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Background: Breast cancer (BRCA) has surpassed lung cancer to become the malignant tumor with 
the highest incidence in female population. It occurs in malignant cells in breast tissue and is common 
worldwide. An increasing body of research indicates that M2 macrophages are critical to the occurrence and 
progression of BRCA. The aim of this work is to build a predictive model of genes related to invasion and 
migration of M2 macrophages, forecast the prognosis of patients with BRCA, and then evaluate the efficacy 
of some targeted treatments.
Methods: The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database supplied 
the GSE20685 dataset, whereas the expression profile a clinical details of BRCA patients were obtained 
from The Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) database. The genes linked to M2 
macrophages and the differentially elevated genes of invasion and migration were found in GSE20685. To 
explore the prognosis-related invasion and migration M2 macrophage genes, the TCGA-BRCA dataset 
was merged with Cox regression and least absolute shrinkage and selection operator (LASSO) regression. 
GSE58812 was utilized for external validation. After calculating each patient’s risk score, the prognostic 
model was examined by analyses of immune infiltration, medication sensitivity, mutation, and enrichment of 
the risk score.
Results: The risk score had a strong correlation with both several immune cells and popular anti-tumor 
medications. Additionally, it was discovered that the risk score was a separate prognostic factor for BRCA.
Conclusions: Based on invasion and migration-related M2 macrophage genes, we investigated and 
validated predictive characteristics in our study that may offer helpful insights into the progression and 
prognosis of BRCA.
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Introduction

In women, the prevalence of breast cancer (BRCA) can 
reach 24.2%, which has surpassed lung cancer to become the 
highest incidence of malignant tumor in female population, 
and is one of the top cancer-related deaths in female 
population (1,2). Unchecked multiplication of abnormal 
cells in the breast tissue is one of the characteristics of 
BRCA (3). As a complex and heterogeneous disease, 
treatments and clinical symptoms of BRCA vary widely. 
Understanding of the biology of BRCA has changed over 
time and more and more people have recognized that tumor 
progression and available treatment options are significantly 
influenced by the tumor microenvironment (TME) (4).

Tumor cells are surrounded by and interact with a variety 
of cellular and non-cellular elements which comprise the 
microenvironment of the tumor. It is significant for the 
development, invasion, metastasis, and genesis of tumors as 
well as the response to treatment (5). TME includes tumor-
associated macrophages (TAMs), endothelial cells, cancer-
associated fibroblasts (CAFs), immune cells, extracellular 
matrix (ECM), growth factors, cytokines, and other 
signaling molecules (6). The complex interactions among 

these components influence tumor behavior, angiogenesis, 
immune evasion, and treatment resistance. TME is a 
dynamic complex network that is constantly remodeled, 
leading to tumor heterogeneity and plasticity.

TME influences tumor occurrence and development, 
which creates an atmosphere that is conducive to the growth 
and survival of tumors (5). BRCA’s start, development, 
and metastasis depend on the TME (7). Making over half 
of the cells in the TME, TAMs are the most significant 
element because they can promote the invasion and 
migration of tumor cells (8). TAMs are often classified into 
two phenotypes, M1 and M2, and can display a variety of 
functional traits. Most people agree that M1 TAMs have 
the ability to stimulate inflammation and demonstrate 
an anti-tumor growth response, while M2 TAMs have 
anti-inflammatory properties and are associated with 
immunosuppression, promotion of tumor growth, invasion, 
migration, and enhancement of angiogenesis (9-11). Based 
on many indications that M2 TAMs may boost BRCA cells’ 
invasion and migration, we developed an M2 macrophage 
prognostic model concerning the BRCA cells’ invasion and 
migration.

In this work, we examined the molecular network 
mechanisms and prognostic models of M2 macrophages 
linked to BRCA invasion and migration using a variety of 
datasets. Clinical information and expression profiles of 
BRCA were obtained from a publicly accessible database 
[The Cancer Genome Atlas (TCGA)/Gene Expression 
Omnibus (GEO)]. Differential expression analysis was 
performed for genes associated with BRCA invasion and 
migration, and genes with differential expression were 
then chosen and an analysis of pathway enrichment was 
carried out. M2 macrophages in BRCA were quantified, 
and a prognostic model for M2 macrophages linked to 
invasion and migration was created using the CIBERSORT 
algorithm. Through univariate and multivariate studies, the 
model’s stability was confirmed using external datasets, and 
its significance to additional clinical features was evaluated. 
The risk score model, immunological traits, immune 
checkpoints, immune regulatory variables, and medication 
sensitivity were all analyzed to see whether there were any 
relationships. Furthermore, patients were divided into 
high- and low-risk groups and had their immunotherapy 
responses predicted. The main steps of this study are 
outlined in Figure 1. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-24-29/rc).

Highlight box

Key findings
•	 This study identified 14 prognosis-related genes by integrating 

differential genes associated with the invasion and metastasis of 
breast cancer (BRCA) and genes related to M2 macrophages. We 
constructed a prognosis model, which holds significant clinical 
value in assessing prognosis and making treatment decisions for 
BRCA.

What is known and what is new?
•	 Macrophages can promote the migration and invasion of BRCA 

cells, thereby facilitating the metastasis of BRCA. Therefore, it is 
crucial to find the targets through which they exert their effects.

•	 We have identified differentially expressed genes associated with 
BRCA invasion and migration as well as M2 macrophages, which 
may serve as potential targets in the process of tumor metastasis 
and invasion.

What is the implication, and what should change now?
•	 This research can assist doctors in conducting better clinical 

prognostic assessments, facilitate the development of novel 
immunotherapy strategies, and guide drug selection through the 
analysis of drug sensitivity.

•	 Further research is needed to elucidate the role of immune cells, 
especially macrophages, in BRCA.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-29/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-29/rc
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Methods

Data acquisition

The Series Matrix File of GSE20685 was retrieved from 
the National Center for Biotechnology Information 
(NCBI) GEO public database, and the annotation platform 
used was GPL570. For a total of 327 BRCA patients, an 
extensive expression profile and survival information were 
obtained. There were two groups: 190 people with lymph 
node metastases and 137 people with lymph node non-
metastasis. There were for distant metastases (n=319) or 
distant metastases (n=8). To find the differential genes 
between the two groups, the limma program was utilized; 
P value <0.05 & |log2fold change (FC)| >0.585 were the 
screening conditions for differential genes. The TCGA 
database (https://portal.gdc.cancer.gov/), the greatest source 
of information on cancer genes, includes details on DNA 
methylation, single nucleotide polymorphisms (SNPs), 
copy number variation, gene expression, and microRNA 
(miRNA) expression, among other things. It was possible 

to retrieve the original, processed BRCA messenger RNA 
(mRNA) expression data, which comprised the tumor 
group (n=1,118) and the control group (n=113). The Series 
Matrix File data file for GSE58812 was acquired, and 
the annotation platform utilized was GPL570. Complete 
expression profiles and survival data for 107 BRCA patient 
records were obtained for the external validation dataset 
used in the subsequent model formulation. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Function analysis of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG)

To completely investigate the functional connection between 
these genes and the variations, functional annotation 
of differential genes was done using the R program 
“ClusterProfiler”. The relevant functional categories were 
assessed using the GO and the KEGG. Pathways having P 
and q values less than 0.05 were considered to be significant 

Figure 1 The flowchart of the entire study. RNA-seq, RNA sequencing; BRCA, breast cancer; diff, differential; DEGs, differentially 
expressed genes; GEO, Gene Expression Omnibus; scRNA, single-cell RNA; SNP, single nucleotide polymorphism; TMB, tumor mutation 
burden; MSI, microsatellite instability; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis.
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GO and KEGG enrichment pathways.

Model construction and prognosis

After the prognostic-related genes were chosen, the 
prognostic-related model was further built using the 
least absolute shrinkage and selection operator (LASSO) 
regression. The expression values of each individual gene 
were taken into consideration while creating a risk score 
algorithm for each patient. The expected regression 
coefficient from the LASSO regression analysis was then 
used to weigh this formula. Using the risk scoring system 
as a guide, the patients were divided into high- and low-
risk groups, with the median risk score being the divisional 
point. The study used Kaplan-Meier and log-rank statistical 
approaches to assess and compare the variations in survival 
between the two groups. This study used both stratified 
and LASSO regression analysis to examine how risk score 
affects patient prognosis prediction. The receiver operating 
characteristic (ROC) curve was used to assess the model’s 
prediction accuracy.

Analysis of immune cell infiltration

A popular technique for assessing immune cell types 
in a microenvironment is the CIBERSORT approach. 
The support vector regression method was used to 
deconvolutionally analyze the expression matrix of the 
immune cell subtypes. Twenty-two phenotypes of human 
immune cells, including T cells, B cells, plasma cells, 
and subsets of myeloid cells, were identified by its 547 
biomarkers. The CIBERSORT algorithm was used in this 
study to evaluate patient data and calculate the relative 
abundance of 22 distinct immune infiltrating cell types. The 
content of immune cells and gene expression were then 
linked.

Drug sensitivity analysis

We utilized a genomes database based on the most common 
drug (the GDSC cancer drugs sensitivity genomics 
database; https://www.cancerrxgene.org/) in conjunction 
with the R software package “pRRophetic” to forecast 
each tumor sample’s reaction to chemotherapy. Using the 
genomics of drug sensitivity in cancer (GDSC) training 
set, ten cross-validations were conducted to confirm 
the accuracy of the regression and prediction of the half 
maximal inhibitory concentration (IC50) estimations for each 

specific chemotherapeutic agent. Every setting, including 
the elimination of batch effects and the “combat” option for 
averaging repetitive gene expression, was left to its default 
state.

Gene set variation analysis (GSVA)

To evaluate transcriptome gene set enrichment, GSVA, 
an unsupervised, nonparametric method, was employed. 
GSVA translated gene-level alterations into pathway-level 
modifications using a comprehensive grading system for the 
gene set of interest. The biological function of the sample 
was then evaluated. Gene sets were obtained for this study 
from the Molecular Signatures database (v7.0 version). Each 
gene set was thoroughly assessed using the GSVA algorithm 
to determine potential biological functional variations in 
different samples.

Gene set enrichment analysis (GSEA)

After the patients were categorized into high- and low-risk 
groups by the model, differences in their signaling pathways 
were further investigated using GSEA. As background gene 
sets, annotated gene sets of subtype pathways were obtained 
from the MsigDB database. Differential expression analysis 
was used to examine pathways across subtypes, and gene 
sets that showed substantial enrichment (adjusted P value 
less than 0.05) were ranked according to consistency scores. 
Exploring the close relationship between tumor type and 
biological importance is a common use of GSEA analysis.

Nomogram model construction

Regression analysis is the foundation of the nomogram. It is 
predicated on the model’s risk score and clinical symptoms. 
To illustrate how the variables in the prediction model 
related to one another, scaled line segments were drawn on 
the same plane in a certain scale. A multi-factor regression 
model was created, and the predicted value was obtained by 
adding the total score of all the influencing factors to the 
magnitude of the regression coefficients, which indicated 
the extent to which each model impact factor affected the 
end variable.

Regulatory network analysis of key genes

The R package “RcisTarget” was applied in this research 
to forecast transcription factors. RcisTarget bases all of 

https://www.cancerrxgene.org/
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its computations on motif. The total number of motifs in 
the database determines the normalized enrichment score 
(NES) for motifs. We deduced additional annotated files 
based on gene sequences and motif similarities, in addition 
to the themes the original data annotated. The area under 
the curve (AUC) for each pair of motif-motif pairs is the 
first step in measuring the overexpression of each motif on 
the gene set. The recovery curve of the sequence is used 
to ascertain this based on the gene set. The sequence’s 
recovery curve is utilized to ascertain this based on the gene 
set. based on the gene set’s overall motifs’ AUC distribution, 
the NES for each motif was computed. For the Gene-
motif rankings database, we utilize rcistarge.hg19.motifdb.
cisbpont.500bp database.

Statistical analysis

The Kaplan-Meier method was utilized to produce survival 
curves, and log-rank was utilized as a comparison. For 
multivariate analysis, the Cox proportional risk model was 
employed. For all statistical studies, R language version 4.2 
was utilized, with P<0.05 denoting statistical significance.

Results

Differential expression analysis related to invasion and 
migration of BRCA

The annotation platform was GPL570 and GSE20685’s 
Series Matrix File was acquired via the NCBI GEO public 
database. A comprehensive expression profile and survival 
data were retrieved for a total of 327 BRCA individuals. 
There were two groups: lymph node metastasis (n=190) and 
lymph node non-metastasis (n=137). The limma program 
was used to identify the genes that differed between the 
two groups (n=319) and the distant metastasis group (n=8), 
respectively, with P value <0.05 & |log2FC| >0.585. The 
non-metastatic lymph node group and the lymph node 
metastasis group were examined for a total of 38 differential 
genes, of which 28 were up-regulated. Ten genes that were 
down-regulated were identified (Figure 2A,2B); 548 up-
regulated and 503 down-regulated genes were among the 
1,051 differential genes that were screened in both the 
distant transfer group and the non-distant transfer group 
(Figure 2C,2D).

Functional enrichment of differential genes and acquisition 
of prognostic-related genes

There were 1,002 differential genes obtained by combining 
the two groups of differential genes. They were then 
examined using GO and KEGG enrichment analysis. The 
regulation of T cell activation pathways and mononuclear 
cell differentiation were the two primary areas of 
enrichment for differential genes, according to the GO 
data (Figure 2E). According to KEGG data, the majority 
of the enriched pathways were associated with Th17 cell 
development and cytokine-cytokine receptor interaction 
(Figure 2F). We used the CIBERSORT algorithm to 
quantify M2 macrophages and looked into the co-expression 
network of these macrophages according to the expression 
profiles of BRCA patients. There was a 0.3 correlation 
coefficient and a 0.05 P value.

It was discovered that the expression of macrophages M2 
was substantially correlated with 293 different genes. Then, 
we intersected 1,002 differential genes with these 293 genes to 
obtain 85 intersection genes in total (Figure 3A). We employed 
the TCGA database to gather clinical data on BRCA 
patients and Cox univariate regression to screen prognostic 
genes in BRCA in order to further find prognostic genes in 
intersection genes. Based on Cox univariate regression (P 
value <0.05), 37 prognostic genes were chosen, according to 
the results (Figure 3B).

Prognostic model was constructed by prognostic-related 
genes

We gathered clinical data from patients with BRCA and used 
the LASSO regression feature selection technique to filter 
out the genes that are indicative of BRCA (Figure 3C-3E). 
This made it possible for us to pinpoint the crucial genes in 
the prognostic gene list in more detail.

The patients were divided into training and validation 
sets at random in a 4:1 ratio. Following LASSO regression 
analysis, for each sample, the ideal risk score value was 
found in order to facilitate additional analysis [risk score 
= CXCL9 × (−0.231546665) + IL2RG × (−0.222383446) 
+ CCL19 × (−0.157240118) + PBX4 × (−0.135133863) + 
CLEC2D × (−0.119494616) + MCOLN2 × (−0.10589281) 
+ PPP1R16B × (−0.103951182) + GZMM × (−0.025098373) 
+ CAMK4 × (−0.022468457) + MIAT × (−0.020804683) + 
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Figure 2 Identification and enrichment analysis of differentially expressed genes in BRCA invasion and metastasis. (A,C) Genes having 
differential expression are represented on a volcano map, where pink indicates up-regulated differential expression and blue indicates down-
regulated differential expression. (B,D) Differential gene heat map, blue for high expression, pink for low expression. (E,F) ClusterProfiler-
based GO-KEGG enrichment analysis. FC, fold change; BRCA, breast cancer; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes.
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Figure 3 Identification of prognostic genes and construction of prognostic models. (A) Wayne diagram of Diff and Cor genes. (B) Forest 
map of prognostic-related genes. (C) To find the lowest lambda value, ten cross-validations were performed to select the tuning parameters 
for the LASSO model. (D) LASSO coefficient distribution of prognostic genes and gene combination at 223 minimum lambda value. 
(E) Coefficient of LASSO gene. (F,G) Survival curve of TCGA model. (H) Model ROC curve of the TCGA training dataset [1-2-3]. (I) 
Model ROC curve of the TCGA testing dataset [1-2-3]. Diff, differential genes related to BRCA metastasis; BRCA, breast cancer; Cor, 
the expression of macrophages M2; CI, confidence interval; HR, hazard ratio; TCGA, The Cancer Genome Atlas; AUC, area under the 
curve; TPR, true positive rate; FPR, false positive rate; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating 
characteristic.

CD27 × 0.078044303 + ADORA3 × 0.151317409 + CCR7 
× 0.22096329 + MAP4K1 × 0.414214868]. Based on risk 
scores, patients were categorized into high- and low-risk 
groups, and Kaplan-Meier curve analysis was performed. 
In comparison to the low-risk group, the high-risk group’s 
OS was much lower in both the training and test sets  
(Figure 3F,3G). Furthermore, the training and test sets’ 
ROC curve findings showed that the model had a high 

validation efficiency (Figure 3H,3I).

External dataset verified the robustness of the prognostic 
model

The GEO database (GSE58812) provided the survival 
data for BRCA patients, which were downloaded. The 
model was then used to forecast the BRCA patients’ clinical 
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categorization in the GEO database. Using Kaplan-Meier 
analysis, the survival difference between the two groups 
was assessed in order to assess the stability of the prediction 
model. The findings demonstrated that the overall survival 
(OS) of the high-risk group in the GEO external validation 
set was considerably lower than that of the low-risk group 
(Figure 4A). Using external datasets, ROC curve analysis 
was conducted on the model to confirm its correctness. The 
findings demonstrated the model’s strong predictive efficacy 
in forecasting patients’ prognoses (Figure 4B).

Relationship between prognostic model and immune 
microenvironment

After quantifying the immune cell composition using 
CIBERSORT, the bar plot of immune cell abundance is 
shown in Figure S1. By examining the association between 
risk scores and tumor immune infiltration percentages 
of immune cells in high- and low-risk groups, we further 
investigated the potential biological mechanisms through 
which risk scores promote cancer progression (Figure 5A). 
The results of this study, which also assessed the immune 
cell differences between the high- and low-risk groups, 
demonstrated a substantial decrease in B cells, T cells 
with CD8, and T cells with follicular helper within the 
high-risk categories. The number of resting mast cells 
and M2 macrophages increased noticeably (Figure 5B). 
Furthermore, we looked into the connection between the 
risk score and neutrophils, macrophages, and other cells. 

The outcome demonstrated a strong favorable correlation 
with M2 macrophages. It showed a significant inverse 
relationship between follicular helper cells and CD4 
memory-activated T cells (Figure 5C). The chemokines, 
immunosuppressants, immunostimulators, immunological 
receptors, and other immune-related genes that differ in 
expression between high- and low-risk groups are displayed 
in Figure 6 of his study, which involved additional analysis 
of immunoregulatory genes.

Investigating the model’s clinical prognostic value through 
a multi-omics research

The combined benefit of early BRCA surgery and 
chemotherapy treatment is evident. To ascertain each tumor 
sample’s sensitivity to chemotherapy, our work utilized 
the R packet “pRRophetic” to further assess the risk score 
and sensitivity of popular chemotherapy medicines based 
on the drug sensitivity data of the GDSC database. The 
findings demonstrated a significantly correlation between 
the risk score and the patient’s sensitivity to CCT007093, 
AP.24534, CEP.701, ABT.888, and roscovitine (Figure 7A). 
Next, we explore the possible molecular processes by which 
risk scores influence tumor progression by examining the 
particular signaling pathways that are part of the high-low 
risk correlation model.

According to the GSVA results, the two groups’ distinct 
pathways were primarily enriched in the PI3K AKT 
MTOR SIGNALING and FATTY ACID METABOLISM 

Figure 4 External validation of the prognostic model. (A,B) Survival curve of GEO model. GEO, Gene Expression Omnibus; AUC, area 
under the curve; TPR, true positive rate; FPR, false positive rate.
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Figure 5 Analysis of immune infiltration. (A) The proportion of 22 immune cell subgroups in high- and low-risk patients. (B) The 
proportion of immune cells that differs between patients at high- and low-risk; high-risk individuals are shown in blue, while low-risk 
patients are shown in yellow. (C) The relationship between immune cell concentration and high- and low-risk patients. *, P<0.05; **, P<0.01; 
***, P<0.001; ns, not significant. LRisk, low-risk; HRisk, high-risk; NK, natural killer.

pathways (Figure 7B). The JAK-STAT signaling pathway, 
miRNAs in cancer, and apoptosis were the pathways 
involved, according to the GSEA data (Figure 7C).  
Figure 7D illustrates the network of molecular interactions 
that exist between the pathways. The group with high 
risk, which did not respond well to high-expression 
immunotherapy, was subsequently predicted to be sensitive 
to anti-tumor immunotherapy (Figure 7E).

Risk and independent prognosis analysis

The samples were divided into groups according to their 
level of risk using the median risk score, and a column graph 
representing the regression analysis’s findings was displayed. 
The results of the logistic regression analysis indicated 
that risk score significantly influenced how each sample’s 
nomogram prediction model was scored (Figure 8A). In 
parallel, we performed a prediction analysis (Figure 8B-8D) 
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Figure 6 Relationship between risk models and immune factors. (A,B) Differences in immunosuppressive factors, immunostimulators, 
chemokine receptors, and immunoregulators between groups at high and low risk. (C,D) The KEGG signaling pathway involved in the risk 
score, and the pathway regulation and genes involved. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. LRisk, low-risk; HRisk, high-
risk; KEGG, Kyoto Encyclopedia of Genes and Genomes.

for BRCA at 1 and 3 years, respectively, and discovered that 
the outcomes of the predictions agreed with one another. 
Furthermore, risk score was an independent predictor of 
prognosis for patients with BRCA, according to univariate 
and multivariate analyses (Figure 9A,9B).

Correlation analysis between morbidity risk and multiple 
clinical indicators

The risk score corresponding to the sample was split into 
several groups based on the size of the clinical indicator 
value, and the outcomes of each clinical indicator group were 
shown as a boxplot (Figure 10). Furthermore, the rank sum 
test revealed that the distribution of risk score values for the 
clinical variables of age, gender, fustat, stage, T, N, and M 
differed significantly between the groups (P value <0.05). It 
demonstrates how well the risk score derived from modeling 
analysis can be used to the categorization of BRCA samples.

Motif analysis

When we applied model genes to the gene sets analyzed 

in this study, we discovered that shared regulatory 
mechanisms, like several transcription factors, were in 
place. For this reason, cumulative recovery curves were 
employed to improve these transcription factors (Figure 11). 
The analysis’s findings indicated that cisbp M2952 is the 
MOTIF annotation. This motif was found to be enriched in 
three model genes. 5.58 was the NES. We displayed every 
major gene’s enriched motif together with its matching 
transcription factor.

The recovery curve of the current motif is shown in 
blue, the mean value ± standard deviation (SD) is shown in 
green, and the mean value of the recovery curve for each of 
the four motifs with the highest AUC is shown in red. The 
largest separation (mean ± SD) between the green curve and 
the current motif.

Discussion

Several different molecular processes are participating in the 
invasion and migration of BRCA. Matrix metalloproteinases 
(MMPs), for instance, are secreted by BRCA cells and 
possess the capacity to degrade ECM, encourage the 
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Figure 7 Differential molecular mechanisms of drug sensitivity/pathway enrichment/immune therapy analysis in high- and low-risk 
groups. (A) Sensitivity analysis and risk assessment of popular chemotherapy medications. (B) Signaling pathways involved in risk scores. 
Green represents signaling pathways involved in low-expression genes, blue represents signaling pathways involved in the over-expression 
of genes and the background gene set is hallmark. (C,D) The KEGG signaling pathway involved in risk scoring, as well as the regulation 
of the pathway and the genes involved. (E) The TIDE database predicts the response of immunotherapy in patients with high- and low-
risk groups. LRisk, low-risk; HRisk, high-risk; GSVA, gene set variation analysis; HExp, high-expression; LExp, low-expression; TIDE, 
Tumor Immune Dysfunction and Exclusion; BF, Bayes factor; CI, confidence interval; ETI, estimated time of infiltration; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.

migration and invasion of additional cells (12-14). BRCA 
cells obtain sufficient nutrients to support their growth 
and migration by inducing new angiogenesis and releasing 
vascular endothelial growth factor (VEGF) (15). And TAMs 
can interact with BRCA cells to promote their invasion 
and migration (16). BRCA cells can exhibit invasion and 
migration by entering distant organs through the lymphatic 
system or blood circulation, forming circulating tumor cells 
(CTCs) (17).

In BRCA, the most prevalent immune cell components 

seen in tumor tissues are TAMs, and their number 
can reach 50% of the total number of cells in tumor  
tissues (18). TAMs and BRCA cells have a variety of 
intricate interactions. In the first place, TAMs have 
the potential to accelerate tumor growth, lymphatic 
angiogenesis, invasion and metastasis by releasing a 
variety of cytokines such as VEGF and regulating ECM 
decomposition enzymes (19,20). In the second place, BRCA 
cells can also recruit and activate TAMs by secreting various 
factors and chemicals (21).
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Figure 8 Construction of LASSO diagram models. (A) Risk model correlation nomogram. (B) Forecast analysis of OS conditions for 1- 
and 3-year periods. (C,D) DCA curve and ROC curve. T, tumor; M, metastasis; N, node; OS, overall survival; AUC, area under the curve; 
LASSO, least absolute shrinkage and selection operator; DCA, decision curve analysis; ROC, receiver operating characteristic.

Figure 9 Univariate/multivariate analysis of risk scores contributing to prognosis. (A,B) In both univariate and multivariate Cox regression 
analyses, the risk score of patients with BRCA was a statistically significant predictor. T, tumor; M, metastasis; N, node; CI, confidence 
interval; BRCA, breast cancer.
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Figure 10 Relationship between risk scores and clinical symptoms. (A-G) Clinical correlation analysis of risk scores in BRCA data: (A) age, 
(B) fustat, (C) gender, (D) M, (E) N, (F) stage, and (G) T. Clinical correlation analysis is mainly to analyze the correlation between genes and 
patients’ survival time, survival state, and tumor TNM. M, metastasis; N, node; T, tumor; BRCA, breast cancer; TNM, tumor-node-metastasis.

A deeper understanding of this interaction between 
TAMs and BRCA cells is important for revealing the 
mechanisms of BRCA invasion and migration and for 
developing therapeutic strategies that target these processes. 
To gain a deeper comprehension of the relationship between 
M2 TAMs and BRCA cells, we built an invasion, migration, 
and prognosis model. We also demonstrated how crucial it 
is to build a prognosis model for BRCA treatment.

When immune cells are present and functioning in tumor 
tissue, it is referred to as immunoinfiltration. The investigation 
of immune infiltration in BRCA is gaining importance. The 
microenvironment of BRCA tumors contains several immune 
cell types, such as natural killer (NK) cells, dendritic cells, 
T cells, B cells, and macrophages (22). By identifying and 
eliminating tumor cells, triggering immunological reactions, 

and controlling inflammatory reactions, these immune cells 
can influence the development and growth of tumors (23).

Research has demonstrated that BRCA patients who 
have immune infiltration have a better prognosis. Higher 
levels of immune cell infiltration are often associated with 
lower recurrence rates, longer survival, and better treatment 
response (24).

Overall, immune infiltration contributes significantly 
to BRCA. Establishing a model of immune invasion is 
therefore crucial in order to better assess prognosis and 
uncover the connection between immune invasion and 
BRCA.

CCL19 and CXCL9 have been reported to be potential 
prognostic biomarkers of BRCA (25,26). In BRCA, CXCL9 
can migrate immune cells to BRCA tissues. Through the 
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chemotaxis of immune cells like T cells and NK cells. At 
the same time, CXCL9 has a role in controlling the BRCA 
TME, impacting how surrounding tissues and cells interact 
with tumor cells. Petty et al.’s study showed that CXCL9 is 
a ligand of CXCR3 and important for the recruitment of 
CD8-positive T cells (27). The human IL2RG chain gene, 
or IL2RG is an essential factor in the onset and progression 
of BRCA. IL2RG may influence the development of BRCA 
by affecting the function of immune cells and immune 
regulatory pathways, as it is associated with immune system 
function and regulation (28). The expression level of IL2RG 
in BRCA tissue may be associated with the malignancy and 
prognosis of the tumor (29). CCR7 is a chemokine receptor 
that is often expressed at elevated levels in BRCA tissues. 
The migration of BRCA cells to the distant location is 
considered to be one of the most significant stages in their 
metastasis, which is facilitated by CCR7’s binding to its 
ligand CCL21 (30). The activation of CCR7 can also attract 
immune cells (such as dendritic cells and T lymphocytes) to 

migrate to BRCA tissues and enhance anti-tumor immune 
response, and tumor cells can also use the signaling pathway 
of CCR7 to evade immune surveillance and destruction, 
thus promoting tumor growth and metastasis (31). 
Therefore, tumor metastasis and the immune system are 
two areas in which CCR7 is crucial. CCR7 has also been 
reported to serve as potential prognostic biomarkers of 
gastric cancer respectively (32). Mitogen-activated protein 
kinase 1, or MAP4K1, is a type of kinase that is a part of 
the MAPK signaling pathway (33). MAP4K1 regulates cell 
growth by activating cell cycle regulators and apoptosis-
inhibiting pathways. Secondly, MAP4K1 contributes to the 
growth of BRCA by limiting the capacity of BRCA cells 
to migrate and invade (34). In addition, MAP4K1 is also 
associated with the stimulation of intracellular pathways, 
including the epithelial-mesenchymal transition and the 
Wnt/beta-catenin pathway (35). MAP4K1 has also been 
reported to serve as potential prognostic biomarkers of 
acute myeloid leukemia (AML) respectively (36).

Figure 11 Transcriptional regulatory networks of key genes. SD, standard deviation.
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BRCA is thought to be caused and progressed by the 
PI3K/AKT/mTOR signaling pathway, the p53 signaling 
pathway, and fatty acid metabolism. Energy balance and cell 
survival are significantly impacted by fatty acid metabolism 
in the course of BRCA development. Increased synthesis 
and buildup of generated unsaturated (like oleic acid) and 
saturated (like stearic acid) fatty acids might result from 
abnormal fatty acid metabolism. It has been discovered 
that these metabolites encourage the development and 
invasion of BRCA cells (37). The regulation of metabolism, 
cell growth, and survival are all significantly impacted by 
the PI3K/AKT/mTOR signaling pathway. The signaling 
pathway PI3K/AKT/mTOR is frequently aberrantly 
activated in BRCA and can stimulate the growth, invasion, 
and angiogenesis of tumor cells (38). The tumor suppressor 
gene p53 is significant because it regulates DNA damage 
and aberrant cell growth. In BRCA, mutations and loss 
of function of p53 are very common, disrupting normal 
cell cycle regulation and DNA repair processes. This may 
lead to the disturbance of BRCA cell cycle, enhanced 
anti-apoptotic ability, infinite proliferation potential and 
invasion and metastasis (39). The development and response 
to treatment of BRCA may be significantly influenced by 
abnormal fatty acid metabolism, activation of the PI3K/
AKT/mTOR signaling network, and the p53 signaling 
system. These pathways regulate crucial processes like 
invasion, proliferation, anti-apoptosis, and metabolism of 
BRCA cells.

In order to confirm the prognostic model’s accuracy, 
ROC curve analysis was performed on external datasets. 
The external GEO validation set demonstrated that the 
high-risk group’s OS was much lower than the low-risk 
group’s, and the results showed that the model had a strong 
precision in forecasting the prognosis of patients. The 
prediction model for different survival time periods in the 
verification set had average accuracy and diagnostic value, 
as seen in the training set where the AUC values in the 
1-, 2-, and 3-year survival times were 0.71, 0.63, and 0.61 
respectively, and were generally 0.6, which was greater than 
0.5 and less than 1. The AUC values in the verification 
set for the 1-, 2-, and 3-year survival times were 0.69, 0.8, 
and 0.76, respectively. These values were generally 0.7, 
and since they were greater than 0.5 and less than 1, they 
suggest that the prediction model performs well in the 
training set’s various survival times. They also suggested 
that the diagnostic value of the model was good. It is 
discovered that although the prediction model’s accuracy 
was generally higher, it performed better in the verification 

training set than it did in the training set.
We constructed a drug sensitivity model for several 

common antitumor drugs. The higher the IC50, the more 
resistant the model, the high-risk group had a significantly 
higher rate of medicine resistance than the low-risk group, 
and the prognosis was not good. Here are the studies of 
these common antitumor drugs in BRCA. Roscovitine 
is a protein kinase inhibitor, which can cause cell  
apoptosis and prevent BRCA cells from proliferating and 
surviving (40). By meddling with the cell cycle’s regulation, 
it prevents the growth and multiplication of cancerous 
cells. Furthermore, by influencing the activity of MMPs 
and cell adhesion, roscovitine can lessen the propensity 
of BRCA to metastasize and inhibit the BRCA cells’ 
ability to invade and migrate (41). CCT007093 is a dual 
inhibitor of PI3K and mTOR. CCT007093 can decrease 
the cell cycle process, trigger cell apoptosis, and inhibit 
the PI3K/AKT/mTOR pathway to prevent BRCA cells 
from proliferating and surviving. Second, CCT007093 
can lessen the propensity for tumor metastasis and block 
the capacity of BRCA cells to invade and migrate (42,43). 
AS601245 has the ability to suppress MAP4K1 activity, stop 
the cell cycle from progressing, prevent BRCA cells from 
proliferating and invading other cells, and lower the chance 
of tumor metastasis (44,45). Tyrosine kinase inhibitor 
AP24534 (ponatinib) impacts the invasion, metastasis, and 
proliferation of BRCA cells by interfering with the signaling 
pathways of VEGFR, PDGFR, and SRC kinase family 
(46-48). A multi-kinase inhibitor, CEP701 (also called 
lestaurtinib) mainly targets protein kinases such FLT3, 
JAK2, and TrkA. Through the inhibition of FLT3 receptor 
kinase activity, CEP701 may decrease the capacity of BRCA 
cells to proliferate and invade, consequently disrupting 
associated signaling pathways like JAK/STAT, PI3K/AKT, 
and RAS/RAF/MEK/ERK (49). ABT-888 (veliparib) is a 
PARP inhibitor, and studies on BRCA mostly concentrate 
on its use in patients with triple-negative, HER2-positive, 
and BRCA gene-mutant forms of the disease (50,51). DNA 
repair mechanisms are disrupted by mutations in the BRCA 
gene, making tumor cells more sensitive to PARP inhibitors. 
ABT-888 interferes with the DNA repair process by 
inhibiting PARP enzyme activity, causing the DNA damage 
of tumor cells to be unable to be repaired and resulting in 
cell death (52,53).

In summary, we have constructed and validated a 
prognostic signature containing 14 prognostic-related 
invasion and migration as well as M2 macrophage genes 
for predicting prognosis in BRCA patients. In addition, our 
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study suggests that risk scores generated by the 14 genetic 
prognostic traits are separate risk factors for BRCA patients’ 
bad outcomes.

Conclusions

This study conducted differential expression analysis of 
invasion and migration-related genes in BRCA patients 
using the NCBI GEO and TCGA databases, identifying 
differential genes associated with lymph node metastasis and 
distant metastasis. Through GO and KEGG enrichment 
analysis, these genes were found to primarily participate in 
pathways such as monocyte differentiation, T cell activation, 
and cytokine-cytokine receptor interaction. Utilizing the 
CIBERSORT algorithm to quantify M2 macrophages in 
BRCA, genes associated with them were screened, and 
14 prognosis-related genes were identified through a 
combination of differential gene analysis and Cox univariate 
regression analysis. A prognosis model was constructed and 
its robustness was validated in the GEO dataset. This model 
holds significant clinical value for prognosis assessment and 
treatment decision-making in BRCA.
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