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Introduction
Soft tissue sarcomas (STSs) remain one of the 
most challenging diseases to treat for the medical 
oncologist. STSs are mesenchymal neoplasms 
that can arise from any site within the body, 
including the extremity, trunk, retroperitoneum, 
and head and neck. These are biologically hetero-
geneous diseases, with over 50 subtypes that vary 
by molecular, histological, and clinical character-
istics. The most common subtypes of high grade 
STS include undifferentiated pleomorphic sar-
coma (UPS), liposarcoma (LPS), leiomyosarcoma 
(LMS), synovial sarcoma (SS), and malignant 
peripheral nerve sheath tumors (MPNSTs). 
Collectively, STSs are rare, accounting for <1% 
of adult cancers, with an estimated 12,310 new 
cases in 2016 in the United States.1 Unfortunately, 
up to 50% of high-risk patients with high-grade 
STS develop metastases and die from their dis-
ease.2 Among the young adult and pediatric popu-
lation under 20-years old, STS is one of the top 

five causes of cancer-related death.1 The median 
overall survival (OS) for advanced, metastatic 
STS has historically been in the range of 12 
months, while more recent randomized studies 
have noted survival approximating 18–19 
months.3–10 Nonetheless, improvements in the 
management of high-grade STS are needed.

Because of the relatively low annual incidence 
and heterogeneous nature of these neoplasms, 
positive studies using newer active systemic 
agents for sarcomas are few. In recent years, the 
understanding and management of STS have 
been improved by the molecular and histological 
subclassification of STS, as well as development 
of novel drugs for these subtypes. In the age of 
personalized medicine, the medical oncologist is 
challenged with the task of properly tailoring and 
sequencing therapies for STS in an individualized 
manner. In this review, we provide an update of 
systemic options for high-grade STS, including a 
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discussion of how best to incorporate their use 
amongst the growing arsenal of active agents. 
Specifically, we focus on the subtypes mentioned 
above: UPS, LPS, LMS, SS and MPNST. While 
there have been advances in treatment of other 
sarcoma subtypes, including dermatofibrosar-
coma protuberans and gastrointestinal stromal 
tumors, a discussion of these and other sarcoma 
subtypes is beyond the scope of this paper and 
should be sought elsewhere.

Anthracycline-based therapy: first-line 
therapy across all subtypes
As of 2016, anthracyclines (e.g. doxorubicin) 
remain the standard of care for first-line therapy 
in high-grade STS, regardless of subtype, presen-
tation and patient characteristics. Anthracyclines 
intercalate into deoxyribonucleic acid (DNA), 
thereby blocking DNA and ribonucleic acid 
(RNA) synthesis, while also interfering with 
topoisomerase II, leading to DNA breakage.11 
Doxorubicin has single-agent activity in high-
grade STS, and demonstrates a dose–response 
relationship, with doses lower than 60 mg/m2 
associated with inferior efficacy.12,13 Because of 
its toxicity profile however, most dose-intensive 
treatment schedules administer doxorubicin at 75 
mg/m2 for otherwise fit patients.14,15 Alkylating 
agents (e.g. ifosfamide) exert their antineoplastic 
effects by cross-linking strands of DNA.16 
Ifosfamide also has single-agent activity in STS,17 
and while they are not synergistic with anthracy-
clines, the two are often combined on the basis of 
improved response rates (RRs), progression-free 
survival (PFS) and palliation.13,14,18 In the first-
line setting, the combination of doxorubicin and 
ifosfamide (AI) achieves an RR up to 12–34%, 
dependent on subtypes, and disease control rates 
(DCRs) as high as 45–77%.14,15,18–21 There has 
been no definitive improvement in survival, how-
ever, with median OS still between 12 and 18 
months.13–15,18,22,23 This remains an area of active 
investigation, with one particular criticism being 
the lower doses of anthracyclines that may have 
confounded results in earlier studies.24

The phase III, multi-institutional EORTC 62012 
study was designed to address this continuing 
debate.14 The investigators compared doxoru-
bicin 75 mg/m2 in combination with ifosfamide 
10 g/m2 every 3 weeks for six cycles (AI) versus 
doxorubicin 75 mg/m2 every 3 weeks for six cycles 
in 455 patients with advanced or metastatic high-
grade STS. Patients younger than 60-years old 

with good performance status were eligible. The 
AI combination showed a higher RR, 26.5% ver-
sus 13.6% (p < 0.0006), respectively, compared 
with doxorubicin alone. AI significantly improved 
PFS from 4.6 months to 7.4 months [hazard 
ratio (HR) 0.74, p = 0.003], as well. However, 
there was no significant difference between AI 
and doxorubicin alone in terms of OS (14.3 
months versus 12.8 months, HR 0.83, p = 0.076). 
Despite its efficacy, there was higher toxicity 
when using the combination, with 18% of patients 
receiving AI and 3% of patients receiving doxoru-
bicin alone being unable to complete the planned 
six cycles of therapy due to adverse events. It 
should be noted the most common grade 3–4 tox-
icities when administering AI are related to bone 
marrow suppression,15,18,19 which highlights the 
need for regular blood-count monitoring, sup-
portive transfusions and growth factor support. 
Cardiotoxicity is a rare, but significant toxicity 
related to anthracyclines that occurs in a dose-
dependent manner, with increased risk of cardio-
myopathy occurring with cumulative doses above 
550 mg/m2.25–27

Retrospective studies indicate that young age and 
good performance status are good prognostic fac-
tors for survival,28,29 while a study by Van 
Glabbeke noted that young age may also be pre-
dictive of response to anthracycline-based ther-
apy.30 Meanwhile, higher histological grade is 
associated with better RR to chemotherapy but 
worse OS,28,30 likely reflecting that higher-grade 
tumors are more chemosensitive, but will also 
relapse and progress quickly. Other characteris-
tics, such as gender, location of primary tumor, 
location of metastases, and histology subtype 
have also been investigated as additional prognos-
tic and predictive factors, and warrant further 
investigation. Negative phase III trials of other 
anthracycline-based combinations (e.g. evofosfa-
mide, palifosfamide),10,31 indicate the need for 
better patient selection, and putative biomarkers 
will be crucial towards improving future clinical 
trials.

In consideration of these findings, our practice is 
to offer AI combination therapy in the front-line 
setting to select patients who are fit and highly 
appropriate based on burden of disease, particu-
larly with the goals of tumor shrinkage and 
resectability, or potentially life-threatening dis-
ease. We recommend the dose of doxorubicin 75 
mg/m2 (25 mg/m2 per day on days 1, 2, and 3) in 
combination with ifosfamide 7.5 g/m2 (2.5 g/m2 
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per day on days 1, 2 and 3) with granulocyte 
colony-stimulating factor, every 3 weeks for a 
maximum of six cycles. For total doses of doxo-
rubicin above 450 mg/m2, use of cardioprotect-
ants (e.g. desroxazone) and cardiac monitoring 
should be considered. For less fit patients, in 
whom the risks of toxicity outweigh the benefits 
of AI combination chemotherapy, alternatives 
may include single-agent doxorubicin, single-
agent ifosfamide, or liposomal doxorubicin 
(Doxil).32–34 As of November 2016, the US Food 
and Drug Administration (FDA) granted accel-
erated approval for olaratumab, an anti-PDGF 
R (as in anti-PDGFR) monoclonal antibody, for 
use in combination with anthracyclines; this will 
be discussed in further detail below.

It should be noted that other than the five pri-
mary STS subtypes mentioned above (UPS, 
LPS, LMS, SS, MPNST), there are a number of 
other less common subtypes which are anthracy-
cline resistant, and for which AI therapy is not 
recommended first line. For these subtypes, spe-
cific-histology-based treatment is discussed else-
where,35–40 and the reader is encouraged to also 
consider clinical trials and genomic profiling.

Second-line therapy and beyond: the basis for 
treating by histology subtypes
Beyond first-line therapy, we recommend that 
treatment be tailored to histology and molecular 
subtype, as well as patient characteristics. While a 
number of second-line regimens exist, any one 
agent has not proven superior across all subtypes. 
We will discuss these options, and provide our 

recommendations for when they should be appro-
priately sequenced (Table 1).

High-dose ifosfamide
For SS (i.e. harboring the t(x;18) or SYT (synap-
totagmin) / SSX (synovial sarcoma, X break-
point) translocation) patients, who are fit and 
have good performance status, our practice is to 
rechallenge with high-dose ifosfamide (HDI) as 
second-line therapy. As previously mentioned, 
ifosfamide has single-agent activity in front-line 
and relapsed STS, with RR ranging from 25% to 
50%. Ifosfamide demonstrates a dose–response 
relationship, particularly at doses from 5 to  
12 g/m2,41–44 while at doses above 16 g/m2, there 
are higher rates of toxicity without any further 
efficacy, and worse pharmacokinetics.4,43,45–47 
The primary toxicities associated with ifosfamide 
include nausea, vomiting, myelosuppression, 
hemorrhagic cystitis, nephrotoxicity (renal tubu-
lar acidosis, salt-wasting nephropathy), asthenia 
and encephalopathy.4,43,45–48 Ifosfamide can be 
administered as a prolonged infusion with mesna 
via portable pumps with good physicochemical 
stability.49 As such, a number of studies have 
explored the potential for HDI in salvaging 
refractory STS patients, especially those who pro-
gressed on prior anthracycline-based regimens, 
including AI combination therapy.

In a phase I dose-escalation study by Elias et al.,  
20 patients with refractory STS were treated  
with a 4-day continuous infusion of ifosfamide, 
with doses escalated from 8 up to 18 g/m2 total, 
and supportive mesna at an equivalent dose.50 

Table 1. Proposed treatment sequence for advanced or metastatic, high-grade soft tissue sarcoma.

Sarcoma subtype First line Second line Third line Fourth linee

UPS aAnthracycline-based regimen Gemcitabine + docetaxel Pazopanib  

LPS aAnthracycline-based regimen bTrabectedin Eribulin  

LMS aAnthracycline-based regimen cGemcitabine + docetaxel Trabectedin Pazopanib

SS aAnthracycline-based regimen dHigh-dose ifosfamide Pazopanib  

MPNST aAnthracycline-based regimen Pazopanib  

aAnthracycline-based regimens include: single-agent doxorubicin, doxorubicin and ifosfamide, doxorubicin and olaratumab, or liposomal 
doxorubicin.
bTrabectedin particularly effective for myxoid/round cell LPS.
cGemcitabine + docetaxel particularly effective for uterine LMS.
dHigh-dose ifosfamide only recommended for select patients with good performance status and preserved renal function.
e Clinical trials are recommended for eligible patients.
UPS, undifferentiated pleomorphic sarcoma; LPS, liposarcoma; LMS, leiomyosarcoma; SS, synovial sarcoma; MPNST, malignant peripheral nerve 
sheath tumor.
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Dose-limiting toxicities at the 18 g/m2 dose, includ-
ing renal insufficiency, myelosuppression, and 
mucositis, were all dose dependent, while severe 
CNS toxicity appeared even at lower doses. 
Among 20 patients, there were six partial responses 
(PRs) and one complete response (CR) for an 
overall RR of 35%. A number of additional phase 
II and retrospective studies further support the 
role of salvage HDI in STS, with RRs ranging from 
25% to 53.8% for pretreated patients.5,42,43,48,51,52 
However, many dose-dense regimens, such as 
6-day ifosfamide with 2 g/m2 per day every 3 weeks, 
or 4-day ifosfamide with 3 g/m2 per day every 3 
weeks, resulted in significant myelosuppression, 
sometimes as high as 40–75% grade 3–4, despite 
use of growth factor support.42,43,48,53

Investigators at the Royal Marsden Hospital, UK, 
explored a schedule of 14-day ifosfamide dosing, 
with 1 g/m2 per day, continuous infusion every 4 
weeks as first- or second-line therapy.54 There 
were seven patients with PR (20%), as well as  
10 patients with stable disease (SD) (29%) for a 
DCR of 49%. Although there was significant 
encephalopathy, including 34% among all grades 
and 17% grade 3–4, myelosuppression was sig-
nificantly improved with 46% all grades and only 
5.7% grade 3–4. Another retrospective analysis at 
the Royal Marsden Hospital rechallenged 67 
patients with STS using HDI, either following 
prior adjuvant AI or front-line palliative ifosfa-
mide-based regimens.55 This regimen showed 
significant activity, including responses in the 
second-line, third-line and fourth-line settings. 
Although the clinical benefit was greater for the 
SS subtype, responses were also seen in LPS and 
LMS, as well.

Despite its toxicities, as well as its costly and 
time-intensive scheduling, we endorse HDI as an 
appropriate second-line therapy for SS after fail-
ing anthracycline-based treatment. We recom-
mend a 14-day continuous dosing schedule with 
1 g/m2 per day, every 4 weeks with granulocyte 
colony-stimulating factor, as this regimen is well 
tolerated and has good efficacy as a salvage regi-
men. However, we advise this regimen be reserved 
to tertiary, academic centers with a high level of 
experience and appropriate support including 
adequate mesna administration. Additional pre-
caution should be taken with patients at risk of 
nephrotoxicity, such as those with pre-existing 
renal insufficiency or history of nephrectomy.45–47 
For the highly select and fit patient then, espe-
cially those who demonstrated prior sensitivity to 

ifosfamide, this regimen is an option for salvage 
therapy.

Further study is needed to elicit which subtypes 
may be eligible for HDI treatment. Although it is 
generally agreed that RRs are highest for the SS 
subtype,41 there is evidence that specific subtypes 
of LPS, including myxoid/round cell LPS and 
well-differentiated/dedifferentiated LPS, also 
respond to HDI.54,56 Meanwhile, LMS is poorly 
responsive to HDI and should not be considered 
in this setting.4,41,42

Gemcitabine and docetaxel
For the second-line treatment of STS with either 
UPS or LMS histology, we recommend salvage 
with the combination of gemcitabine and doc-
etaxel (GD). Gemcitabine is a nucleoside analog 
which inhibits DNA synthesis, and demonstrated 
single-agent activity in phase II studies of STS 
that progressed after anthracyclines or alkylators, 
including responses among UPS and angiosar-
coma histology.57,58 Phase II studies of gemcit-
abine in combination with either vinorelbine or 
dacarbazine, showed only limited efficacy for 
STS.59–61 Meanwhile, docetaxel is a taxane with 
microtubule-inhibiting activity, and also has sin-
gle-agent activity as second-line therapy.62,63 
Given that GD have different mechanisms of 
action from either anthracyclines or alkylating 
agents, as well as preclinical evidence of their syn-
ergy, there was rationale for combining these 
agents for treating STS.

The first phase II study of GD, conducted by 
Hensley et al., treated 34 patients with unresecta-
ble LMS, including 29 uterine LMS, as well as 18 
treatment-naïve patients, with gemcitabine 900 
mg/m2 on days 1 and 8, and docetaxel 100 mg/m2 
on day 8, with granulocyte colony-stimulating fac-
tor every 3 weeks.64 Among the 34 patients, there 
were 3 CR and 15 PR, for an overall response rate 
(ORR) of 53%. There were also seven patients 
with SD, resulting in a DCR of 73.5%. The regi-
men was well tolerated, with grade 3–4 neutrope-
nia occurring in 21% of patients and grade 3–4 
thrombocytopenia in 29%.

In the follow-up phase II, open-label SARC 002 
study, 122 STS patients with zero-to-three prior 
lines of chemotherapy, were randomized to either 
gemcitabine 1200 mg/m2 on days 1 and 8 every 3 
weeks alone or to GD. Histology subtypes 
included LMS, LPS, UPS, as well as others not 
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otherwise specified. Patients on both arms 
received a median of four cycles of therapy, and 
up to a maximum of eight cycles. The GD combi-
nation resulted in higher ORR (16% versus 8%), 
higher median PFS (6.2 months versus 3.2 
months), and higher median OS (17.9 months 
versus 11.5 months), compared with gemcitabine 
alone, across all subtypes, but with the best out-
comes primarily among LMS and UPS.6

The randomized, multicenter phase II 
TAXOGEM study compared GD with single-
agent gemcitabine for the second-line treatment 
of LMS.65 A total of 90 patients were stratified as 
uterine LMS or nonuterine LMS, and rand-
omized to gemcitabine or GD. For patients with 
uterine LMS, the ORR was 19% for gemcitabine 
alone versus 24% for GD; for nonuterine LMS, 
the ORRs were 14% and 5%, respectively. For 
uterine LMS, median PFS was 5.5 months versus 
4.7 months, and for nonuterine LMS, median 
PFS was 6.3 months and 3.8 months, respec-
tively. Given its efficacy and better tolerability, 
the authors also recommended that single-agent 
gemcitabine could be considered in second-line 
treatment for LMS.

In the multi-institutional European GeDDiS 
trial, GD failed to improve outcomes in the first-
line setting compared with anthracycline-based 
therapy.66 A total of 257 patients with previously 
untreated advanced or metastatic STS were rand-
omized 1:1 to receive doxorubicin 75 mg/m2 on 
day 1 every 3 weeks for six cycles versus GD for 
six cycles. Histology subtypes included uterine 
LMS (27%), SS (4%), UPS (12%) and other sar-
comas (56%). Median PFS, OS and RR trended 
in favor of doxorubicin compared with GD. In 
addition, the anthracycline arm was less toxic, 
thereby corroborating that GD should not dis-
place anthracycline as first-line therapy for STS.66 
In a retrospective analysis of 246 patients with 
metastatic UPS treated at Memorial Sloan 
Kettering, there was no statistically significant 
difference in median time to progression between 
anthracycline-based therapy or GD in the first-, 
second- or third-line setting. ORR was marginally 
higher for anthracycline-based regimens in the 
first line, 26% compared with 22% among 
GD-treated patients.67

As with HDI, responses to GD appear to be heav-
ily dependent on STS histology subtype. In par-
ticular, multiple studies demonstrate the efficacy 
of GD in LMS, with RR of 36–53% in the first-line 
setting and 24–27% in the second line.7,64,68,69 

Furthermore, it appears that uterine LMS is more 
sensitive to GD, compared with nonuterine 
LMS.6,64,70,71 Smaller studies suggest GD has 
activity in other less common STS subtypes includ-
ing angiosarcoma and epithelioid sarcoma.72,73

Given its modest efficacy as second-line therapy, 
our practice is to use the combination of gemcit-
abine, 900 mg/m2 on days 1 and 8, and docetaxel 
100 mg/m2 on day 8, with granulocyte colony-
stimulating factor every 3 weeks, as second-line 
therapy for refractory LMS and UPS. This regi-
men may be particularly effective for uterine 
LMS, as opposed to nonuterine LMS. Although 
practices vary by institution, many oncologists 
may prefer a lower dose of docetaxel 75mg/m2, 
based on the toxicity data from SARC002. For 
less robust patients, single-agent gemcitabine 
may also be considered an option.

Trabectedin
Trabectedin is FDA approved for second-line 
treatment and beyond for LPS and LMS. 
Trabectedin (ecteinascidin-743) is a synthetic 
compound derived from the Caribbean sea squirt, 
Ecteinascidia turbinata.74 Unlike other alkylating 
agents which target the DNA major groove, tra-
bectedin binds and alkylates the minor groove, 
bending towards the major groove, disrupting the 
late S-phase and G2 phase, and induces p-53-in-
dependent apoptosis.75–77 Other effects include 
modulating inflammation in the tumor microen-
vironment and inducing caspase-8-mediated 
apoptosis of tumor-associated macrophages, with 
reduced angiogenesis.78,79 Preclinical studies indi-
cate trabectedin is also effective in modulating the 
transcription of oncogenic fusion proteins, and 
thus may be particularly useful in treating translo-
cation-associated sarcomas.80,81

In a phase II study of 36 STS patients with up to 
two prior lines of therapy, the ORR for trabect-
edin was 8%, including one CR and two PRs, and 
two patients had minimal response (MR). All of 
the patients with objective responses had bulky 
disease and either LPS or LMS histology, includ-
ing one patient with myxoid/round cell LPS 
(MRC-LPS) who achieved CR.82 In a second, 
multi-institutional phase II study of 54 STS 
patients with at least one prior line of therapy, 
there was again a low ORR of 3.7%, with only 2 
PRs, as well as 4 MR and 2 SD. Outcomes did 
not vary with number of prior lines of therapy. 
The median PFS for all patients was 1.9 months, 
with 24% of patients progression free at 6 months. 
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Meanwhile, the median PFS for patients with 
either PR or MR was 8.5 months.83 A third phase 
II study treated 104 patients with refractory STS 
across eight European institutions; among 99 
evaluable patients there were 8 PRs and 45 SDs, 
for an ORR of 8% and DCR of 53.5%. Responses 
occurred in LMS, SS, LPS and UPS, with a 
median duration of response of 14 months. The 
median PFS for all patients was 3.8 months, with 
29% of patients progression free at 6 months.3 
Despite their low objective RR, these three phase 
II studies demonstrated trabectedin’s activity in 
refractory STS, and also emphasized the impor-
tance of PFS and SD as endpoints in second line 
and beyond.

A multi-institutional phase III study randomized 
518 LPS and LMS patients 2:1 to receive either 
trabectedin or dacarbazine.84 All patients had 
progressed after either one anthracycline-based 
combination or an anthracycline plus a second-
line regimen. Trabectedin significantly improved 
median PFS compared with dacarbazine (4.2 
months versus 1.5 months), with a 45% reduction 
in progression or death [hazard ratio (HR) 0.55, 
95% confidence interval (CI) 0.44–0.77, p < 
0.001]. At 6 months, 37% of patients treated with 
trabectedin were progression free, compared with 
14% of patients treated with dacarbazine. 
Although there was no difference in ORR (9.9% 
versus 6.9%, p = 0.33), DCR was higher in the 
trabectedin arm at 34% versus 19%, p < 0.001. It 
should be noted the greatest improvement in 
median PFS for trabectedin occurred in the sub-
group of MRC-LPS (5.6 months versus 1.5 
months). Trabectedin was well tolerated, with the 
most common grade 3–4 toxicities including 
myelosuppression and transient liver enzyme 
elevations.

Two studies evaluated trabectedin as first-line 
therapy for STS. Garcia-Carbonero et  al. con-
ducted a single-arm phase II study of trabectedin 
that resulted in one CR, five PRs and one MR, 
thus indicating the drug’s activity in the treat-
ment-naïve patient.85 However, a subsequent 
phase IIb that randomized treatment-naïve 
patients to doxorubicin versus trabectedin failed 
to show any superiority to using trabectedin.86

In contrast to HDI or GD, responses to trabect-
edin appear specific not only to L-sarcoma histol-
ogy subtypes, but also to molecular subtype. 
MRC-LPS has proven particularly sensitive to 
trabectedin, with retrospective studies showing 
ORR up to 50%, median PFS 14–17 months and 

6 month PFS 88%.87,88 In addition, MRC-LPS 
patients who relapse after prior response are sen-
sitive to rechallenge with trabectedin.89 This 
unexpectedly high antitumor activity has been 
attributed to the ability of trabectedin to modu-
late transcription of oncogenic fusion proteins, 
such as FUS-DDIT3, and thereby promote lipo-
blast differentiation.80 These findings led to fur-
ther interest in trabectedin as a treatment option 
for other translocation-associated STSs, but sub-
sequent studies showed little evidence of trabect-
edin having activity in SS, alveolar soft-part 
sarcoma or rhabdomyosarcoma.90,91

At our institution, we reserve trabectedin to the 
L-sarcomas, LMS and LPS, as second-line and 
beyond therapy, depending on patient character-
istics and ease of administration. Trabectedin is 
dosed at 1.5 mg/m2 once every 3 weeks.92,93 It 
should be noted that trabectedin requires a con-
tinuous 24-hour infusion, and central venous 
access is recommended to avoid painful phlebitis. 
Dose-limiting toxicities include myelosuppres-
sion and reversible elevation of transaminases; 
patients with moderate hepatic impairment 
require dose reduction, while patients with severe 
hepatic impairment are not eligible for treat-
ment.94 In addition to the L-sarcomas, trabect-
edin may have activity in other sarcomas, but this 
will require further investigation.95,96 A number of 
ongoing studies will assess the potential combina-
tion of trabectedin with other agents,97,98 as well 
as the possibility of DNA repair-based biomark-
ers to predict responsiveness to trabectedin.99,100

Pazopanib
Pazopanib is the only FDA approved oral agent 
for high grade STS, and we consider this an 
acceptable option for all STS subtypes after fail-
ing anthracycline, with the exception of LPS. 
Pazopanib is a multikinase tyrosine kinase inhibi-
tor that targets multiple receptors, including  
vascular endothelial growth factor (VEGF), 
platelet-derived growth factor (PDGFR), and 
c-KIT. VEGF is overexpressed on tissue and 
serum samples across multiple STS subtypes, 
including UPS and LMS. Moreover, high VEGF 
expression levels are correlated with higher histo-
logic grade, larger tumor size, higher stage, and 
worse prognosis,101–104 thus supporting this as a 
therapeutic target for STS.

The EORTC 62043 single-arm study treated 142 
advanced STS patients, who had up to two prior 
lines of chemotherapy, or who were ineligible for 

https://journals.sagepub.com/home/tam


GK In, JS Hu et al.

journals.sagepub.com/home/tam 539

chemotherapy, with pazopanib 800 mg orally 
once daily.105 Among four different histology 
cohorts, three of them, LMS, SS and other sarco-
mas reached the primary endpoint of PFS at 12 
weeks (PFR12w), while the LPS cohort was closed 
early, given it did not reach the interim analysis 
endpoint. Among LMS, SS and other sarcomas, 
the PFR12w rates were 44%, 49% and 39%, 
respectively. Among nine PRs, five occurred in 
patients with SS, and one with LMS, but there 
were no CRs.

The multi-institutional, phase III PALETTE 
study randomized 369 pretreated, metastatic STS 
patients from Europe, Asia, Australia and USA, 
2:1 to pazopanib versus placebo.106 Patients were 
allowed up to four prior lines of therapy, with 
99% receiving prior anthracyclines and 56% hav-
ing at least two prior lines of therapy. Histology 
subtypes included SS, LMS and other sarcomas; 
LPS was not eligible. Pazopanib improved median 
PFS; 4.6 months versus 1.6 months (HR 0.31, 
95% CI 0.24–0.40, p < 0.001), compared with 
placebo. Similar to the phase II study, rates of PR 
were very low (6% versus 0%), but rates of SD 
were higher for pazopanib, 67% versus 38%, com-
pared with placebo.106 There was no significant 
difference in median OS of 12.5 months for pazo-
panib, compared with 10.7 months for placebo 
(HR 0.86, 95% CI 0.67–1.1, p = 0.25). The most 
common toxicities were hypertension, fatigue, 
diarrhea, nausea, and weight loss, while rare but 
significant toxicities associated with pazopanib 
included thromboembolism (5%), pneumothorax 
(3%) and decreased left ventricular ejection frac-
tion (6.5%). Questionnaire-based, health-related 
quality of life (HRQoL) was not improved with 
pazopanib, although this did not correlate with 
significantly worse overall health status.107

In a retrospective analysis of both EORTC 62043 
and PALETTE, a total of 77 patients had long-
term responses with PFS >6 months and OS 
>18 months, including 12 patients who remained 
on treatment for more than 2 years.108 The inves-
tigators identified good performance status, low 
or intermediate histologic grade and normal 
hemoglobin as good prognostic factors. TP53 
mutations may predict response to pazopanib, 
but further investigation is need to validate this, 
as well as other biomarkers.109,110 Hypertension 
has not proven a reliable biomarker to predict 
response to pazopanib.111

In 2012, pazopanib was FDA approved for  
the treatment of STS progressed on prior 

anthracycline-based therapy, with the exception 
of LPS histology. Additional studies confirmed 
that pazopanib has antitumor efficacy in multiple 
subtypes including LMS, SS, UPS and MPNST, 
but has minimal activity for LPS.112–114 There are 
also limited data to suggest pazopanib has single-
agent activity in other less common subtypes, 
such as clear cell sarcoma, solitary fibrous tumor, 
and hemangioendothelioma.115–118

It is our practice to consider pazopanib in the  
second- or third-line setting for SS, UPS, or 
MPNST. For patients with LMS, we also offer 
pazopanib in the second, third, or even fourth 
line, depending on patient fitness and comorbidi-
ties. We do not use pazopanib for LPS, given its 
poor activity in studies thus far, although there is 
some interest in re-exploring the role of pazo-
panib for this subtype. At final analysis of EORTC 
62043, an additional two LPS patients did meet 
the primary endpoint, with a resultant PFR12w of 
26%, which would have met the study threshold 
for continuation, and based on these findings, 
pazopanib is approved for LPS in Japan.119 
Because pazopanib is the only oral agent approved 
for high-grade STS and relatively well tolerated, 
it is an excellent alternative to other salvage  
therapies for the less robust patient. An ongoing 
phase II trial will examine the role of first-line 
pazopanib as an alternative to doxorubicin for 
elderly patients [ClinicalTrials.gov identifier: 
NCT01861951].120 Additional studies are also 
underway to explore the potential combination of 
pazopanib with PIK3/mTOR inhibitors121 and 
epigenetic-modifying agents.122,123

Eribulin
Eribulin is FDA approved for patients with LPS 
that progressed after treatment with anthracy-
clines. Eribulin is a synthetic analog of halichon-
drin B, which was isolated from the marine 
sponge, Halichondria okadai, and the Axinella 
family of sponges.124,125 Unlike other microtubule 
inhibitors (e.g. taxanes, vinca alkaloids), eribulin 
has a unique mechanism of action that seques-
ters tubulin into nonfunctioning aggregates.126 
Eribulin also remodels the tumor vasculature, 
and reverses the epithelial–mesenchymal transi-
tion.127,128 Eribulin has activity in multiple solid 
tumors, and is FDA approved for breast cancer, 
in addition to LPS after prior anthracyclines.

In the phase II EORTC 62052 study, 128 STS 
patients, who progressed after one combination or 
up to two prior lines of therapy, were treated with 
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eribulin 1.4 mg/m2, on days 1 and 8 every 3 
weeks.129 There were four histology cohorts 
including SS, LMS, LPS, and other sarcomas. At 
the primary endpoint, 46.9% of LPS patients and 
31.6% of LMS patients were progression free at 
12 weeks, while among SS and other sarcomas, 
PFR12w was 21% and 19%, respectively. Despite 
the low ORR of 6% among LPS, there were 41% 
of patients with SD, for a DCR of 47%. The DCR 
for LMS, SS and other sarcomas were lower at 
32%, 21%, and 19%, respectively. Median PFS 
for LPS, LMS, SS and other sarcomas were 2.6 
months, 2.9 months, 2.6 months and 2.1 months, 
respectively. In a second phase II study, 51 
patients in Japan with refractory STS, who failed 
at least one line of therapy, were treated with 
eribulin. At the primary endpoint, patients with 
LPS or LMS histology had a PFR12w of 60% com-
pared with 31% in other sarcomas and 51% over-
all. Median PFS was 5.5 months for LPS or LMS, 
2.0 months for other sarcomas, and 4.1 months 
overall. Meanwhile, median OS was 17 months 
for LPS or LMS, compared with 7.6 months in 
other sarcomas and 13.2 months overall.130

In a phase III randomized study across 22 coun-
tries, 452 patients with intermediate/high-grade 
LPS or LMS who had up to two lines of prior 
therapy were randomized to eribulin versus dacar-
bazine.131 Eribulin significantly improved median 
OS; 13.5 months versus 11.5 months, compared 
with dacarbazine (HR 0.77, 95% CI 0.62–0.95; 
p = 0.0169). Although not appropriately pow-
ered for this study, the median OS benefit of 
eribulin compared with dacarbazine was greater 
for LPS (15.6 months versus 8.4 months), as 
compared with LMS (12.7 months versus 13.0 
months). Strikingly, there was no benefit on 
median PFS, which was 2.6 months (95% CI 
1.9–2.8) for eribulin and 2.6 months (95% CI 1.8–
2.7) for dacarbazine (HR 0.88; 95% CI 0.71–
1.09, p = 0.23). PFR12w, DCR and HRQoL were 
not significantly different between treatment 
arms. The most common grade 3–4 toxicities 
related to eribulin were neutropenia (35%) and 
leukopenia (10%), while the most common tox-
icities overall included fatigue, nausea, neuropa-
thy, elevated transaminases and alopecia.

It remains unclear why eribulin improved OS, but 
failed to improve the secondary endpoints of this 
study, including PFS, RR and DCR. Similar find-
ings occurred in a breast cancer study, where 
eribulin resulted in improved OS, but not PFS, 
compared with other cytotoxic therapy.132 The 

investigators hypothesize that these results are 
due to the manner in which eribulin impacts the 
tumor microenvironment and induces vascular 
remodeling.127,128

We recommend eribulin 1.4 mg/m2, on days 1 
and 8 every 3 weeks, as third-line and beyond 
therapy for LPS. Given the availability of other 
agents in this setting (e.g. trabectedin, pazopanib), 
we reserve this agent only for select, appropriately 
fit patients. Toxicities from eribulin include 
mucositis, myelosuppression, elevated transami-
nases, and sensory neuropathy.133 Nevertheless, 
eribulin is an important agent with a survival ben-
efit in LPS, and should always remain within the 
consideration of the sarcoma oncologist.

Olaratumab: a novel agent for first-line 
therapy
In November 2016, the FDA granted accelerated 
approval of olaratumab in combination with dox-
orubicin for the treatment of anthracycline-naïve 
STS, based on a phase Ib/II study. Unlike the 
other aforementioned agents, olaratumab com-
bined with doxorubicin was shown to improve 
OS in the anthracycline-naïve setting, and as 
such, may change the paradigm for management 
of advanced high-grade STS. Results from the 
confirmatory phase III study will be important 
towards the FDA granting full approval.

Olaratumab is a fully human recombinant IgG1 
monoclonal antibody that blocks PDGF-AA  
and PDGF-BB from binding PDGFRα.134 
PDGFRα overexpression has been found in a 
number of malignancies, including STS,135,136 
glioblastoma,137 ovarian carcinoma,138 hepato-
cellular carcinoma,139 and metastatic medullo-
blastoma.140 PDGFR amplification and activating 
mutations have also been found in gliomas137,141 
and gastrointestinal stromal tumor (GIST).142 
Furthermore, PDGFR-ligand binding has been 
found to play a significant role in stemness, senes-
cence and apoptosis in sarcoma, and is also asso-
ciated with metastatic progression.143 In xenograft 
models of LMS and glioblastoma, olaratumab 
demonstrated antitumor activity via modulation 
of the PDGFR pathway, as well as downstream 
inhibition of Akt and MAPK.134 Olaratumab also 
delayed progression and reduced bone metastases 
in a prostate cancer xenograft.144

In the first-in-human phase I study, a total of 19 
patients (none were STS) were treated with 
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olaratumab. The maximum tolerated dose 
(MTD) was not reached, and the recommended 
phase II dose was 16 mg/kg weekly and 20 mg/kg 
biweekly. Twelve patients (63.2%) had a best 
response of stable disease.145 In a phase I study of 
16 Japanese patients with advanced tumors 
treated with single-agent olaratumab, the best 
overall response was SD in seven patients 
(43.8%), including one patient with LMS origi-
nating in the inferior vena cava, with disease 
stabilization lasting 5.6 months.146

Olaratumab was given accelerated approval by 
the FDA in November 2016, based on a phase Ib/
II study among anthracycline-naïve, advanced 
STS.147 The phase II trial randomized patients to 
olaratumab 15 mg/kg on days 1 and 8 and doxo-
rubicin 75 m/gm2 on day 1, every 3 weeks, or 
doxorubicin alone at 75 mg/m2 on day 1, every 3 
weeks. After eight cycles, patients on the olara-
tumab arm were allowed to continue olaratumab 
alone, while patients on the doxorubicin alone 
arm could receive olaratumab monotherapy after 
progression. The median PFS was not signifi-
cantly improved with olaratumab at 6.6 months 
compared with 4.1 months for doxorubicin alone 
(HR 0.67, 95% CI 0.44–1.02, p = 0.0615). 
However, the median OS was 26.5 months with 
olaratumab, compared with 14.7 months in the 
doxorubicin alone arm, equivalent to an improve-
ment of 11.8 months (HR 0.46, 95% CI 0.30–
0.71, p = 0.0003). This benefit was seen 
regardless of STS subtype, PDGFR expression or 
number of lines of prior therapy. Best response 
with olaratumab included two patients with CR, 
but the ORR was not significantly different 
between both arms (18.2% versus 11.9%, p = 
0.34). Overall toxicities related to olaratumab 
included fatigue, alopecia, neuropathy and head-
ache, while grade 3–4 toxicities included neutro-
penia, mucositis, nausea, vomiting and diarrhea. 
The confirmatory phase III of olaratumab plus 
doxorubicin or doxorubicin alone has completed 
accrual and results are pending.

Olaratumab is the first novel agent that offers a 
change of strategy in the treatment of high-grade, 
advanced or metastatic, anthracycline-naïve STS. 
For patients with good performance status and 
STS histology who do not qualify for a clinical 
trial, the combination of doxorubicin on day 1 
with olaratumab on days 1 and 8, every 3 weeks 
for eight cycles, should be considered. This should 
be followed by continuation with olaratumab 
alone. We routinely premedicate patients with 

dexamethasone and diphenhydramine and also 
administer granulocyte-colony stimulating factor 
with each of the first eight cycles.

The potential role of immunotherapy in STS
Although there are no approved agents using 
immunotherapy in sarcoma, this remains an area 
of active investigation and warrants mention. The 
role of immunotherapy in sarcoma dates back  
as far as the 19th century, when William Coley 
described a patient with the regression of sarcoma 
following clearance of a bacterial infection.148 
More recently, the success of checkpoint inhibi-
tors in solid tumors has led to interest in their  
use for treating sarcoma. While it is generally 
agreed that immune recognition is critical to har-
nessing immunotherapy in cancer, the optimal 
strategy for immunotherapy in STS is yet to be 
determined.

Overall tumor mutational burden has been iden-
tified as a predictor of responsiveness to check-
point inhibition in multiple malignancies;149,150 
while skeptics argue that sarcoma, as a whole, has 
a low mutational burden, this is likely dependent 
on the unique biology of each subtype.151 Another 
strategy has been to identify immunogenic  
antigens with expression specific to sarcoma. 
Characteristic translocations or fusion proteins, 
such as those found in SS and MRC-LPS, may 
represent one antigen for immune recognition.152 
Another antigen is the cancer testis antigen, 
NY-ESO-1, which is expressed in up to 100% of 
MRC-LPS and 80% of SS, as well as other sub-
types, including uterine LMS and osteosar-
coma.153–155 This led to a pilot study of checkpoint 
inhibition using the anti-CTLA-4 (cytotoxic 
T-lymphocyte antigen-4) antibody ipilimumab, 3 
mg/kg every 3 weeks, in NY-ESO-1 expressing 
SS. Although no objective responses were seen 
among the six patients treated, ipilimumab was 
well tolerated with no serious adverse events 
reported.156 However, in another study using 
NY-ESO-1-engineered T cells, four out of six 
responses were noted in NY-ESO-1-expressing 
SS patients.157

Tumor-infiltrating lymphocytes (TILs) play an 
essential role in the immune response, and have 
been identified in multiple STS subtypes, includ-
ing LPS, LMS, SS and MPNST,158–160 although 
their presence alone does not result in tumor 
regression. Similar to CTLA-4, the programmed 
cell death 1 (PD-1) receptor and its programmed 
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death ligand-1 (PD-L1) is another checkpoint 
molecule which has been unlocked with success 
in melanoma and non-small cell lung cancer, 
amongst others. PD-L1 tumor expression ranges 
from 12% to 58%, with notable variation by sar-
coma subtype.160,161 In a retrospective study of 
82 STS patients, PD-L1 expression was seen in 
100% (7/7) patients with epithelioid sarcoma, 
53% (10/19) of SS, 38% (12/32) of rhabdomyo-
sarcoma, 33% (6/18) Ewing sarcoma, and 0% 
(0/6) mesenchymal chondrosarcoma.162 PD-1 
positivity and PD-L1 expression in STS have 
been correlated with poor prognosis, advanced 
stage, higher histologic grade, distant metasta-
sis, and degree of tumor differentiation and 
necrosis.161

SARC 028 is a multi-institutional, phase II  
study that treated 86 patients with STS and 
bone sarcoma with the anti-PD-1 therapy,  
pembrolizumab, 200 mg IV every 3 weeks 
[ClinicalTrials.gov identifier: NCT02301039]. 
Eligible subtypes included LMS, LPS, UPS and 
SS. Early interim analysis showed an 8-week 
ORR of 0% for LMS (0/10), LPS (0/9) and SS 
(0/10), but notably, an ORR of 22% (2/9) among 
UPS. PFS at 8 weeks (PFS8w) was 50%, 63%, 
30%, and 67%, for LMS, LPS, SS and UPS, 
respectively. Among 24 patients who were evalu-
ated at 24 weeks, one additional LPS and one 
additional UPS also achieved PR.163 Given the 
preliminary signal seen in dedifferentiated LPS 
and UPS, an expansion study is actively being 
planned.

A phase II, single-arm study assessed the impact 
of another anti-PD-1 therapy, nivolumab, in the 
treatment of uterine LMS with progression after 
at least one prior therapy.164 Among a total of 12 
women with pretreated metastatic uterine LMS 
who received nivolumab 3 mg/kg IV every 2 
weeks, the ORR was 0% (0/12).164 An ongoing 
phase II study [ClinicalTrials.gov identifier: 
NCT02500797] will randomize patients with 
advanced sarcoma to treatment with nivolumab 
with or without ipilimumab. Further investiga-
tion is needed to delineate the role of specific 
subsets of TILs in the STS microenvironment, 
and how to best utilize biomarkers such as 
NY-ESO-1 and PD-1/PD-L1, to select appropri-
ate patients for therapy. While investigation into 
the role of immunotherapy for STS continues, 
the use of any checkpoint inhibition for STS 
should only be conducted in the context of a clin-
ical trial at this time.

Conclusion
STS remains a major challenge to the medical 
oncologist, despite the advent of modern systemic 
treatment strategies, including targeted therapy 
and immunotherapy. Because STS is a relatively 
uncommon entity, small numbers of patients 
have limited the ability to conduct traditional 
clinical trials and advance drug development. 
Since 2007, three novel agents including trabect-
edin, pazopanib and eribulin have been approved 
for the treatment of high-grade STS in the sec-
ond-line setting after progression on anthracy-
clines. Trabectedin has efficacy specific for the 
L-sarcomas, LMS and LPS. Pazopanib is an 
orally active VEGF-targeting agent, but not 
approved for LPS. Meanwhile, eribulin is 
approved only for LPS, and improves OS in the 
post-anthracycline setting. In November 2016, 
the FDA granted accelerated approval for olara-
tumab, which improves OS in advanced and  
metastatic, anthracycline-naïve high-grade STS, 
in combination with doxorubicin.

Further advances will require an improved under-
standing of the biological differences between 
STS subtypes, specific biomarkers to elucidate 
responses to treatment, and mechanisms of resist-
ance. Innovative design of clinical trials is essential 
to maximize the impact of studies involving this 
rare disease entity and to understand the unique 
interplay between tumor, microenvironment and 
therapeutic interventions. The L-sarcoma trials 
using eribulin and trabectedin show proof of con-
cept that randomized studies for specific subtypes 
are feasible and should be further pursued. 
Towards this aim, correlative endpoints, such as 
PFS and DCR, with informative biomarkers, will 
be increasingly important, so that active agents 
can be identified and future studies will be better 
informed. In addition to discovering new thera-
peutic agents, current and future trials to evaluate 
novel combinations, including immunotherapy 
combinations, will add to the growing number of 
options for STS.
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