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Introduction

Combined, the two major histological subtypes of esopha-
geal adenocarcinoma (EAC) and esophageal squamous cell 
carcinoma represent the sixth leading cause of cancer deaths 
worldwide, with fewer than one in five patients surviving 5 y 
from diagnosis.1 A shift in epidemiology over the past 50 y 
has meant the incidence of EAC now vastly exceeds that of 
esophageal squamous cell carcinoma in Western countries,2 
accounting for more than 80% of esophageal cancers in the 
United States.3 Defining the optimal neoadjuvant treatment 
regime is an area of active investigation,4 as current treat-
ments carry a significant risk of systemic toxicity, histo-
logic response rates remain poor,5 and only a limited 
subgroup of patients experience any survival benefit over 
surgery alone.6,7

EAC is a highly heterogeneous disease, dominated by large-
scale genomic rearrangements and copy number alterations.8 

This has made clinically meaningful subgroups and well- 
validated therapeutic targets difficult to define. Clinical trials 
with new molecular targeted agents have predominantly been 
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Abstract
Esophageal adenocarcinoma (EAC) is a highly heterogeneous disease, dominated by large-scale genomic rearrangements 
and copy number alterations. Such characteristics have hampered conventional target-directed drug discovery and 
personalized medicine strategies, contributing to poor outcomes for patients. We describe the application of a high-
content Cell Painting assay to profile the phenotypic response of 19,555 compounds across a panel of six EAC cell lines 
and two tissue-matched control lines. We built an automated high-content image analysis pipeline to identify compounds 
that selectively modified the phenotype of EAC cell lines. We further trained a machine-learning model to predict the 
mechanism of action of EAC selective compounds using phenotypic fingerprints from a library of reference compounds. 
We identified a number of phenotypic clusters enriched with similar pharmacological classes, including methotrexate and 
three other antimetabolites that are highly selective for EAC cell lines. We further identify a small number of hits from 
our diverse chemical library that show potent and selective activity for EAC cell lines and that do not cluster with the 
reference library of compounds, indicating they may be selectively targeting novel esophageal cancer biology. Overall, our 
results demonstrate that our EAC phenotypic screening platform can identify existing pharmacologic classes and novel 
compounds with selective activity for EAC cell phenotypes.
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directed toward epidermal growth factor receptor and human 
epidermal growth factor receptor 2 (HER2) receptors9–12 but 
thus far have proven unsuccessful. A potential explanation is 
the almost ubiquitous coamplification of alternative receptor 
tyrosine kinases and downstream pathways leading to redun-
dancy and drug resistance.8,13,14 An alternative to target-based 
drug discovery, and increasing in popularity with technological 
advances, is phenotypic drug discovery, defined as the identifi-
cation of novel compounds or other types of therapeutic agents 
with no prior knowledge of the drug target. Recent advances in 
phenotypic screening include automated high-content profil-
ing.15,16 This approach involves quantifying a large number of 
morphological features from cell or small-model organism 
assays in an unbiased way to identify changes and phenotypes 
of interest. One benefit to this method is that a target does not 
need to be predefined, but the mechanism of action (MoA) of 
hit compounds can be inferred by reference to known com-
pound sets using multivariate statistics and machine-learning 
approaches. Thus, this may prove a beneficial strategy for com-
plex, heterogeneous diseases in which target biology is poorly 
understood and modern, target directed drug discovery strate-
gies have made little impact on patient care, as exemplified by 
EAC.

Taking an unbiased, profiling approach to phenotypic 
screening, we chose to apply the Cell Painting assay to cap-
ture large amounts of information on cellular and subcellular 
morphology to quantify the cellular state across a panel of 
genetically distinct EAC cell lines. Cell Painting is an assay 
developed to capture as many biologically relevant morpho-
logical features in a single assay so as not to constrain discov-
ery to what we think we already know.17,18 Therefore, upon 
chemical perturbation, we can detect changes in a subset of 
profiled features, allowing a phenotypic fingerprint to be 
assigned to a particular perturbation or compound.15,19–21 
These fingerprints can then be used to identify specific phe-
notypic changes of interest, identify compounds that cause 
strong alterations in cell morphology suggesting changes in 
cellular state or stress, or predict MoA by similarity compari-
son to reference libraries of well-annotated compound mech-
anisms.17,21 However, this type of analysis is typically 
performed in a single “model” cell line, chosen for its suit-
ability for image analysis. As a proof of principle that high-
content phenotypic profiling could be applied to a panel of 
morphologically distinct EAC and tissue-matched control 
cell lines, we iteratively optimized cell culture conditions, 
cell-plating densities, and the Cell Painting assay staining 
protocol across our cell panel. Assay performance in terms of 
distinguishing distinct compound MoA for each cell type was 
evaluated by testing a small reference set of well-annotated 
compounds representing eight distinct mechanistic classes 
and performing principal component analysis (PCA) and 
t-distributed stochastic neighbor embedding (t-SNE) to visu-
alize clustering of distinct mechanistic classes. We further 
developed a machine-learning model capable of predicting 

MoA across the panel of heterogeneous EAC cell lines. 
Following assay validation, we subsequently screened a 
library of 19,555 small molecules comprising target anno-
tated probe compounds, approved drug libraries, and two 
diverse chemical sets with unknown MoA. PCA clustering of 
compound fingerprints distinguished a number of phenotypic 
clusters composed of similar pharmacologic classes active in 
the EAC cell lines. We also applied a Mahalanobis distance 
threshold and differential Z-score on our phenotypic data to 
identify compounds from our screen that were selectively 
active in EAC versus tissue-matched control cells. For priori-
tized hits, we have selected a subset and validated EAC 
selectivity with follow-up dose-response testing and per-
formed transcriptomic pathway analysis pre- and posttreat-
ment on sensitive and insensitive cell lines to further elucidate 
MoA. We further applied PCA and machine-learning analy-
sis to phenotypic fingerprints from our diverse chemical set 
to identify compounds that exhibit selective activity on EAC 
cell phenotypes by a mechanism distinct from our reference 
set, indicating they may exhibit novel MoA.

Herein we describe the development and validation of 
a high-content phenotypic profiling assay and associated 
image informatics and machine-learning toolbox to clas-
sify the MoA of phenotypic screening hits across a panel 
of EAC and tissue-matched control cell lines. This 
approach has enabled the identification of chemical and 
target classes, including histone deacetylase (HDAC) 
inhibitors, which consistently cause the same cellular 
response across the panel of EAC lines, demonstrating 
efficacy against the heterogeneity of the disease. In addi-
tion, we identify pharmacologic classes such as the anti-
metabolites and new chemical entities with high selectivity 
for some EAC cell lines relative to tissue-matched con-
trols. We propose that applying high-content multipara-
metric phenotypic profiling to a panel of genetically 
annotated EAC cell lines may stimulate new drug discov-
ery and drug development programs for EAC through the 
identification of drug-repurposing opportunities and novel 
chemical starting points with selective activity for specific 
EAC genotypes.

Materials and Methods

Cell Culture

EPC2-hTERT cells were a kind donation from Anil 
Rustgis’s Lab, University of Pennsylvania.22

Cell Line Authentication

Cell line identification (not carried out for the EPC2-hTERT 
line, as there is no reference sequence) was confirmed by 
short tandem repeat genotyping (Cell Line Authentication, 
Public Health England).
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The cell lines were confirmed to be mycoplasma nega-
tive using the VenorGeM mycoplasma detection PCR kit 
(MP0025; Sigma, St. Louis, MO).

Cell Subculture

EAC lines were grown in RPMI (#31870025, Life 
Technologies, Carlsbad, CA) supplemented with fetal 
bovine serum (10%) and L-glutamine (2 mM) and incu-
bated under standard tissue culture conditions (37 °C and 
5% CO2). The Barrett’s esophagus line (CP-A) and the 
esophageal epithelial line (EPC2-hTERT) were grown in 
KSFM (#17005075, Gibco, Carlsbad, CA) supplemented 
with human recombinant epidermal growth factor (5 g/L) 
and bovine pituitary extract (50 mg/L). Soybean trypsin 
inhibitor (250 mg/L, 5 mL) was used to neutralize trypsin.

High-Content EAC Cell Painting Assay

Cells were seeded (50 µL per well) into 384-well, 
CELLSTAR Cell Culture Microplates (#781091, Greiner 
Bio-One, Kremsmünster, Austria) and incubated under 
standard tissue culture conditions for 24 h before the addi-
tion of compounds. CP-A cells were seeded at 800 cells per 
well, SK-GT-4 cells were seeded at 1000 cells per well, and 
the remaining cell lines were all seeded at 1500 cells per 
well.

Compound source plates were made at 1000-fold assay 
concentration and added to the cells with an overall dilution 
in media of 1:1000 from source to assay plate. Library con-
centrations are shown in Supplementary Table S1.

The primary screen was carried out as a single replicate, 
and the validation dose-response study was in triplicate.

After 48 h of incubation in the presence of the com-
pounds, cells were fixed by the addition of an equal volume 

of formaldehyde (8%, 50 µL; #28908, Thermo Scientific, 
Waltham, MA) to the existing media, incubated at room 
temperature (20 min), and washed twice in phosphate- 
buffered saline (PBS). Cells were then permeabilized in 
Triton-X100 (0.1%, 50 µL) and incubated at room tempera-
ture (20 min) followed by two more washes with PBS.

The staining solution (Table 1) was prepared in bovine 
serum albumin solution (1%). Staining solution was added 
to each well (25 µL) and incubated in the dark at room tem-
perature (30 min), followed by three washes with PBS and 
no final aspiration. Plates were foil sealed.

Image Acquisition

Plates were imaged on an ImageXpress micro XLS 
(Molecular Devices, Eugene, OR) equipped with a robotic 
plate loader (Scara4, PAA, UK). Four fields of view were 
captured per well using a 20× objective and five filters 
(Table 1). Each field of view typically contained 300 cells.

Image Analysis

CellProfiler 2D image analysis.  CellProfiler v3.0.023 image 
analysis software was used to segment the cells and extract 
733 features per cell per image. First, the pipeline identified 
the nuclei from the DAPI channel and used these as seeds to 
aid a segmentation algorithm to identify the cell boundaries 
from the TxRed channel, and finally these two masks were 
subtracted to provide the cytoplasm. These three masks 
marking the cellular boundaries were then used to measure 
morphological features including size, shape, texture, and 
intensity per object across the five image channels.

Image preprocessing.  The cell-level data were aggregated to 
the image level by taking the median for each measured 

Table 1.  Cell Painting Reagents, Concentrations, Excitation/Emission Wavelengths of the Filters Used for Imaging, and Suppliers.

Stain Structure
Wavelength,  
ex/em (nm) Channel Concentration

Original 
Concentrationa

Catalog No.; 
Supplier

Hoescht 33342 Nuclei 387/447 DAPI 4 µg/mL 5 µg/mL H1399; Molecular 
Probes, Eugene, 
OR

SYTO 14 Nucleoli 531/593 CY3 3 µM 3 µM S7576; Invitrogen, 
Carlsbad, CA

Phalloidin 594 F-actin 562/624 TxRED 0.14X 5 µL/mL ab176757; Abcam, 
Cambridge, UK

Wheat germ agglutinin 
Alexa Fluor 594

Golgi and plasma 
membrane

562/624 TxRED 1 µg/mL 1.5 µg/mL W11262; Invitrogen

Concanavalin A Alexa  
Fluor 488

Endoplasmic 
reticulum

462/520 FITC 20 µg/mL 100 µg/mL C11252; Invitrogen

MitoTracker DeepRed Mitochondria 628/692 CY5 600 nM 500 nM M22426; Invitrogen

ex, excitation; em, emission.
aWe also provide a comparison of reagent concentrations used in this study with the original Cell Painting protocol.18
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feature per image. Low-quality images and image artifacts 
were then identified and removed using image quality met-
rics extracted by CellProfiler. Images with fewer than 20 
cells were also removed from the final analysis. For the 
remaining images, features were normalized on a plate-by-
plate basis by dividing each feature by the median DMSO 
response for that feature. Features with NA values were 
removed, as were features with zero or near-zero variance, 
using the findCorrelation and nearZero functions in the R 
package Caret. All remaining features were scaled and cen-
tered globally by dividing by the standard deviation of each 
feature and subtracting the feature mean respectively. The 
pairwise correlations were calculated for all remaining fea-
tures, and highly correlated features (>0.95) were removed. 
Finally, the image-level data were aggregated to the well 
(compound) level, and this was used in the analysis.

Random forest classifier.  The random forest classifier was 
implemented using R’s Random Forest package with the 
following specified parameters: ntree = 500, data stratified 
by class, and sample size set to the smallest class size for 
balance. The images from three concentrations for each 
compound were pooled and treated as a single class. Two 
different analyses were run: first, MoA prediction was 
implemented for each cell line individually, and second, 
using leave-one-out cross-validation, one EAC cell line was 
left out of the training set at a time and that line was run as 
a test set.

PCA and t-SNE were implemented using the built-in R 
functions prcomp and RTSNE, respectively, to visualize the 
clustering of the compounds for each cell line.

Hierarchical clustering.  Z-scores and Mahalanobis scores 
were centered and scaled for each compound across the 
panel of cell lines. Spearman correlation was then used to 
generate a distance matrix, and hierarchical clustering was 
determined using complete linkage.

NanoString transcriptomic analysis.  Cells were seeded in six-
well plates and incubated for 24 h. Media were then 
removed and replaced with DMSO (0.1%) or methotrexate 
(5 µM) in DMSO and incubated for 6 h. Cells were scraped 
and lysed using QIAshredders (#79654, Qiagen, Hilden, 
Germany), and RNA was extracted by means of the Qiagen 
RNeasy Mini kit (#74104, Qiagen; with β-mercaptoethanol) 
according to the manufacturer’s instructions and included a 
DNase digestion step (#79254, Qiagen).

Of the purified RNA, 100 ng was used as input for ampli-
fication-free RNA quantification by the NanoString 
nCounter Analysis System with the Human PanCancer 
Pathways and Metabolic Pathways panels. Raw counts 
were normalized to the internal positive controls and house-
keeping genes using the nSolver 4.0 software.

Results

Assay Development

Because EAC is such a heterogeneous disease, we chose to 
develop a high-content phenotypic screening assay com-
posed of a panel of EAC and tissue-matched nontrans-
formed cell lines that captured this heterogeneity and thus 
provides a discovery platform for identification of novel 
targets and drug MoA that selectively target EAC. We 
assessed the amenability of 12 cell lines to high-content 
profiling, 10 EAC lines (JH-EsoAD1, FLO-1, MFD-1, 
OE33, OACM5.1, OAC-P4C, SK-GT-4, ESO51, ESO26, 
and OE19), and two tissue-matched nontransformed lines; a 
Barrett’s esophagus line CP-A, and a normal esophageal 
squamous line immortalized by expression of telomerase 
EPC2-hTERT. We assessed each cell line against a list of 
criteria that indicated high performance for high-content 
screening, including cell adhesion quality, cellular mor-
phology, proliferation in 384-well plates, image segmenta-
tion, and MoA prediction accuracy. These criteria ensure 
image quality/information content, high-throughput screen-
ing compatibility, and image segmentation accuracy for 
downstream analysis pipelines. Based on suitable cell adhe-
sion and morphological properties, we took forward the fol-
lowing eight cell lines for high-content assay development, 
including image segmentation and machine learning analy-
sis: CP-A, EPC2-hTERT, FLO-1, JH-EsoAD1, MFD-1, 
OAC-P4C, OE33, and SK-GT-4 (Fig. 1).

The published Cell Painting protocol17,18 was adapted for 
our cell lines specifically as follows: the MitoTracker 
DeepRed was originally added before the cells were fixed; 
however, morphological changes have been seen in certain 
cell lines upon the addition of MitoTracker.24 Therefore, we 
opted to fix the cells first and add all of the Cell Painting 
reagents together after fixation to prevent artifactual mor-
phological changes due to cell staining and to reduce com-
plexity for robotic handling in a high-throughput setting. 
This also necessitated that we reoptimize the dye concentra-
tions across our cell panel. Here, we increased the 
MitoTracker DeepRed concentration and reduced the con-
centration of Hoechst, Concanavalin A, and Wheat Germ 
Agglutinin and switched to a different phalloidin supply 
(Table 1).

Machine Learning

Standard assay quality control metrics such as Z′Factor are 
unsuitable for multiparametric assays, particularly cell-
based phenotypic profiling assays in which a desired pheno-
type is unknown and/or there is a lack of positive controls.25–27 
To assess assay quality from a compound MoA profiling 
perspective, we used MoA prediction accuracy on a small 
well-annotated reference library of compounds with 
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well-defined, known MoA (Suppl. Table S2). For this, we 
trained a random forest classifier using the CellProfiler 
extracted phenotypic information from the images of cells 
treated with the reference set of compounds.

Accuracy in the ability to predict MoA was used to 
assess whether the EAC and tissue-matched control cell 
lines were amenable to the phenotypic profiling assay, fur-
ther validate whether image segmentation was accurate, and 
ensure that the phenotypic information extracted was rele-
vant and broad enough to allow accurate prediction of MoA. 
To robustly evaluate compound selectivity and MoA across 

our heterogeneous panel of genetically distinct EAC cells, it 
was particularly important to assess the performance of 
each individual cell line and ensure that one cell line did not 
perform significantly better or worse than the others. A 
characteristic of EAC cell lines (OE33, MFD-1, and 
SK-GT-4 in particular) is the migration and formation of 
cell clumps, which are challenging to segment accurately 
by automated image analysis. Here we wanted to confirm 
that they were equal to the rest of the panel and suitable for 
the assay pipeline. OAC-P4C is a particularly morphologi-
cally heterogeneous line, so it was also important to ensure 

A

B
CP-A

Barrett's

EPC2-hTERT

Squamous

FLO-1

EAC
JH-EsoAD1

EAC

MFD-1
EAC

OE33
EAC

OAC-P4C
EAC

SK-GT-4
EAC

Hoechst 33342 Concanavalin A SYTO14
Phalloidin and 
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Nuclei NucleoliEndoplasmic 
Reticulum

F-actin, Golgi and 
Plasma Membrane
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Mitochondria

Figure 1.  Cell Painting assay and the cell panel. (A) The five channels imaged in the Cell Painting assay for the representative cell line 
SK-GT-4, with dyes and cellular structures labeled. Scale bar is 50 µm. (B) Color combined representative control (DMSO) images 
of the eight cell lines in the cell panel: DAPI (blue), TxRED (red), FITC (green). Scale bar is 50 µm. See Table 1 for additional details 
about the stains and channels imaged.
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that image-level data can be used for phenotypic compound 
profiling in these types of cell lines.

To visualize the phenotypic information extracted, we 
performed two data reduction methods, PCA and T-SNE, on 
the well-level data for the small reference library of com-
pounds and plotted the first two components, colored by 
mechanistic class. PCA is a linear feature extraction tech-
nique, projecting the data in a lower-dimensional space 
while preserving the global structure of the higher- 
dimensional data.28,29 t-SNE is a nonlinear technique and is 
capable of capturing local as well as global structure.30 
Input feature importance can also be examined when using 
PCA but not t-SNE. Given the complexity of the relation-
ship between the features extracted from the images using 
both techniques allowed us to gauge feature importance, 
assess both a linear and nonlinear technique as there were 
no prior assumptions about the relationships between fea-
tures, and look at both local and global trends in the data set. 
The results demonstrate that distinct compound classes gen-
erally cluster together. However, the strength of the pheno-
typic response varied across compound classes with some, 
such as the statins, producing a less distinct response than 
others. PCA clustering shows the statins are much closer to 
the DMSO controls (Fig. 2; Suppl. Fig. S1).

We next optimized a random forest classifier to test the 
MoA prediction on our reference library of well-annotated 
compounds. The extracted features from three concentra-
tions of each compound were pooled and used to train the 
classifier. We chose 0.1, 1, and 10 µM, because using a broad 
range of concentrations means that each compound does not 
need to be optimized individually across each cell line.

When trained and tested on each individual cell line the 
average out-of-bag error31,32 was 20.38% across the entire 
panel of cell lines, ranging from 12% to 27%. The overall 
prediction accuracy for each cell line ranged from 73% to 
88% across all eight compound classes, demonstrating the 
assay was well optimized across the panel. The weakest cell 
line was the SK-GT-4.

To confirm that the classifier was not overfitting, we 
used leave-one-out cross-validation.33,34 We implemented 
leave-one-cell-line-out and trained it on five of the EAC 
lines, testing on the remaining line. Here, as expected, it 
performed less well overall. However, the accuracy for each 
cell line ranged from 58% to 71% (Suppl. Fig. S2), indicat-
ing the ability of this classifier to be transferred to new cell 
lines despite having no prior training on them and thus the 
potential for the application of the classifier across a broader 
panel of cell lines without the need to train each cell line 
individually.

Overall, the accuracy of the machine learning demon-
strates that the phenotypic profiling assay is of high quality 
across all eight cell lines, including morphologically hetero-
geneous cells, and feature extraction produces meaningful 

data for phenotypic analysis. The phenotypic profiling assay 
can therefore be applied to provide an initial evaluation of 
MoA of hit compounds influencing EAC cell proliferation, 
survival, and morphology. As such, our multiparametric 
high-content phenotypic profiling assay may prove useful in 
the prioritization of compound hits, which represent novel 
MoAs, and the deprioritization of compounds, which repre-
sent undesirable MoAs for subsequent medicinal chemistry 
and target deconvolution investments. We therefore priori-
tized the full panel of eight lines that passed our quality con-
trol criteria (six EAC lines with diverse genetic backgrounds, 
a Barrett’s esophagus line, and a nontransformed squamous 
esophageal line) for a phenotypic screen of 19,555 small 
molecules.

Small-Molecule Screen

A total of 19,555 small molecules, including approved 
drugs, were profiled against our panel of eight cell lines 
using the ImageXpress microXL high-content imaging plat-
form. Cells were treated with the commercially available 
Prestwick Chemical Library of 1280 mostly off-patent 
drugs, the LOPAC library of pharmacologically active com-
pounds (1280 compounds), a proprietary diverse chemical 
library provided by CRUK Therapeutics Discovery 
Laboratories (Cambridge; 13,408 compounds), the 
BioAscent library of 3200 compounds, and bespoke librar-
ies of 387 target-annotated compounds and chemical 
probes. The primary phenotypic screen across all eight cell 
lines encompassed 512 × 384 well plates, 3.9 million 
images, and 36 TB of data in total. Image analysis was per-
formed using CellProfiler across a computer cluster.

Using a panel of cell lines better represents a heteroge-
neous disease and allowed us to identify compounds that 
demonstrated selective activity across multiple EAC lines 
and not in the tissue-matched control. We ran two parallel 
analyses for primary hit selection against the EAC lines: 
one based on broad, morphological, phenotypic changes 
and the other on cell growth and survival using nuclei count. 
At cytotoxic concentrations, there are few attached cells, 
and these are often rounded up, leading to a lack of informa-
tion in the images. Therefore, images with 20 or fewer cells 
were removed from the morphological analysis.

We began our analysis with a subset of 3000 annotated 
compounds (excluding the CRUK Therapeutics Discovery 
Laboratories and BioAscent lead-like molecules).

To identify compounds inducing strong phenotypic 
changes, we used PCA on the feature data to reduce the 
dimensions and then calculated the Mahalanobis distance to 
the DMSO controls for the first 15 principal components, 
which explain approximately 90% of the variation in the 
data across each cell line. The Mahalanobis distance mea-
sures the distance of each point from the data distribution 
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(in this case, the DMSO controls). The data distribution 
takes into account the mean and the spread of the data points 
using the covariance matrix as a normalization factor.35 It 

therefore addresses problems of both scale and correlation 
of the variables and is particularly beneficial for large mul-
tivariate data sets. This leads to elliptic rather than circular 
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decision boundaries, as is the case for Euclidean. We there-
fore chose to use it as an unbiased metric of compound 
activity upon each cell line in the screen.

Phenotypic analysis identified 62 compounds that selec-
tively target two or more of the EAC lines over the non-
transformed esophageal cells. Clustering the cell panel’s 
responses to these molecules showed a number of pheno-
typic clusters enriched with similar pharmacologic classes, 
including HDAC inhibitors, microtubule disruptors, and 
antimetabolites, suggesting that hits have clustered mecha-
nistically (Fig. 3A; Suppl. Fig. S3).

Based on cell growth and survival (i.e., nuclei count), we 
identified 27 compounds that were selectively active in two 
or more of our EAC lines. Here, hits were defined as having 
a z-score of −3 or greater in the EAC lines and a difference of 
at least 2 in one or both of the control cell lines (e.g., for a hit 
with a z-score of −3 in an EAC line, the z-score in the EPC-2 
would have to be greater than or equal to -1). This compari-
son was made between each EAC line and the control lines to 
define hits and then selected if they were selectively active in 
at least two EAC lines across the panel (Fig. 3B).

Compounds from the growth and survival analysis clus-
ter into several therapeutic classes, suggesting mechanistic 
pathways that may be selective for EAC cell growth and 
survival. Classes include antimetabolites and HDAC inhibi-
tors. These classes were also identified in the morphometric 
phenotypic analysis (Suppl. Fig. S3).

We performed hierarchical clustering of cell-line responses 
to the compounds, as determined by the Mahalanobis metric 
(morphometric phenotypic analysis) and the z-scores (nuclei 
count; Fig. 3C, D), enabling pharmacologic discrimination 
of cell lines. These results show that the control cell lines, 
EPC2-hTERT and CP-A, can be discriminated from the EAC 
panel based on global drug screening data, providing confi-
dence that our high-content Cell Painting assay can identify 
compounds with selectivity for EAC over the tissue-matched 
control lines.

Antimetabolites Are Selectively Lethal  
to EAC Cells

From the subset of 3000 annotated compounds, we identified 
the drug methotrexate and three other structurally related 
antimetabolites, pemetrexed, raltitrexed, and aminopterin, as 
highly selective for EAC cell lines relative to tissue-matched 
control CP-A and EPC2-hTERT cells in both the nuclei count 
and morphological phenotypic analyses. We therefore vali-
dated this class of compound for dose-dependent activity. 
Aminopterin was removed from further analysis because of 
its toxicity profile in the clinic36; however, it showed potent 
activity in an initial dose response in the EAC lines, validat-
ing it as a hit from our screen (results not shown).

Nuclei count dose responses for methotrexate, peme-
trexed, and raltitrexed demonstrated strong selectivity against 

the EAC lines and showed minimal cytotoxic or phenotypic 
activity in either the CP-A or the EPC2-hTERT line even at 
10 µM (Fig. 4A; Suppl. Table S3), validating our hit selec-
tion criteria.

Multiparametric phenotypic dose-response profiles of 
the antimetabolites overlaid on the reference library of 
annotated compounds (Suppl. Table S2) showed strong 
dose-dependent phenotypic changes, moving from pheno-
typically inactive (clustering with DMSO controls) to  
clustering with the DNA-damaging agents at active concen-
trations (Fig. 4B; Suppl. Fig S4) in all but the JH-EsoAD1 
and MFD-1 lines. All three compounds also showed little or 
no effect in the control lines EPC2-hTERT and CP-A, clus-
tering closely with the DMSO controls at all concentrations 
tested.

Class probabilities from the pretrained machine-learning 
model for each of the compounds predicted that they belong 
to the DNA damage class for all but the MFD-1 and 
JH-EsoAD1 lines (Fig. 4C), consistent with the clustering 
above. Probabilities also increased in a dose-dependent 
manner, indicating that cellular phenotypic activity follows 
a linear on-target dose-response relationship. These results 
further confirm the ability of the Cell Painting assay to 
accurately predict the MoA of validated hit compounds.

NanoString differential expression analysis37 revealed 
methotrexate treatment caused a significant reduction in the 
expression of Histone H3 subunits (HIST1H3B, HIST1H3G, 
HISTH3H; Fig. 4D) in the sensitive cell lines only, with no 
effect in either of the tissue-matched controls (Suppl. Table 
S4). Several other genes changed with methotrexate treat-
ment, but none were significant. Further mechanistic stud-
ies are required to further elucidate how and if such 
expression changes confer selectivity to methotrexate.

Toward Novel Therapies and Targets for EAC

From a subset of 13,000 small-molecule compounds with 
unknown targets, we further identified a small number of 
compound hits from our diverse chemical library that 
showed potent and selective activity for the EAC cell lines. 
Compound 1 was selective for the OAC-P4C and MFD-1 
cells (Fig. 5A; Suppl. Fig. S5), and machine-learning prob-
abilities for all classes were low (Fig. 5B). Compound 2 
induced a strong phenotypic dose response in the OAC-P4C 
and OE33 cell lines only and did not cluster with the refer-
ence library of known MoA (Fig. 5A; Suppl. Fig. S6). 
Machine learning predicted it to be DNA damaging (91% 
probability) in the OAC-P4C cells; however, its clustering 
was distinct, and the machine-learning probability that it is 
DNA damaging in the OE33 cell line was only 52% (Fig. 
5B). Therefore. it may in fact represent a novel MoA or be 
acting to cause DNA damage in a novel way. This indicates 
that these compounds may be selectively targeting novel 
esophageal cancer biology. Subsequent transcriptomic and 
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proteomic pathway analysis and target deconvolution stud-
ies may reveal the mechanistic pathways involved.

Discussion

Conventional target-directed drug discovery strategies 
remain to make any impact on the discovery and translation 

of effective new treatments for esophageal cancer patients. 
Key challenges in esophageal cancer include a highly het-
erogeneous genetic landscape with few mutations in onco-
genic drivers, thereby confounding the identification of a 
clear drug-target hypothesis and modern personalized med-
icine strategies. In this study, we sought to adapt and evalu-
ate the utility of an advanced high-content phenotypic 
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Figure 3.  Hit analysis. (A) The first three components of principal component analysis (PCA) for exemplar data from the esophageal 
adenocarcinoma (EAC) cell line; JH-EsoAD1. Hits (purple) are defined as having a Mahalanobis distance of greater than 1500 from the 
DMSO controls. (B) Z-score plot for all EAC lines overlaid versus the EPC2-hTERT esophageal squamous control line. Hits (purple) 
are defined as having a z-score of −3 or greater in the EAC lines and showing selectivity of at least 2 z-scores compared with the 
EPC2-hTERT line. (C) Z-score hierarchical clustering of the cell panels’ response to compounds. (D) Mahalanobis distance clustering 
of phenotypic response to compound treatments across cell lines.
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screening method as an empirical strategy for identifying 
novel drug targets, MoAs, and pharmacologic classes that 
target EAC.

Here we have shown that combining high-content screen-
ing and image informatics with machine learning can be 
effective for the identification and mechanistic characteriza-
tion of hit compounds with selective activity on EAC cell 
phenotypes. Most multiparametric high-content screening 
assays and associated machine-learning methods used to 
predict drug MoA are typically performed on a single cell 
line. In this study, we have further shown that this format can 
be applied to heterogeneous panels of cancer cell lines and 
normal tissue-matched control cells for the identification 
and prioritization of hit compounds and MoA, which dem-
onstrate selective activity for EAC cells.

Machine learning can be implemented as a tool for mul-
tiparametric phenotypic assay quality control (e.g., con-
firming if the assay is suitable as a discovery platform to 
classify specific cell phenotypes and elucidate MoA) as 
well as a tool for MoA deconvolution of hit compounds. 
Our results demonstrate that this can be standardized across 
heterogeneous panels of cells.

Following one class of compounds identified in our pri-
mary phenotypic screen of 19,555 small molecules tested 
across all eight esophageal cell lines, we validated antime-
tabolites as selectively lethal to the EAC lines in vitro fol-
lowing dose-response studies. Using the multiparametric 
phenotypic information to generate phenotypic dose 
responses, combined with a reference library of com-
pounds, machine learning, and clustering techniques, we 
demonstrated the ability to study/predict the MoA of hits 
from the screen. Here we validated this technique using 
the antimetabolite hit compounds (methotrexate, peme-
trexed, and raltitrexed), showing DNA damage as a likely 
MoA for the selectivity of these compounds, which is con-
sistent with the literature.38,39 These results, together with 
our identification of hit compounds from our diverse 
chemical set, which are not classified by our reference set 
of known MoAs, demonstrates the impact of phenotypic 
screening in combination with machine learning for MoA 
studies. This strategy will be used to assess and prioritize 
novel small-molecule hits from the diverse chemical 
library screen for further mechanistic studies. From our 
primary phenotypic screen, we have identified in total 75 
compounds that match our hit selection criteria for selec-
tive activity across the EAC panel. These 75 hits are an 
accumulation of the 62 compounds defined by cell mor-
phometric phenotypic analysis and 27 compounds defined 
by cell proliferation and survival (nuclei count) analysis, 
with 14 compounds overlapping. The 75 hits shall be fur-
ther progressed through dose-response studies and sec-
ondary assays to confirm and prioritize classes of selective 
compounds for subsequent drug repurposing and or drug 
discovery studies.

In addition, using bioinformatic approaches, we hope 
that integration of phenotypic data with genetic data across 
our panel of diverse cell lines may provide insight into the 
selective activity of phenotypic hits and generate the basis 
for future genetic biomarker–based clinical trials in EAC.

Overall, our high-content EAC assay has proven effec-
tive in the identification and mechanistic characterization of 
hit compounds, demonstrating its utility as a novel empiri-
cal strategy for the discovery of new therapeutic targets, 
chemical starting points, and repurposing of existing drug 
classes to reignite drug discovery and development in EAC.
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