalling), mainly originating from two effects: 1) high
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correlation of the intensities of A and C as well as G and
T due to similar emission spectra of the fluorophores
[6-8], and 2) dependency of the signal of each cycle on
the signal before and after this cycle, caused by inad-
equate flushing of fluorophores, incomplete removal of
the 3’ terminators, or integration of nucleotides without
effective 3’ terminators [6], known as phasing and pre-
phasing. Additionally, it has been shown that such sub-
stitutions are often linked to the presence of the GGC
motif, or more in general, to the GC-richness of the
amplified region [9-11].

Different approaches have been developed for reducing
sequencing errors originating from the Illumina MiSeq
sequencing platform. These approaches can be catego-
rized into three types: 1) denoising tools which actively
resolve sequencing errors, 2) paired-end assemblers that
merge overlapping reads into one contig represented by
a consensus sequence (specifically for MiSeq amplicon
paired-end sequencing data), and 3) quality filtering ap-
proaches which remove poor-quality reads or regions.

A large number of denoising algorithms has already
been developed for 454 pyrosequencing reads, for example
Denoiser [12], AmpliconNoise [13], SLP [14], Acacia [15]
and NoDe [16]. However, due to fundamental differences
in the nature of both sequencing technologies, denoising
algorithms developed for 454 pyrosequencing data are
likely to perform suboptimal when applied to Illumina se-
quencing data in a naive way. At this moment, a few algo-
rithms for denoising Illumina MiSeq paired-end amplicon
sequencing data have been developed. One of the 454
pyrosequencing denoising algorithms, ie. SLP [14]
(implemented as pre.cluster in mothur) and the more
recently released algorithm called UNOISE [17], have
been shown to be applicable to Illumina MiSeq spe-
cific analysis pipelines [5].

However, next to denoising tools, a plethora of tools
has been developed for assembling paired-end reads into
one amplicon contig, by merging both the forward and
reverse reads into one consensus sequence. Apart from
the assembly tools integrated in the amplicon sequen-
cing pipelines like mothur, QIIME and USEARCH, other
more general paired-end assembly algorithms have been
developed such as FLASH [18] PANDAseq [19], COPE
[20] and PEAR [21]. Additionally, several quality filtering
approaches were implemented to identify and remove or
trim reads with poor quality, according to specific cri-
teria defined within each tool, as implemented in
mothur, QIIME and USEARCH. Despite the fact that
paired-end assemblers and quality filtering approaches
cannot be seen as genuine denoising tools, they will have
an effect on the error rate, and should be included in a
benchmark when assessing denoising tools.

In this work we propose the Illumina Paired-End
Denoiser (IPED) algorithm, an error correction algorithm
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specifically developed for denoising Illumina MiSeq 16S
rRNA gene amplicon sequencing data. Our machine
learning methodology was benchmarked using four differ-
ent mock datasets, each of them containing sequencing
data of different hypervariable regions in the 16S rRNA
gene, including completely as well as partially overlapping
paired-end reads. Working with mock communities con-
sisting of a known set of species had the major benefit that
we can use the error rates as most prominent evaluation
criterion. Since the amount of data produced within one
sequencing run is steadily increasing for the Illumina
MiSeq technology, we evaluated the additional computa-
tional cost associated with our algorithm.

Methods

Mock communities

Four publicly available Illumina MiSeq sequencing data-
sets of mock communities were used within this work.
The first mock community — called MOCK1 - is com-
posed of 21 species added in equimolar concentrations
(5 ng/pl) [5]. The second mock community, termed
MOCK?2, has almost the same composition as MOCKI1,
however omitting one species, resulting in 20 different
organisms [22]. The DNA of the mock communities can
be obtained from BEI Resources (catalog number HM-
278D). Both Illumina MiSeq libraries were prepared
using primers as described in the work of Kozich et al.
[5] for the amplification of the V34, V4 and V45 hyper-
variable regions of the 16S rRNA gene for MOCK1, and
in the work of Nelson et al. [22] for the amplification of
the V4 and V45 region for MOCK2. Both mock commu-
nities were sequenced on the Illumina MiSeq platform
using the 2 x 250 bp paired-end protocol. Merging both
reads into one contig resulted in different contig lengths
for each primer pair: contigs resulting from the V4 pri-
mer pairs in MOCK1 and MOCK?2 resulted in a length
of 251-253 bp (completely overlapping paired-end
reads), V45 contigs in MOCK1 and MOCK?2 in lengths
of 375 nt and 390 nt respectively (overlapping regions of
125 and 110 bp respectively) and V34 contigs in
MOCKTI in a length of 430 nt (overlapping region of
70 bp). In MOCK]1, four sequencing runs were per-
formed with various cluster densities (ID's:
130401,130403, 130417 and 130422). In MOCK2, sam-
ples for each region (V4 and V45) were run in duplicate
(named v4.I.1, v4.1.05, v4.w511 and v4.v5.111
respectively).

The third mock community — called MOCK3 - con-
sists of three samples (named M1, M2, M3), each con-
sisting of 12 species (Sequencing Read Archive accession
number SRP066114). The MOCK3 community was se-
quenced on the Illumina MiSeq platform using the 2 x
300 bp paired-end protocol. Merging both reads into
one contig resulted in a length of 422-428 bp after
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clipping the primers (overlapping regions of 141 bp).
Table 1 provides a detailed description of the MOCKI1,
MOCK?2 and MOCKS3 sequencing datasets.

The fourth mock community - called MOCK4 - con-
sists of 73 samples and was recently published in Schir-
mer et al. [11]. Their microbial composition ranges from
a single species to diverse mock communities (49 bac-
teria and 10 Archaea), mixed either in even or uneven
concentrations. Five different Illumina MiSeq library
preparation methods were used to amplify the V4 and
the V34 region. Contigs constructed by merging both
reads resulted in two different lengths, ranging from 253
nucleotides (i.e. almost completely overlapping reads) to
450 nucleotides (partially overlapping reads). A detailed
description of MOCK4 and the sequencing protocols
used can be found in the original publication [11].

Pre-processing steps

For all datasets (MOCK1l, MOCK2, MOCK3 and
MOCK4) contigs were created by merging the paired-
end reads using a heuristic based on the difference in
Phred quality scores of both reads as implemented via
the make.contigs command in mothur [5]. Contigs were
culled if they had an ambiguous base or if they were not
properly merged. All sequencing data were trimmed,
aligned, screened, filtered and dereplicated using the
mothur software package (v.1.33.3), thereby following

Table 1 Overview of the mock sequencing data discussed in
this work. It contains information on the amplified regions,
samples ID's, number of paired-end reads (i.e. contigs), average
contig length (i.e. length after merging both paired-end reads),
and average length of the overlapping part between both
paired-end reads

Name Region length Overlap ID #contigs
MOCKT1 [5] V34 430 70 130401 184216
130403 131241
130417 102547
V4 250 250 130422 79701
130401 1217529
130403 1191998
V45 375 125 130417 1015673
130422 871118
130401 826262
MOCK2 [22] V4 250 250 V411 213043
v4.1.05 240682
V45 390 110 Vv4V5.1.1 2484
v4v5.111 90126
MOCK3 (SRP066114) V34 421 140 M1 35168
M2 60488
M3 21723
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the SOP as described on the mothur website (http://
www.mothur.org/wiki/MiSeq_SOP d.d. 2015-05-18).
Afterwards, reads were denoised (by any of the tested
denoising algorithms) and chimeras were identified
using the “seq.error” command in mothur [1] using the
full length 16S rRNA genes of the mock community spe-
cies as reference. This “seq.error” command was also
used to identify sequencing errors. To assess the per-
formance of our newly introduced algorithm, IPED was
benchmarked against the Pre-cluster and UNOISE algo-
rithms, both using the recommended parameter settings
as proposed by the initial developers (described in the
mothur MiSeq SOP and the UNOISE publication re-
spectively [17]).

Despite the fact that paired-end assembly algorithms
cannot be considered as denoising algorithms in the
strict sense, their potential influence on the error rate
required a comparison with the error rates obtained
using IPED. Therefore, different paired-end assembly al-
gorithms used for amplicon sequencing were tested on
the MOCK1, MOCK2 and MOCK3 datasets. Algorithms
included are the standalone tool PEAR as well as the as-
sembly steps as included in mothur, QIIME and
USEARCH, together with their proposed quality filter-
ing. An overview of the commands used for those tools
is given in Additional file 1: section 4.

For MOCK1, MOCK2 and MOCKS3 the sequencing
reads were clustered in operational taxonomic units
(OTU) using the mothur recommended clustering ap-
proach (shown in Additional file 1: section 8) as well as
UPARSE [3] with default parameters, with the exception
of singleton removal. The default setting of singleton re-
moval was deactivated to accurately assess the effect of
sequencing errors on all the OTUs produced, including
singletons. The exact commands are given in Additional
file 1: section 3.

Training data

An important component of the IPED algorithm is the
machine learning method developed to predict poten-
tially erroneous positions. A dedicated dataset for train-
ing and testing this machine learning method was
created by randomly selecting reads from sample 130401
of MOCK1 (1,000 reads from the V34, V4 and V45 re-
gion respectively), resulting in a dataset of 3,000 reads.
Important to notice is that all three samples used to
construct the training data were completely disregarded
in the subsequent benchmarking analysis. Each nucleo-
tide in those reads was evaluated as being either errone-
ous (mismatch, insertion or deletion) or correct,
identified as such by aligning those reads against the ref-
erence genomes. In order to obtain highly reliable train-
ing instances, the same parameter setting was applied as
used in Gilles et al [23] for running BLAST [24] and
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subsequently ClustalW [25]. This led to a dataset con-
sisting of 1,031,625 instances (i.e. all nucleotide posi-
tions in the 3,000 reads). These data were cleaned as
follows: dereplication, randomization and simplifica-
tion via selecting a subset of the features (see further
for details on the feature selection step). Next, the data
were split into three subsets, thereby respecting the
initial ratio between erroneous versus non-erroneous
instances throughout the three subsets: (a) a learning
data set for training the classifier, (b) a validation set
for selecting the most optimal kernel and (c) a test data
set for testing the accuracy of the classifier. Subset (a)
and (b) were further modified by adjusting the ratio be-
tween erroneous and non-erroneous instances: for sub-
set (a), several ratios between erroneous and non-
erroneous instances were applied to select the one
resulting in the best performance when training the
classifier, while for subset (b) we used an equal ratio
between both classes. Extra information on the
feature-selection step and selecting the correct ratio in
subset (a) is given in section 1 of Additional file 1. All
machine learning methods for training and testing
IPED were used as implemented in the WEKA soft-
ware version 3.7.11 [26].

Evaluation parameters

For the evaluation of IPED, we calculated the number of
true positives (TP), false negatives (FN), true negatives
(TN) and false positives (FP) as follows: if an erroneous
nucleotide was correctly detected as such, it is a TD, if it
was not it is a FN, if an non-erroneous nucleotide was
correctly detected as such it is a TN, if not it is a FP. We
used the Mathews Correlation Coefficient (MCC) [27]:
(TP x TN-EP x EN)/N((TP + EP)(TP + EN)(TN + FP)(TN
+ EN)), sensitivity (i.e. the proportion of actual erroneous
positions that was detected as such: TP/(TP + FN)), spe-
cificity (i.e. the proportion of actual non-erroneous posi-
tions that was detected as such: TN/(TN + FP)), and
Receiver operating characteristics (ROC). The latter ana-
lysis combines both sensitivity and specificity by plotting
the sensitivity (Y axis) against one minus the specificity
(X axis)). ROC curves were produced by swiping the
threshold cut-off of the probability estimated by each
classifier, and plotting the sensitivity versus one minus
the specificity value.

Results

Our newly developed algorithm for denoising Illumina
MiSeq amplicon sequencing data was developed in two
steps. First an artificial intelligence classifier was trained
to detect potentially erroneous positions in the sequen-
cing reads. Secondly, a modified version of the previ-
ously published algorithm (Pre-cluster) [28] (which is
the mothur implementation of the Single Linkage
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Preclustering algorithm [14]), was adapted in such a way
that it does not penalize those potentially erroneous po-
sitions during clustering. The development of both the
classifier and clustering component of the IPED algo-
rithm is discussed in the first part of this results section.
Once the setup and training of IPED has been finalized,
the algorithm was tested on a wide range of datasets
against Pre-cluster and UNOISE, and this at the level of
error rate, computational cost and the accuracy of the
OTU clustering.

IPED development

IPED classifier

The performance of the IPED algorithm is largely de-
pending on the ability of its classifier component to cor-
rectly identify erroneous positions. The machine
learning approach followed to develop this classifier is
based on supervised learning, where we trained the clas-
sifier to identify such positions by training it on a dedi-
cated data set (i.e. a data set containing correct and
erroneous positions). Training of the IPED classifier
consisted of four consecutive stages: 1) identify those pa-
rameters that are potential predictors of sequencing er-
rors (i.e. feature identification), 2) select the most
informative parameters (i.e. feature selection), 3) train
the classifier to identify sequencing errors based on
those parameters (i.e. model training), and 4) check
whether the classifier correctly predicts sequencing er-
rors on unseen sequencing data (i.e. validation).

The first stage consisted of extracting a list of features
potentially predicting erroneous positions. Different se-
quencing characteristics have been taken into consider-
ation such as the position in the read, the homopolymer
status and Phred quality score, the presence of the GGC
motif in front of the position in question, the homopoly-
mer status (“0” in case of no homopolymer, “-1” when
the nucleotide is ambiguous, and in case of a homopoly-
mer an ascending number indicating the position within
the homopolymer) and the Phred quality score of the
preceding and succeeding position for both the forward
and reverse reads, totaling up to 16 features. An add-
itional feature was added indicating whether the nucleo-
tide was situated in the overlapping region of both
paired-end reads, and if so to indicate whether they have
no conflict, a conflicting base call (mismatch, deletion or
insertion), or unknown overlap (if at least one of both
nucleotides is ambiguous).

Importantly, integrating too many uninformative fea-
tures would have led to an inflation of the computational
cost. Accordingly, reducing the total number of available
features (17 in total) while retaining the predictive power
of our algorithm has a beneficial effect on the perform-
ance of the classifier as it increases its accuracy and re-
duces the computational cost. Therefore, in a second
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stage, a feature-selection step was applied using a three-
fold cross-validation on the training data. This approach
allowed us to identify those features having a high pre-
dictive power for recognizing erroneous positions (i.e.
having a high correlation with the class ‘error’ or ‘non-
error’), while having a low correlation with other pre-
dictive features. Performing this step resulted in a subset
of six features i.e. for the forward read: the position in
the read, homopolymer status and Phred quality score;
for the reverse read: the position in the read and Phred
quality score; and as last feature the overlap status be-
tween the forward and reverse read. Important to notice
within this context is the absence of the GGC motif after
the feature selection step. However, this might not be
surprising as we could clearly see a drop in the Phred
quality score in the positions succeeding this motif (data
not shown). As the Phred quality score was retained
after applying the feature-selection step, the GGC motif
was removed from the features list. This could be ex-
plained either by the weak evidence of error incidences
related to the presence of the GGC motif [29] or due to
the high correlation between this motif and the Phred
quality score, making this feature superfluous.

In the third stage, these six features were used to train
a wide range of classifiers available in WEKA based on
subset (a) of the training data. The goal of this step was
to select the type of classifier that obtains the highest ac-
curacy in predicting erroneous positions. In order to
optimize the balance between specificity and sensitivity,
a range of ratios balancing the number of erroneous ver-
sus non-erroneous instances was tested. The highest
sensitivity while maintaining an acceptable specificity
was obtained using a ratio of 1:3 (error : non-error) (an
overview of different ratios is available within Additional
file 1: section 1). The training process was further evalu-
ated by plotting the learning curves for each of the clas-
sifiers, which confirmed that a training dataset size
consisting of 5,000 erroneous and 15,000 non-erroneous
instances (respecting the 1:3 ratio) gave the best per-
formance (see Additional file 1: section 2). Subset (b) of
the training data was used to evaluate each of the indi-
vidual classifiers using sensitivity, specificity, MCC mea-
surements and ROC analysis as performance
parameters. Additional analyses tested the performance
obtained when different sets of classifiers (ranging from
two up to five classifiers) were combined using plurality
voting. In a plurality voting approach, each of the con-
sidered classifiers outputs a confidence score for the
classification made and the class with the highest confi-
dence is selected as output for the respective instance.
Comparing the performance of the individual classifiers
as well as the different voting combinations (see
Additional file 1: section 2), the best performance was
achieved via plurality voting combining Multilayer
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Perceptron (MLP — with a learning rate of 0.3, momen-
tum of 0.2, and using 6 perceptrons in one hidden layer)
and Random Forest (using an ensemble of unpruned de-
cision trees). This combination achieved a sensitivity of
0.57, specificity of 0.93, MCC of 0.53 and ROC area
under the curve (AUC) of 0.87 on subset (b) of the
training data, thereby outcompeting the other machine
learning approaches. The additional computational bur-
den resulting from this plurality voting approach was
minimal, as the best performing single classifier (random
forest) required 2.2 sec compared to 2.3 sec for the plur-
ality voting approach (including MLP and random for-
est) (tested on subset (c) of the training data, containing
around 200,000 instances).

IPED clustering

As mentioned above, the first step in the development
of IPED consisted of training a classifier able to predict
potentially erroneous positions with high accuracy. In
the second step a modified version of the SLP algorithm
[14] as implemented via the Pre-cluster command in
mothur [28] has been developed [16]. In the original
Pre-cluster implementation, sequences are sorted based
on their abundance level in descending order. When a
rare sequence is at maximum 1 nt per 100 nt differing
from a more abundant one, it is merged with the more
abundant one and its abundance is added to the latter
one. In the first step of IPED, the classifier has marked
some of the positions as potentially erroneous. We have
developed a modified version of the mothur Pre-cluster
algorithm that will not penalize those marked positions
when calculating the amount of conflicting positions be-
tween two reads. This means that any position in the
alignment containing a nucleotide which is marked as
potentially erroneous, will not increase the distance
score (i.e. the score used as cut-off to either merge two
reads, or leave them ungrouped). After the clustering
step, those masked positions are reverted to their ori-
ginal nucleotide as they were before running IPED. A
schematic representation of this approach is given in
Fig. 1. The IPED software can be downloaded via
https://github.com/M-Mysara/IPED  or  http://scien-
ce.sckcen.be/en/Institutes/EHS/MCB/MIC/Bioinformat-
ics/.

Benchmarking of IPED

Impact of denoising algorithms on the error rate

Once the development of the IPED algorithm has been
finalized, its performance was compared with those of
the Pre-cluster and UNOISE algorithms. Both those
tools are the only denoising algorithms currently applic-
able for Illumina amplicon sequencing data. Using the
reference 16S rRNA gene sequences from the organisms
present in the MOCK1], MOCK2 and MOCK3
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IPED Classifier

ATCCC-TACTACCGA-CXCGTACTACC-G
ATCXC-TACTACCGA-CCCGTACTXCC-G

v

A\ 4

ATCCC-TACTACCGA-CCCGTACTACC-G < Correct
ATCCC-TACTACCGA-CGCGTACTACC—G <——— Substitution (Count=1) |
ATCCC-TACTACCGA-CCCGTACT-CC-G <
ATCCC-TACTACCGA-CCCGTACTACCCG

(i) Extracting quality-features for each position (Perl)
(ii) Running a pre-trained classifier (WEKA using JAVA)
(iii) Marking the potentially erroneous positions (Perl)

ATCCC-TAXTACCGA—CCCGTACTACCG s

ATCCC-TACTACCGA—-CCCGTACTACCXG

Modified Pre-cluster (mothur using C++)

ATCCC-TAXTACCGA-CCCGTACTACC-G<——

Replacing the remaining “X”
with the original nucleotides
in pre-IPED read-version
(mothur using C++)
ATCCC-TACTACCGA-CCCGTACTACC-G b(cm‘”t:lo“

Fig. 1 Schematic overview showing the different steps of the iped algorithm
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communities, we calculated the error rates before ap-
plying the denoising algorithms, which were subse-
quently compared with the error rates obtained after
applying IPED, Pre-cluster and UNOISE on all three
mock datasets. The error rate was calculated using
the seq.error command by taking the ratio of the
number of deletions, insertions and substitutions over
the total number of bases.

The average error rate before denoising (i.e. after using
the make.contigs command in mothur) was 0.0005 and
0.0006 for V4 (MOCK1 and MOCK2 respectively),
0.0071 and 0.0050 for V45 (MOCK1 and MOCK2 re-
spectively) 0.0026 and 0.0015 for V34 (MOCKI1 and
MOCKS respectively). The fact that the error rate of V4
was up to an order of magnitude lower than both other
regions is not surprising since the V4 amplicon fragment
consists of two completely overlapping reads, as such as-
suring a two-fold prediction for each nucleotide.

When comparing the output of IPED with the raw
error rates, our algorithm was able to reduce on average

the error rate with 72 % (individual values for different
regions and runs are varying between 28 % and 94 %).
When benchmarking those results with UNOISE and
Pre-cluster, UNOISE was able to reduce the error rate
on average by 52 % (individual values varying between
an increase of the error rate with 66 % and a decrease of
97 %) while Pre-cluster was able to reduce it by 51 %
(individual values varying from 4 % to 86 %) (see Table 2
for all details). On average (averaged over all mock com-
munities), IPED diminished the error rate to 0.0010,
while UNOISE and Pre-cluster reduced the overall error
rate to the same value of 0.0018 (see Table 2). However,
compared to other denoising algorithms, the effect of
IPED is more pronounced for those regions with no
complete overlap between both paired-end reads (i.e. re-
gion V34 and V45). Importantly, it should be noted that
UNOISE (as implemented in USEARCH) results in an
additional loss of on average 13 % of sequencing data
due to its more stringent pre-processing steps, as illus-
trated in supplementary file 1 section 4.
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Table 2 Overview table comparing error rates of the samples treated with UNOISE (after USEARCH preprocessing) and those
without applying a denoising algorithm, after applying Pre-cluster or after applying IPED (after mothur preprocessing). Due to the
difference preprocessing steps applied in USEARCH and mothur, the amount of reads removed differ, where around 53 % and 39 %

of reads are removed in respective order

Variable Sample ID Error rates
region USEARCH + Mothur Mothur + Mothur + IPED
UNOISE (make.contigs) Pre-cluster

V34 130403 0.0003 0.0026 0.0013 0.0002
130417 0.0004 0.0023 0.0010 0.0003
130422 0.0008 0.0028 0.0017 0.0008
M1 0.0006 0.00149 0.0007 0.0004
M2 0.0007 0.00150 0.0008 0.0006
M3 0.0005 0.00140 0.0007 0.0005

V4 130403 0.00011 0.00056 0.00013 0.00010
130417 0.00009 0.00051 0.00010 0.00008
130422 0.00009 0.00049 0.00010 0.00008
Z3R 0.00002 0.00061 0.00008 0.00004
v4.1.05 0.00002 0.00068 0.00010 0.00004

V45 130403 0.0030 0.0084 0.0055 0.0022
130417 0.0029 0.0069 0.0041 0.0020
130422 0.0026 0.0060 0.0033 0.0016
V4V5.11 0.0082 0.0066 0.0061 0.0041
V4V5.111 0.0084 0.0033 0.0034 0.0031

Average All samples 0.0018 0.0029 0.0018 0.0010

The same trend in lowering the error rate was observed
when running IPED on the MOCK4 dataset. Indeed, when
both reads are almost completely overlapping (contig
lengths ranging between 253 and 292), IPED was able to
reduce the error rate from 0.0041 to 0.0032. This effect
was more prominent when dealing with contigs with a
smaller overlap between both paired-end reads (contig
length ranging between 330 and 450), showing a decrease
in the error rate from 0.0065 to 0.0033 (see Additional file
1: section 5). However, important to mention within this
context is the elevated error rate of this data set, which is
significantly higher than should be expected for Illumina
MiSeq sequencing data. As such, caution should be given
when extrapolating those results.

Plotting the error rates for the MOCK1 and MOCK2
datasets versus their position in the amplicon, indicated
that the beneficial effect of IPED is mainly situated in
the uniquely covered region of the second read (i.e.
those positions not overlapping with the first read), and
to a lesser extent also the overlapping part (i.e. those po-
sitions sequenced twice: a first time via read one, and a
second time via read two) (see Fig. 2 for the V34 and
V45 region of MOCK]1, and section 6 in Additional file
1 for more details).

As stated in the introduction, a plethora of algorithms
is available for assembling paired-end reads into one

amplicon fragment. Even though those algorithms are
not denoising algorithms in the strict sense, they can
have an impact on the error rate of the resulting frag-
ment. For this comparison, error rates were calculated
for MOCK1, MOCK2 and MOCKS3 after running differ-
ent assembly algorithms, being fastq mergepairs
(USEARCH), make.contigs (mothur), join_paired_ends
(QIIME) and PEAR, which resulted in error rates of
0.0027, 0.0029, 0.0031 and 0.0097 respectively (see
Additional file 1: section 4). Important to notice is that
the number of reads retained is correlated with the error
rate: PEAR returned the highest error rate, however it
managed to retain 86 % of the reads, while USEARCH
reached the lowest error rate but removed more than
53 % of the data. Anyhow, it is clear from those data that
the error rates obtained using those assembly algorithms
did not come close to the error rates obtained with IPED
(run on the output of the mothur make.contigs step)
i.e. 0.0010. Similar effects were obtained by including
IPED after the QIIME assembly step, leading to an
error rate of 0.0014, which was also significantly
lower than the error rate obtained with the assembly
steps solely (data not shown). Those data suggest that
whatever currently available assembly algorithm is
used, running IPED afterwards will still have a benefi-
cial effect on the error rate.
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Fig. 2 Plot showing the error rate versus the position in the read after being treated with Pre-cluster (blue), UNOISE (violet) and IPED (red). The
raw error rates (i.e. without applying a denoising algorithm) are colored black

To investigate the extra computational cost related to
IPED, the calculation time was registered for all three
samples of the MOCK]1 dataset covering the V4 region,
where each sample was subsampled to 6000 unique
reads. When one processor (single Intel Xeon E5-2640
2.50 GHz CPU) was used for each sample (i.e. a total of
three processors), IPED required 70 s for running all
three samples, while Pre-cluster and UNOISE could end
the analysis in 14 s and 12 s respectively. Similar relative
differences in calculation time were also observed for
other MOCK1, MOCK2 and MOCK3 samples (see
Additional file 1: section 7).

Impact of denoising algorithms on the OTU clustering

As the negative effect of sequencing errors has an influ-
ence on the amount of spurious OTUs, ideally an im-
provement at the level of denoising step should be
reflected in a decrease of the number of OTUs. Al-
though the OTU clustering step is influenced by the
number of reads and level of complexity in the mock
samples, [5], it has been used by others as a metric for

sequence quality [5, 12—14, 16, 17, 28, 30]. In order to
get an idea to which extent IPED, UNOISE and Pre-
cluster have a beneficial effect on the OTU clustering
step, sequencing data denoised by either one of the three
approaches were clustered using the average neighbor-
hood hierarchical clustering algorithm via the “cluster”
command (as implemented in mothur), and subse-
quently compared with the number of OTUs obtained
when no denoising algorithm was applied. As the
amount of species present in both mock communities is
known, in the most ideal scenario the amount of OTUs
returned should be 20, 19 and 12 for MOCK1, MOCK2
and MOCKS3 respectively. It is important to emphasize
that any undetected chimera or possible contamination
would lead to an inflation of the number of the OTUs.
However, as their effect is the same for all tools, we as-
sume that the number of OTUs still provides a good in-
dication of the performance.

The average number of OTUs produced when the
denoising step was omitted returned on average 109, 64
and 127 OTUs for the V4, V34 and V45 regions
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respectively (combined results of MOCK1 and MOCK2,
except for the V45 region of MOCK1 - see further).
IPED was able to reduce these numbers to an average of
94, 48 and 81 while Pre-cluster resulted in 110, 66 and
118 OTUs respectively and UNOISE resulted in 120, 15
and 363 OTUs respectively. Again, it is important to
highlight the impact of the strict pre-processing ap-
proach followed by UNOISE, resulting in a removal of
almost all of the reads in MOCKI1 V34 samples in this
pipeline, and therefore returning a very low number of
OTUs for the UNOISE approach. Similarly, for MOCKS3,
the number of OTUs for the non-denoised data was 90,
while integrating IPED, UNOISE or Pre-cluster in the
preprocessing pipelines led to 84, 89 and 107 OTUs re-
spectively. Altogether, this analysis showed a more bene-
ficial effect of IPED on the OTU clustering step than
Pre-cluster and UNOISE (see Additional file 1: section
8.1). Concerning the number of OTUs for the V45 re-
gion of MOCK]I, it was not possible to calculate the
number of OTUs due to high memory requirements,
leading to the exclusion of these data sets from the OTU
analysis.

It should be noted that all mock samples analysed in
this work contain a high number of reads per sample
(on average more than 500,000), which is significantly
higher than the number of sequences obtained for most
real-life microbial diversity studies. In order to work
with more realistic numbers, we rarified the datasets to
5,000 — as proposed in Kozich et al. [5] — and 25,000
reads per sample. Again, IPED outperformed UNOISE
and Pre-cluster when applied on the rarefied MOCKI,
MOCK2 and MOCK3 samples (see Additional file 1:
section 8). Moreover, similar results were obtained upon
using the UPARSE clustering algorithm on both
complete and rarefied datasets (see Additional file 1:
section 8.1).

However, the analysis performed above starts from an
ideal situation, since all chimeras can accurately be re-
moved using the reference sequences from the species
present within the mock community. Additionally, the
species present in the mock communities are well-
known species, incorporated in the reference alignment
database, as such resulting in an accurate alignment. To
get an idea on the effect of the different denoising tools
in case of a more realistic scenario, i.e. using a regular
chimera removal algorithm and the presence of species
not represented in the reference alignment database, we
applied a regular chimera detection tool (CATCh de
novo) [31] on the MOCKS3 dataset in order to remove
chimeric sequences from the mock community. Add-
itionally we removed the corresponding sequences of the
species represented in the mock community from the
16S rRNA reference alignment database, together with
any other sequence showing a similarity higher than

Page 9 of 11

97 % to any of those twelve species. As reported in sec-
tion 11 of the Additional file 1, IPED was able to outper-
form Pre-cluster and UNOISE with a reduction of the
error rate in the same range as reported earlier, and add-
itionally led to the lowest number of OTUs.

In order to check the effect of the denoising algorithm
on the OTU clustering quality, sequencing data were
analysed using a preprocessing pipeline where the only
varying factor was the denoising algorithm (IPED, Pre-
cluster or UNOISE). This way we could assess whether
the anticipated species of the mock community could be
retrieved. Applying Pre-cluster and UNOISE led to less
accurate clustering results as reads originating from the
same species where more frequently scattered over dif-
ferent OTUs. In general we can conclude that applying
IPED has a beneficial effect on the OTU clustering step
when compared with the Pre-cluster and UNOISE re-
sults, since for all mock samples the number of OTUs
produced with IPED was the closest to the actual num-
ber of species. Details on the number of OTUs are given
in section 8 of the Additional file 1.

As a proof of principle, IPED was applied on a real
data set (i.e. a non-mock dataset) to emphasize the ef-
fect on a more complex dataset. However, it is import-
ant to stress that unfortunately for those real-life
datasets no error rates could be calculated, forcing us
to revert to the number of OTUs as evaluation criter-
ion. Despite the fact that this criterion is inferior to the
error rate, it has been used in previous publications
[30, 32, 33]. In this data set, presented in Kozich et al.
[5], murine fecal samples of mice were used to assess
the shifts of the microbial community after weaning at
two different stages: early (0-9 days) versus late (141—
150 days) after weaning. IPED was able to reduce the
number of spurious OTUs, as illustrated by the rar-
efaction curves, and produced a more clear separation
of clusters of late versus early stage samples when visu-
alized in principle coordinate analysis (PCoA) biplots
(see Additional file 1: section 9).

Discussion

New sequencing technologies have revolutionized the
assessment of microbial diversity via amplicon sequen-
cing. However, each of the currently available high-
throughput sequencing platforms suffers from sequen-
cing errors originating from the sequencing technology
itself (which is different from PCR point errors). In order
to prevent the inflation of artificial OTUs due to these
sequencing errors, different algorithms have already
been developed for the correction of sequencing errors
in 454 pyrosequencing data, for example SLP [14],
AmpliconNoise [13] and Denoiser [12]. However, assess-
ment of bacterial diversity using the Illumina MiSeq
technology is now the standard, as it offers high
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throughput in combination with an acceptable read
length. Recently, the SLP-based algorithm Pre-cluster
(available as pre.cluster in mothur) and UNOISE (avail-
able in USEARCH) have been proposed as denoising
tools in Illumina MiSeq specific pipelines [5, 17]. In this
work, we introduced IPED as the best denoising tool
specifically oriented towards Illumina MiSeq 16S rRNA
paired-end reads.

IPED was shown to outperform Pre-cluster and
UNOISE, as observed on the three mock datasets where
our newly introduced algorithm could on average cor-
rect double the amount of sequencing errors. This effect
seems to be less pronounced in those paired-end reads
having a complete overlap between both reads, as every
nucleotide position in the amplicon is covered twice,
once by the first read, and once by the second read.
Therefore, the added effect of IPED is smaller in those
latter cases.

Moreover, reducing the error rate has a significant ef-
fect on the quality of the reads in the OTUs. Adding an
error-correction step before running the OTU clustering
algorithm, led to a very close correspondence between
the number of OTUs returned, and the true number of
species known to be present in the mock communities.
Such a significant correspondence could not be obtained
when omitting the denoising algorithm in the amplicon
sequencing preprocessing pipeline, or via using any
other denoising tool. However, caution should be given
when extrapolating this to real-life environmental com-
munities, since the diversity linked to the latter samples
will be significantly higher than in the tested mock com-
munities. Despite this increased complexity, running
IPED on real biological samples still showed a clear im-
provement, which was visualized using rarefaction
curves showing a clear decrease in the number of OTUs.
Moreover, a more accurate correlation was found be-
tween biologically related samples when comparing the
OTU tables produced where IPED was integrated into
the workflow, as shown in the results by producing
denser clusters distinguishing two different biological
conditions.

Where Pre-cluster and UNOISE have an impressive
speed, IPED needs more calculation time due to the ma-
chine learning classifier required in the first step of
IPED. However, as seen in the results, IPED led to a
more pronounced improvement in accuracy compared
to both of them.

At this stage we only tested our IPED algorithm on
mock datasets containing paired end reads that are at
least partially overlapping, or in some cases completely
overlapping. Recent papers suggest the usage of primer
pairs for amplicon sequencing producing paired-end
reads which are not overlapping at all, as this approach
allows flexibility in development of PCR primers and
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selection of the hypervariable regions. This way those
primers can be selected that allow the most optimal dis-
tinction for a specific type of sample [34]. Within this area
IPED can have a more pronounced effect on the final re-
sults as our algorithm was shown to be most effective in
the non-overlapping part of the second read, which in
such a case would mean the complete second read. IPED
has only been tested on 16S rRNA gene amplicon sequen-
cing data. In principle our tool can be used for any ampli-
con sequencing data set, such as 18S rRNA, 23S rRNA or
28S rRNA, whenever a reliable reference alignment data-
set is available. IPED was developed to be applied after the
mothur make.contigs command; yet, further adjustments
are needed to make it compatible with other paired-end
assemblers. Preliminary data showed that IPED was able
to reduce the error rate of QIIME to the same extent.

Conclusion

We have presented in this work the denoising algorithm
IPED specifically developed for Illumina MiSeq 16S
rRNA gene amplicon sequencing data. IPED obtains a
better performance on mock datasets compared with the
available alternatives Pre-cluster and UNOISE, and on
average can correct double the amount of errors com-
pared to both algorithms. The beneficial effect of this
improved denoising was reflected in more accurate
OTU clustering results.
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