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Abstract: To better understand the mechanism of in vivo toxicity of N-nitroso compounds (NNCs),
the toxicity data of 80 NNCs related to their rat acute oral toxicity data (50% lethal dose concentration,
LD50) were used to establish quantitative structure-activity relationship (QSAR) and classification
models. Quantum chemistry methods calculated descriptors and Dragon descriptors were combined
to describe the molecular information of all compounds. Genetic algorithm (GA) and multiple
linear regression (MLR) analyses were combined to develop QSAR models. Fingerprints and
machine learning methods were used to establish classification models. The quality and predictive
performance of all established models were evaluated by internal and external validation techniques.
The best GA-MLR-based QSAR model containing eight molecular descriptors was obtained with
Q2

loo = 0.7533, R2 = 0.8071, Q2
ext = 0.7041 and R2

ext = 0.7195. The results derived from QSAR
studies showed that the acute oral toxicity of NNCs mainly depends on three factors, namely,
the polarizability, the ionization potential (IP) and the presence/absence and frequency of C–O bond.
For classification studies, the best model was obtained using the MACCS keys fingerprint combined
with artificial neural network (ANN) algorithm. The classification models suggested that several
representative substructures, including nitrile, hetero N nonbasic, alkylchloride and amine-containing
fragments are main contributors for the high toxicity of NNCs. Overall, the developed QSAR and
classification models of the rat acute oral toxicity of NNCs showed satisfying predictive abilities.
The results provide an insight into the understanding of the toxicity mechanism of NNCs in vivo,
which might be used for a preliminary assessment of NNCs toxicity to mammals.
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1. Introduction

N-nitroso compounds (NNCs) are an important class of potent toxicants that widely exist in
the environment and diet [1]. The carcinogenicity, mutagenicity and toxicity of NNCs and their
metabolites have been evaluated in various experiments [2–4]. Among the 300 NNCs that have been
tested for their carcinogenic potential, more than 90% were proven to be carcinogenic in a wide variety
of animal species [5,6]. Human exposure to NNCs occurs mainly through food, tobacco products, drugs,
car interiors, and cosmetics [7]. However, NNCs may also be synthesized endogenously from precursors
and nitrosating agents, mainly in the stomach, leading to the formation of potentially carcinogenic
compounds [8–11]. Due to the potentially harmful effects of these compounds, it is necessary to study
the mechanism of action of their biological effects, particularly the structure-activity relationship (SAR).

Quantitative structure-activity relationship (QSAR) and classification methods are ideal
alternatives to biological experiments. Not only because of their higher efficiency and lower cost,
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but they can also provide rapid assessment of the potential impacts of chemicals on human health
and the environment, including lethality or non-lethal adverse effects, as well as being able to predict
biological or physicochemical properties [12,13]. Thus, the European Union (EU) published REACH
(Registration, Evaluation, Authorization and Restriction of Chemicals) regulation for promoting their
applications in various fields in 2006. The QSAR and classification models have been developed as
feedback to different legislation around the world (e.g., EU REACH) as well as to assist in reducing
animal testing and designing greener chemicals [14–16].

Generally, the acute toxicity of most chemicals is mainly induced by a narcotic mechanism of
action, which has been long termed as “membrane perturbation”. Narcotic compounds certainly
accumulate within biological membranes, thus, a number of effects at the membrane occur. If a
compound can be identified as being unreactive or narcotic, its acute toxicity to a variety of species
can be predicted accurately from the structure alone [17]. However, a number of compounds have
specific toxic mechanisms of action (e.g., inhibition of specific enzymes or electrophilic/nucleophilic
reaction) [17]. For example, NNCs can produce alkyldiazonium ions through metabolic activation
by specific enzymes or spontaneous decomposition, followed by attacking bio-macromolecules (e.g.,
DNA and proteins) to exert their toxicity [4].

Previous studies have reported some predictive models of the carcinogenic potential of
NNCs. Based on “di-region theory”, a quantitative pattern recognition method performed for
structure-carcinogenic activity relationship of NNCs gave rise to 97% correct classification using
10 descriptors [18]. In addition, the results suggested that the bifunctional alkylation between α and β

sites or α and γ sites of NNCs provided important roles in their carcinogenesis. The support vector
machine (SVM) and linear discriminant analysis (LDA) were used to develop a classification model
of carcinogenic properties of 148 NNCs with seven descriptors [19]. The obtained results confirmed
the discriminative capacity of the calculated descriptors and the total accuracy of SVM (95.2%) is
better than that of LDA (89.8%). Using a topological substructure molecular descriptors (TOPS-MODE)
approach, Helguera et al. constructed several QSAR models for predicting the carcinogenic effects of
NNCs through different routes of administration for male and female rats [20,21]. Yuan et al. developed
an LDA method to predict the carcinogenicity and further understand the carcinogenic mechanism
of NNCs in rats using a TOPS-MODE approach. The results indicated that a good classification
(carcinogenic and noncarcinogenic) value of 90.1% was obtained with a dataset of 111 NNCs [7].

Although several SAR studies in the perspective of carcinogenicity of NNCs have been reported,
to our knowledge, there are still no related studies on the relationship between molecular structure
or properties and acute oral toxicity of NNCs. In the present work, a dataset consisting of acute oral
toxicity (LD50) of 80 NNCs to rats was used to establish the QSAR and classification prediction models.
The developed models were assessed using various statistical parameters and an external validation
set. Based on the analysis of these developed models, some important information in connection
with toxicity can be obtained, which may help us better understand the bio-transformation and toxic
mechanism of NNCs in vivo. Moreover, these QSAR and classification models may provide a way to
evaluate and predict the toxicity of many other untested NNCs, before they have adverse effects on
both humans and the environment.

2. Results and Discussion

2.1. QSAR Models

2.1.1. Model Validation

The initial number of descriptors of MLR (multiple linear regression) model developed based
on Dragon and DFT (density functional theory) were 457 after removal of constant value and high
inter-correlated descriptors. Then, the further screening was executed by GA (genetic algorithm) [22]
coupled with the MLR procedure, followed by the generation of 100 models. All 80 NNCs were
ranked according to the toxicity value (−logLD50), then one was selected as the test set every five
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compounds and the remaining 64 compounds were used as the training set. According to the
rule-of-thumb [23,24], the ratio of the number of compounds in the training set over the number
of variables (descriptors) should have a value of at least 5, which allows the flexibility to build models
using up to 13 descriptors in the present study. After utilizing QUIK (Q Under Influence of K) module,
44 models remained without multicollinearity. For acceptable QSAR predictive models, they should
satisfy the following conditions [24,25]: (i) Q2

loo > 0.5; (ii) R2
ext > 0.6; (iii) (R2

ext − R0
2)/R2

ext < 0.1
and 0.85 ≤ k ≤ 1.15 or (R2

ext − R’02)/R2
ext < 0.1 and 0.85 ≤ k’ ≤ 1.15; (iv) |R0

2 − R’02| < 0.3. R0
2

and R’02 are the mean coefficients of determination of experimental versus predicted values and
predicted versus experimental values for regressions through the origin, respectively. k and k’ are the
corresponding slopes of regression lines through the origin. Finally, eight models were selected by
MCDM (Multi-Criteria Decision Making) (Figure S1 in the Supplementary Materials), which Q2

loo
values ranged from 0.7214 to 0.7533 (R2 = 0.7786 to 0.8071), as listed in Table 1. Among these models,
six descriptors were observed with higher frequency than other descriptors, namely, MATS6p, MATS4i,
SpMin7_Bh(i), JGI4, B01[C-O] and F04[C-O]. The best QSAR model with eight descriptors for the
prediction of acute oral toxicity of NNCs was shown in Equation (1). The actual values of selected
descriptors in the best QSAR model were presented in Table S1 in the Supplementary Materials.

−logLD50 = 2.86 + 0.28nR06 − 0.55MATS6p − 1.29MATS4i − 12.07JGI4 −
2.06SpMin7_Bh(i) − 0.50B01[C-O] − 0.35F04[C-O] − 7.36EHOMO

(1)

Ntr = 65, Q2
loo = 0.7533, R2 = 0.8071, R2

adj = 0.7796, F = 29.2961, RMSEtr = 0.2661, CCCtr = 0.8933
Ntest = 14, Q2

ext = 0.7041, R2
ext = 0.7195, RMSEtest = 0.2847, Q2

F1 = 0.7041, Q2
F2 = 0.7032,

Q2
F3 = 0.7794, CCCtest = 0.8062, (R2

ext − R0
2)/R2

ext = 0.0215, |R0
2 − R’02| = 0.2642.

Ntr and Ntest represent the number of compounds in the training and test sets, respectively.
One compound in the original test set was removed because it was a predictive outlier (grey open
circle in Figure 1). The relatively high quality of fitting parameters (R2, R2

adj and RMSE) and internal
cross-validation correlation coefficient (Q2

loo) indicate that the model has good internal fitting ability
and robustness. A test set containing 14 compounds independent from the training set was used
for an external validation to confirm the predictive ability of the MLR model. As shown in Table 2,
the predictive ability of this model is high, which is reflected by Q2

ext, R2
ext and RMSEtest as 0.7041,

0.7195 and 0.2847, respectively. The good external prediction was also observed with high CCCext

(Concordance Correlation Coefficient) value (0.8062). Furthermore, a Y-scrambling procedure gave
significantly lower statistical parameters (R2

Yscr = 0.1247, Q2
Yscr = −0.1890) when compared to the

original model, thus we considered that the proposed QSAR model was not obtained casually.

Figure 1. Experimental versus predicted toxicity values for compounds in the training set (red circle)
and test set (blue square) of the best GA-MLR (genetic algorithm- multiple linear regression)-based
quantitative structure-activity relationship (QSAR) model.
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Table 1. Fitting and internal validation parameters of GA-MLR-based QSAR models selected by Multi-Criteria Decision Making (MCDM).

No. Model
No.

Number of
Descriptors Descriptors R2 R2

adj RMSEtr CCCtr F Q2
loo RMSEcv CCCcv Q2

lmo R2
Yscr Q2

Yscr

1 21 8 nR06 MATS6p MATS4i JGI4 SpMin7_Bh(i)
B01[C-O] F04[C-O] HOMO 0.8071 0.7796 0.2661 0.8933 29.2961 0.7533 0.3010 0.8651 0.7379 0.1247 −0.1890

2 27 8 nR06 MATS6p MATS4i JGI4 SpMin7_Bh(i)
P_VSA_MR_1 B01[C-O] F04[C-O] 0.8033 0.7752 0.2688 0.8909 28.5870 0.7432 0.3071 0.8596 0.7267 0.1247 −0.1856

3 29 8 D/Dtr06 MATS6p MATS4i JGI4
SpMin7_Bh(i) B01[C-O] F04[C-O] HOMO 0.8023 0.7740 0.2695 0.8903 28.3984 0.7504 0.3028 0.8632 0.7335 0.1268 −0.1880

4 33 7 MATS6p MATS4i GATS1m JGI4
SpMin7_Bh(i) B01[C-O] F04[C-O] 0.7872 0.7611 0.2796 0.8809 30.1220 0.7322 0.3136 0.8520 0.7169 0.1097 −0.1644

5 34 7 Mp MATS6p MATS4i JGI4 SpMin7_Bh(i)
B01[C-O] F04[C-O] 0.7848 0.7584 0.2811 0.8794 29.6947 0.7262 0.3171 0.8484 0.7076 0.1100 −0.1636

6 36 7 MATS6p MATS4i JGI4 SpMin7_Bh(i) H-046
B01[C-O] F04[C-O] 0.7807 0.7538 0.2838 0.8768 28.9864 0.7276 0.3163 0.8491 0.7140 0.1077 −0.1700

7 37 7 ZM1Mad MATS6p MATS4i GGI4
SpMin7_Bh(i) B01[C-O] F04[C-O] 0.7797 0.7527 0.2844 0.8762 28.8222 0.7214 0.3199 0.8446 0.7045 0.1094 −0.1669

8 38 7 MATS6p MATS4i JGI4 SpMin5_Bh(s)
P_VSA_MR_1 B01[C-O] F04[C-O] 0.7786 0.7514 0.2851 0.8755 28.6378 0.7223 0.3194 0.8463 0.7040 0.1104 −0.1621

Table 2. External validation parameters of GA-MLR-based QSAR models selected by MCDM.

No. Model No. Number of Descriptors Descriptors R2
ext RMSEext Q2

F1 Q2
F2 Q2

F3 CCCext k k’

1 21 8 nR06 MATS6p MATS4i JGI4 SpMin7_Bh(i)
B01[C-O] F04[C-O] HOMO

0.5401
(0.7195)

0.3544
(0.2847)

0.5147
(0.7041)

0.5144
(0.7032)

0.6581
(0.7794)

0.7023
(0.8062)

0.9774
(0.9957)

1.0132
(0.9977)

2 27 8 nR06 MATS6p MATS4i JGI4 SpMin7_Bh(i)
P_VSA_MR_1 B01[C-O] F04[C-O]

0.5100
(0.6534)

0.3709
(0.3080)

0.4685
(0.6538)

0.4681
(0.6527)

0.6255
(0.7418)

0.7003
(0.7934)

0.9784
(0.9944)

1.0110
(0.9994)

3 29 8 D/Dtr06 MATS6p MATS4i JGI4
SpMin7_Bh(i) B01[C-O] F04[C-O] HOMO

0.5153
(0.7175)

0.3659
(0.2908)

0.4862
(0.6912)

0.4823
(0.6902)

0.6355
(0.7697)

0.6767
(0.7914)

0.9742
(0.9933)

1.0159
(0.9999)

4 33 7 MATS6p MATS4i GATS1m JGI4
SpMin7_Bh(i) B01[C-O] F04[C-O]

0.4632
(0.5963)

0.3806
(0.3354)

0.4381
(0.5894)

0.4399
(0.5881)

0.6056
(0.6938)

0.6398
(0.7221)

0.9787
(0.9946)

1.0101
(0.9962)

5 34 7 Mp MATS6p MATS4i JGI4 SpMin7_Bh(i)
B01[C-O] F04[C-O]

0.4712
(0.6587)

0.3813
(0.3116)

0.4381
(0.6455)

0.4377
(0.6443)

0.6041
(0.7356)

0.6508
(0.7622)

0.9752
(0.9944)

1.0138
(0.9977)

6 36 7 MATS6p MATS4i JGI4 SpMin7_Bh(i)
H-046 B01[C-O] F04[C-O] 0.4726 0.3780 0.4478 0.4474 0.6109 0.6609 0.9804 1.0084

7 37 7 ZM1Mad MATS6p MATS4i GGI4
SpMin7_Bh(i) B01[C-O] F04[C-O] 0.6322 0.3295 0.5805 0.5802 0.7044 0.7851 0.9751 1.0171

8 38 7 MATS6p MATS4i JGI4 SpMin5_Bh(s)
P_VSA_MR_1 B01[C-O] F04[C-O]

0.4710
(0.5055)

0.3786
(0.3721)

0.4461
(0.4944)

0.4457
(0.4927)

0.6097
(0.6229)

0.6702
(0.6971)

0.9855
(0.9941)

1.0030
(0.9946)
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The linear correlation between the experimental and predicted values from the best
GA-MLR-based QSAR model (No. 21) was shown in Figure 1, in which red circles and blue
squares represent compounds in training set and test set, respectively. All the studied NNCs are
distributed evenly on both sides of the optimal line, indicating the good predictive power of this model.
In addition, we applied the best prediction model on several NNCs from the ZINC database and found
potentially toxic compounds without tested toxicity on rats, the results are listed in Table S2 in the
Supplementary Materials.

2.1.2. Outlier Analysis of MLR Model

In developing the QSAR model, outliers strongly influence the regression parameters of the
model. As a result, models should be re-established after outliers are removed. Williams plot, which
represents the AD of the MLR model, is shown in Figure 2. It is very important to note that hat values
of all compounds are lower than the critical hat value (h* = 0.415). Only one compound (53) in this
study was identified as a predictive outlier because its standardized residual was slightly bigger than
3. In other words, the acute oral toxicity values of NNCs are generally well predicted by model 21 and
they are reliable.

Figure 2. Williams plot for the best GA-MLR-based QSAR model. The transverse dash lines represent
±3 standard residual, vertical black line represents warning leverage h* = 0.415.

2.1.3. Interpretation of Descriptors in MLR Model

Equation (1) indicates the best GA-MLR-based QSAR model consists of the following eight
molecular descriptors: nR06, MATS6p, MATS4i, JGI4, SpMin7_Bh(i), B01[C-O], F04[C-O] and EHOMO.
The corresponding types and chemical meanings of molecular descriptors are listed in Table 3, and
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the detailed explanation can be found in Handbook of Molecular Descriptors [26]. nR06 means
the number of 6-membered rings, which is the only variable positively correlated with the high
in vivo toxicity of NNCs. There were 7 compounds that contain 6-membered rings in the 22 high
toxic NNCs, their molecular structures and LD50 values were shown in Figure 3. MATS6p is the
Moran autocorrelation of lag 6 weighted by atomic polarizability, indicating a relationship between
molecular polarizability and toxicity. According to the handbook of molecular descriptor [26], the
Moran coefficient of the autocorrelation descriptors usually takes a value ranging from −1 to +1.
Positive autocorrelation produces positive values of the coefficient whereas negative autocorrelation
corresponds to negative values. MATS6p tends to have low values when the polarizabilities of bonded
atoms are large. Matteo Cassotti et al. also found a relationship between molecular polarizability and
acute aquatic toxicity of 546 organic molecules [27]. Polarizable molecules are usually considered
as ‘soft’ species, which tend to react with other soft species, it thus appears that more-polarizable
molecules tend to have higher toxicities, and this might be due to the formation of covalent bonds
involving the HOMO and LUMO of soft acids and bases [27]. The MATS4i is also the Moran coefficient
of the autocorrelation descriptors, while SpMin7_Bh(i) belongs to Burden eigenvalues. The MATS4i
and SpMin7_Bh(i) are both related to ionization potential (IP), which is defined as the energy needed
to extract one electron from a chemical system. The equation is shown as below:

IP = E(Nel) − E (Nel − 1) (2)

where Nel is the number of electrons in the system. IP can be used to measure the capability of
a molecule to give the corresponding positive ion. The low values of MATS4i correspond to the
compounds that have C=C bonds. Zhang et al. [28] demonstrated a good relationship between
epoxidation activation energies and IP, which means that the activation energy of epoxidation by P450s
strongly depends on the conversion of the double bond in the olefin to a single bond in the product.
There are also some NNCs containing olefins which can be activated by P450s to exert their toxicity to
a certain degree. JGI4 is a kind of topological charge indices (Mean topological charge index of order 4)
which can evaluate the charge transfer between pairs of atoms, and therefore the global charge transfer
in the molecule [29,30]. B01[C-O] and F04[C-O] are both 2D atom pairs descriptors that describe pairs
of atoms and bond types connecting them in 2D space. They represent the presence/absence of C–O
bond and frequency of C–O bond at corresponding topological distance, respectively. There was a
negative correlation between these two descriptors and in vivo toxicity of NNCs. The last descriptor
EHOMO is a quantum chemistry descriptor. Molecules with high HOMO (highest occupied molecular
orbital) energy values can donate their electrons more easily compared to molecules with low HOMO
energy values, and hence are more reactive. Therefore, within the validity of the Koopman’s theorem,
the EHOMO descriptor is also related to the IP, is a measure of the nucleophilicity of a molecule, and is
important in modeling molecular properties and reactivity [31].

Table 3. Type and chemical meaning of molecular descriptors in the best QSAR model.

Descriptor Type Chemical Meaning

nR06 Ring descriptors Number of 6-membered rings

MATS6p 2D autocorrelations Moran autocorrelation of lag 6 weighted by polarizability

MATS4i 2D autocorrelations Moran autocorrelation of lag 4 weighted by ionization potential

JGI4 2D autocorrelations Mean topological charge index of order 4

SpMin7_Bh(i) Burden eigenvalues Smallest eigenvalue n. 7 of Burden matrix weighted by
ionization potential

B01[C-O] 2D Atom Pairs Presence/absence of C–O at topological distance 1

F04[C-O] 2D Atom Pairs Frequency of C–O at topological distance 4

EHOMO QM descriptors Highest occupied molecular orbital energy
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Figure 3. Several typical compounds that contain 6-membered rings in 22 high toxic N-nitroso
compounds (NNCs).

Considering all the molecular descriptors, acute oral toxicity of NNCs is mainly associated
with three properties: Polarizability, IP, and the presence/absence and frequency of C–O bond.
In addition, types of structural fragments (i.e., nR06) and charge/electrons transfer in molecules
also affect molecular toxicity of NNCs.

2.2. Classification Models

2.2.1. Data Set Analysis

In this study, a total of 80 NNCs collected from the US National Library of Medicine TOXNET
ChemIDplus database were used for model building and validation. The 80 NNCs compounds were
divided by the classification criterion of 200 mg/kg, then a dataset with 22 high toxic compounds and
58 low toxic compounds was obtained. The training set consisted of 15 high toxic and 41 low toxic
compounds while the external test set contained 7 high toxic and 17 low toxic compounds. As an
added precaution, it was verified that each set contained roughly the same percentage of high toxic
compounds (training set = 26.8%, test set = 29.2%).

Chemical diversity is important to build a robust and reliable prediction model. We have
investigated the chemical space distribution by calculating the molecule weight (MW) and
Ghose−Crippen LogKow (ALogP) of the training set and the external test set [32]. The distribution
scatter diagram was presented in Figure 4A. The scatter diagram showed that the chemical space
of compounds in the external test set was within the scope of the training set. To further explore
the chemical diversity of the data set, the Euclidian distance metrics of the data set was calculated.
The training and external test sets were compared with each other, and the heat map of Euclidian
distance metrics was shown in Figure 4B. It is clear that the similarity between the training and external
test sets was low.
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Figure 4. Chemical diversity analysis of the training and external test sets. (A) Chemical space was
defined by molecular weight (MW) and Ghose−Crippen LogKow (ALogP). N represents the chemical
number of different data sets. (B) Similarity heat map of Euclidian distance metrics calculated using
MACCS keys fingerprint for the training and external test sets.

2.2.2. Performances of 10-Fold Cross-Validation

In our classification study, we built the combinatorial predictive models by using four different
fingerprints along with seven statistical algorithms. As a result, a total of 28 binary classification
models were generated. The detailed evaluation results of these models are shown in Figure 5.
The performance of these models was evaluated by 10-fold cross-validation, and the best models
were selected based on the values of CA (classification accuracy) and AUC (the area under the ROC
curve). As shown in Figure 5, most models had CA values more than 0.6, except for MACCS-NB
and PubChem-NB models. Similarly, most models were obtained with AUC values higher than 0.6,
except for the SubFP-NB and SubFP-SVM models. According to the results, the top eight ranking
models were MACCS-ANN, PubChem-ANN, SubFP-ANN, PubChem-LR, PubChem-RF, Est-ANN,
MACCS-LR and MACCS-SVM. Their CA values were 0.732–0.839 and AUC values were 0.770–0.905.
The values of specificity (SP) were higher than that of sensitivity (SE) in all models, which means that
all models have higher prediction accuracy for low toxic compounds rather than high toxic compounds.
The underlying reason might be that more low toxic compounds existed in the data set. The detailed
performances of the top eight models are shown in Table 4. By comparing the performance of four
fingerprints, we could draw a conclusion that the MACCS and PubChem fingerprints are appropriate
for the classification study of NNCs regarding in vivo toxicity. Based on the well-defined structural
fragments dictionary, MACCS molecular fingerprint is full of structural information [33]. In previous
studies, MACCS and PubChem fingerprints had also been proven to outperform other fingerprints in
classifier models [33,34]. By contrast, the Est fingerprint performed worst when the same machine
learning methods were used. This might due to the nature of the Est fingerprint, where only 79 bits
signified substructure patterns are involved. It seems that the 79 bits are too short to represent diverse
fragments of all compounds. When using the same molecular fingerprint, ANN and LR algorithms
were better than other methods (kNN, NB, SVM, RF and Tree) in this study. For example, the 10-fold
cross-validation results using MACCS showed that the AUC values of MACCS-ANN and MACCS-LR
models were 0.905 and 0.832 respectively, whereas the values were 0.738, 0.655, 0.770, 0.767 and 0.619
in MACCS-kNN, MACCS-NB, MACCS-SVM, MACCS-RF and MACCS-Tree models, respectively.
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Figure 5. Performance of 10-fold cross-validation for the training set in 28 classification models. CA,
classification accuracy; AUC, the area under the ROC curve; SE, sensitivity; SP, specificity.

Table 4. Performance of the top eight models for training set and external test set in classification study
1.

Data Set Model CA SE SP AUC TP TN FP FN

Training set

MACCS-ANN 0.821 0.67 0.88 0.905 10 36 5 5
PubChem-ANN 0.839 0.73 0.88 0.885 11 36 5 4

SubFP-ANN 0.732 0.33 0.88 0.872 5 36 5 10
PubChem-LR 0.804 0.47 0.93 0.860 7 38 3 8
PubChem-RF 0.804 0.47 0.93 0.857 7 38 3 8

Est-ANN 0.732 0.33 0.88 0.840 5 36 5 10
MACCS-LR 0.768 0.40 0.90 0.832 6 37 4 9

MACCS-SVM 0.750 0.47 0.85 0.770 7 35 6 8

Test set

MACCS-ANN 0.792 0.29 1.00 0.992 2 17 0 5
PubChem-ANN 0.708 0.29 0.88 0.765 2 15 2 5

SubFP-ANN 0.667 0.29 0.82 0.626 2 14 3 5
PubChem-LR 0.792 0.43 0.94 0.889 3 16 1 4
PubChem-RF 0.708 0.14 0.94 0.693 1 16 1 6

Est-ANN 0.750 0.14 1.00 0.790 1 17 0 6
MACCS-LR 0.875 0.57 1.00 0.899 4 17 0 3

MACCS-SVM 0.875 0.71 0.94 0.958 5 16 1 2
1 Notes: CA, classification accuracy; SE, sensitivity; SP, specificity; AUC, the area under the ROC curve; TP, the
number of true positive compounds; TN, the number of true negative compounds; FP, the number of false positive
compounds; FN, the number of true negative compounds.
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2.2.3. Performance of External Test Set

The external test set was utilized for testing the top eight models. The performance of the eight
best models for test set is also shown in Table 4. The CA and AUC values ranged from 0.667 to
0.875 and 0.626 to 0.992 for external test set, respectively. Except for PubChem-RF model and the
model using SubFP fingerprint, all models exhibited good predictive performance for external test set
with both CA and AUC values higher than 0.7. Similar to the training set, the values of SP in these
models were significantly higher than that of SE, which reflected almost perfect predictive ability
for low toxic compounds in these models. Especially, the highest accuracy of 100% for low toxic
compounds (SP) was obtained in MACCS-ANN, Est-ANN and MACCS-LR models. However, in all
generated 28 models, only the MACCS-SVM model had good accuracy for high toxic compounds
with SE value of 0.71. We supposed that the higher predictive accuracy for low toxic compounds in
external test set was caused by the imbalance of high toxic compounds and low toxic compounds
with a ratio of 0.292. Among these models, the MACCS-ANN model (CA = 0.792, AUC = 0.992)
yielded the best performance, followed by MACCS-LR (CA = 0.875, AUC = 0.958) and MACCS-SVM
(CA = 0.875, AUC = 0.899) models for the external test set. It is worth noting that the longer bits of
fingerprint did not always get better results. For example, the PubChem fingerprint that contains
881 bits substructure patterns did not produce the best classification performance in this study. On the
basis of our results in training and test sets, the MACCS fingerprint might be the best choice for the
classification study of NNCs in terms of in vivo toxicity. Seven machine learning methods were used
in this study. From the overall prediction performance, we can conclude that two algorithms, namely
ANN and LR, produced the best results, in which models using ANN algorithm were slightly superior
to those models using LR algorithm. As we know, LR is a widely used technique of choice for statistical
modeling in which the outcome of interest is binary [35]. ANN is a type of algorithm that has great
potential to execute nonlinear statistical modeling and provide a new alternative to LR, the most
commonly used method for establishing predictive models for binary outcomes in medicine [35].
ANN offers a set of advantages, such as detecting complex nonlinear relationships between dependent
and independent variables, detecting all possible interactions between predictor variables, requiring
less formal statistical training and the availability of multiple training algorithms. We recommend that
the outstanding performance of ANN in 10-fold cross-validation and external validation is because of
its special algorithm [35]. In general, the prediction results showed the stable robustness and good
prediction accuracy of the models.

2.2.4. Identification of Privileged Substructures as Structural Alerts

To investigate the structural features between high toxic and low toxic NNCs, the IG method and
substructure frequency analysis were performed to recognize privileged substructures (fragments)
in the training and external test sets based on SubFP fingerprints [33,36,37]. The higher the
information gain value, the more important the substructure. These chemical features contribute
to investigate the relationship between structure and the acute oral toxicity of NNCs. Details of
IG values and frequencies of each fragment occurred in the high and low toxic classes are shown
in Table S3 in the Supplementary Materials. From the results of the IG analysis and frequency
values of privileged substructures, we found 30 substructures responsible for in vivo toxicity of
NNCs. Some representative privileged substructures and known compounds containing these
substructures are listed in Table 5. Among these 30 substructures, the following five substructures,
namely nitrile, Hetero N nonbasic, Heteroaromatic, Alkylchloride, and Tertiary aliph amine appeared
more frequently in high toxic class rather than low toxic class of NNCs (Table 5). This implies
that these six substructures can be considered as structural alerts for high toxic NNCs in vivo, and
then can be used as the screening alert fragments to predict potential toxicity of new potential
NNCs. For example, the compounds N-Nitrosomethylaminoacetonitrile (14) containing a nitrile
fragment and 2-Chloro-N-methyl-N-nitrosoethanamine (27) containing a chloroethyl fragment are two
highly toxic agents with LD50 values of 45 and 22 mg/kg, respectively. It has been mentioned in a
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previous study that nitrile was a potentially toxic fragment [38]. Nitrile compounds (e.g., acetonitrile,
acrylonitrile, and propionitrile) can release the cyanide anions through hydrolysis to exert their high
toxicity [38]. The cyanide anion could affect the central nervous system and the heart by inhibiting
cytochrome c oxidase. Hetero N nonbasic can be defined as an aromatic nitrogen atom having
two further total connections or an aromatic nitrogen atom affording a charge of +1 with three
further total connections. While another opinion suggested that hetero N and heterocycle might
be only the background noise of models, or they may be parts of some toxic substructures not
defined in the fingerprint [39]. The alkylchlorides are potentially alkylating agents towards DNA.
In compounds containing these fragments, the electron withdrawing effect of the Cl atom increases
the electrophilic character of the carbon, followed by forming carbocations and resulting in DNA
damage. For example, chloroethylnitrosoureas are an important type of anticancer agents, they exert
anticancer activity through chloroethylating DNA guanine and ultimately produce G–C interstrand
crosslinks [40–43]. Other toxic compounds containing alkylchlorides include nitrogen mustards,
epichlorohydrin, dichloromethane, dichloroethane and so on. Tertiary aliph amine compounds usually
undergo metabolic activation to generate a number of oxidative products including N-dealkylation,
ring hydroxylation, α-carbonyl formation, N-oxygenation, and ring opening metabolites through
the formation of iminium ion intermediates [44]. Some environmental pollutants and therapeutic
pharmaceuticals and their related metabolites containing a tertiary amine structure have the potential
to form iminium intermediates that are reactive toward nucleophilic macromolecules, including the
piperazines, piperidines and related compounds, pyrrolidines and N-alkyltetrahydroquinolines [44].
The substructure fragments were also analyzed by the MoSS module in KNIME [45]. The results
indicated that 41 fragments were obtained for acute oral toxicity of NNCs. The detailed results are listed
in Table S4 in the Supplementary Materials. Pyridine (Hetero N nonbasic) and nitrile derivatives have
a larger proportion in Moss results, which is consistent with the IG results. The unique substructure
characteristics detected by MoSS are imine and hydrazine fragments. Imine derivatives (Schiff base) are
unstable and undergo hydrolysis to give the corresponding amine and carbonyl compounds, in which
the latter (e.g., aldehydes or ketones) contain potential carbocations which act as electrophiles to form
adducts with DNA. Compounds containing hydrazine fragments can be activated by endogenous
substances such as metal ions or enzymes (e.g., cytochrome P450-dependent oxidases and flavin
monooxygenases) to form carbocations and carbon-centered radicals, resulting in reactive radical
species that cause DNA damage [33].

Table 5. Privileged substructures in compounds with high toxicity identified by information gain and
frequency analysis method.

No. Description SMARTS General
Structures

Representative
Compounds IG FH

SubFP133 Nitrile [NX1]#[CX2] 0.048 3.64

SubFP181 Hetero N nonbasic [nX2,nX3+] 0.037 2.73

SubFP184 Heteroaromatic [a;!c] 0.037 2.73

SubFP8 Alkylchloride [ClX1][CX4] 0.024 3.64

SubFP26 Tertiary aliph
amine

[NX3H0+0,NX4H1+;!$([N][!C]);!
$([N]*~[#7,#8,#15,#16])] 0.024 3.64
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3. Materials and Methods

3.1. QSAR Study

3.1.1. Data Preparation

The in vivo toxicity data of 80 NNCs were carefully collected from the US National Library
of Medicine TOXNET ChemIDplus database in terms of 50% lethal dose concentration (LD50) [46].
We selected oral LD50 values in rats as the endpoint in this study, since most of experiments chose the
oral route to estimate the toxicity [2,47]. Compounds that contain at least 1 N-nitroso group substituent
were collected from the database. To date, this is the largest dataset that contains rodent toxicity data
for NNCs as far as we know. Most regression algorithms depend on normally distributed data, so if
the data are not normally distributed, a numerical transformation should be performed to obtain a
normal distribution. In this study, all the original LD50 values were converted into the corresponding
−logLD50 values and were used as the dependent variables in QSAR analysis. The –LogLD50 values
for the dataset range from 2.12 to 5.00, suggesting the data are adequately distributed for QSAR study.
The name, CAS no. and toxicity values of NNCs are listed in Table 6.

3.1.2. Calculation of Descriptors

Quantum chemistry calculations were prevalently used in the study of QSAR modeling [48–50].
The density functional theory (DFT) level of approximation for chemistry is suitable for many
applications because of the better accuracy and the relative computational efficiency [51–53]. In the
present study, before calculating molecular descriptors, all chemical structures of NNCs were generated
by using the Gaussview 5.0 software (Gaussian, Inc., Pittsburgh, PA, USA), and then were optimized
by DFT method using the Gaussian 09 program [54] at the B3LYP functional (the standard Becke’s
three-parameter exchange potential and the Lee-Yang-Parr correlation functional, Gaussian, Inc.,
Wallingford, CT, USA) and 6-311++G(d,p) basis set. Frequency analyses on the optimized geometries
ensure the geometry is an accurate saddle point rather than a transition state. A set of quantum
chemical descriptors were calculated after the geometry optimization, such as dipole moment (µ),
total energy (E), the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied
molecular orbital energy (ELUMO), ELUMO − EHOMO gap, the bond lengths (B) and the bond angles (A).
The DRAGON [55] software (version 7.0) was used to obtain the 0-2D (two-dimension) molecular
descriptors. As most 3D descriptor groups encoding 3D structures were found to be sensitive to
the quantum chemical calculation method [56] which can influence the accuracy of QSAR model,
we therefore excluded the 3D descriptors. The total number of 0-2D descriptors was 3822. Finally,
the quantum chemistry descriptors were combined with the 0-2D descriptors generated by DRAGON
software to establish the QSAR models. The wide range of descriptors will facilitate the finding of
hidden important variables.

Table 6. Names, CAS no. and corresponding toxicity values of N-nitroso compounds used in this study.

No. Name CAS No. LD50 mg/kg Log
(LD50)−1

Predicted
log(LD50)−1

1 Diallylnitrosamine a 16338-97-9 800 (L) b 3.10 3.20
2 Dipentylnitrosamine 13256-06-9 1750 (L) 2.76 2.72
3 N-Methyl-N,4-dinitrosoaniline 99-80-9 1370 (L) 2.86 3.20
4 Nitroso-N-methyl-N-(2-phenyl) ethylamine 13256-11-6 48 (H) b 4.32 4.30
5 N-Nitroso(2,2,2-trifluoroethyl)ethylamine a 82018-90-4 960 (L) 3.02 3.20
6 Nitrosodibutylamine 924-16-3 1200 (L) b 2.92 3.17
7 N-Nitrosodipropylamine 621-64-7 480 (L) b 3.32 3.25
8 Nitrosoethylmethylamine 10595-95-6 90 (H) b 4.05 4.34
9 2-Nitrosomethylaminopyridine a 16219-98-0 60 (H) 4.22 4.23

10 Nitrosomethylaniline 614-00-6 225 (L) 3.65 4.15
11 Diisopropylnitrosamine 601-77-4 850 (L) 3.07 2.68
12 N-Nitrosobis(2,2,2-trifluoro ethyl)amine 625-89-8 300 (L) 3.52 3.46
13 N-Ethyl-N-tert-butylnitrosamine 3398-69-4 1600 (L) b 2.80 2.71
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Table 6. Cont.

No. Name CAS No. LD50 mg/kg Log
(LD50)−1

Predicted
log(LD50)−1

14 N-Nitrosomethylaminoacetonitrile 3684-97-7 45 (H) 4.35 4.25
15 N-Butyl-N-(4-hydroxybutyl) nitro samine 3817-11-6 1800 (L) b 2.74 2.34
16 N-Nitrosomethylvinylamine 4549-40-0 24 (H) 4.62 4.51
17 N-Nitroso-N-methylallylamine 4549-43-3 340 (L) 3.47 3.55
18 N-Ethyl-N-butylnitrosamine 4549-44-4 380 (L) b 3.42 3.71
19 N-Nitrosodibenzylamine 5336-53-8 900 (L) 3.05 2.92
20 N-Nitroso-N-methylcyclohexylamine a 5432-28-0 30 (H) b 4.52 3.92
21 Nitrosomethyl-n-butylamine 7068-83-9 130 (H) 3.89 3.99
22 N-Ethyl-N-hydroxyethylnitrosamine 13147-25-6 7500 (L) 2.12 2.53
23 N-Amyl-N-methylnitrosamine 13256-07-0 120 (H) 3.92 3.85
24 Dinitrosodimethylethylenediamine 13256-12-7 125 (H) b 3.90 3.90
25 Vinylethylnitrosamine 13256-13-8 88 (H) 4.06 3.68
26 N-Nitrososarcosine 13256-22-9 5000 (L) 2.30 2.68
27 2-Chloro-N-methyl-N-nitrosoethanamine 16339-16-5 22 (H) 4.66 4.10
28 N-Methyl(methoxymethyl)nitrosamine 39885-14-8 700 (L) 3.15 3.34
29 Methyl(acetoxymethyl)nitrosamine a 56856-83-8 130 (H) 3.89 3.83
30 Acetoxymethylbutylnitrosamine a 56986-36-8 1500 (L) 2.82 2.89
31 1-Methoxy-ethyl-ethylnitrosamine 61738-03-2 1000 (L) b 3.00 2.84
32 Methoxymethyl-ethylnitrosamine 61738-04-3 540 (L) 3.27 3.12
33 1-Methoxy-ethyl-methylnitrosamine 61738-05-4 240 (L) 3.62 3.35
34 Acetoxymethylpropylnitrosamine 66017-91-2 1000 (L) 3.00 3.05
35 Methyl(butyroxymethyl)nitrosamine 67557-56-6 800 (L) b 3.10 3.20
36 Acetoxymethyltrideuteromethylnitrosamine 67557-57-7 120 (H) 3.92 3.88
37 N-Nitroso-N-phenylhydroxylamine 148-97-0 490 (L) b 3.31 3.53
38 N-methyl-n-benzylnitrosamine 937-40-6 18 (H) b 4.74 4.22
39 4-(Methylnitrosoamino)benzaldehyde a 7431-19-8 2000 (L) 2.70 2.76
40 3-(N-Nitrosomethylamino)sulfolan 13256-21-8 750 (L) 3.12 2.88
41 Aethyl-4-picolylnitrosamin 13256-23-0 40 (H) 4.40 4.02
42 N,N’-Dimethylnitrosourea 13256-32-1 280 (L) 3.55 3.50
43 N-Nitrososarcosine ethyl ester 13344-50-8 4000 (L) 2.40 2.65
44 4-Nitrosomethylaminopyridine 16219-99-1 200 (L) 3.70 3.81
45 N-Nitrosoethylisopropylamine 16339-04-1 1100 (L) b 2.96 3.19
46 N-Nitrosotrimethylhydrazine 16339-14-3 95 (H) b 4.02 4.05
47 N-Nitrosodiacetonitrile 16339-18-7 163 (H) 3.79 3.89
48 N-Nitroso-N-ethylbenzylamine 20689-96-7 250 (L) b 3.60 3.66
49 N-Nitroso-O,N-diethylhydroxylamine 56235-95-1 1000 (L) b 3.00 2.79
50 N-Nitroso-N-(2-methylbenzyl)methylamine 62783-48-6 90 (H) 4.05 3.96
51 N-Methyl-N-nitroso-(3-methylphenyl)methylamine 62783-49-7 600 (L) 3.22 3.41
52 N-Methyl-N-nitroso-(4-methylphenyl)methylamine 62783-50-0 400 (L) b 3.40 3.89

53 c N-Nitroso-N-methyl-1(1-phenyl)-ethylamine a 68690-89-1 600 (L) 3.22 4.00
54 N-Nitroso-N-methyl-2-(2-phenyl)-propylamine 68690-90-4 2100 (L) 2.68 2.82
55 3-Nitrosomethylaminopyridine 69658-91-9 10 (H) 5.00 4.40
56 N-Nitrosodiethylamine a 55-18-5 220 (L) 3.66 3.62
57 N-Nitrosodimethylamine 62-75-9 37 (H) 4.43 4.53
58 N-Nitrosodiphenylamine 86-30-6 1825 (L) 2.74 2.74
59 N-Nitroso-3,6-dihydro-1,2-oxazine 3276-41-3 900 (L) 3.05 3.05
60 R(−)-N-Nitroso-2-methylpiperidine 14026-03-0 600 (L) 3.22 2.94
61 S(+)-N-Nitroso-2-methylpiperidine 36702-44-0 600 (L) 3.22 3.00
62 N-Nitrosoheptamethyleneimine a 20917-49-1 283 (L) 3.55 3.58
63 N-Nitrosomorpholine 59-89-2 282 (L) 3.55 3.23
64 N-Nitrosopyrrolidine 930-55-2 900 (L) 3.05 3.35
65 1-Nitrosopiperazine 5632-47-3 2260 (L) 2.65 3.39
66 N-Nitrosopiperidine 100-75-4 200 (L) 3.70 3.39
67 N-Nitroso-tetrahydro-1,2-oxazine 40548-68-3 830 (L) b 3.08 2.95
68 N-Nitrosoperhydroazepine a 932-83-2 336 (L) 3.47 3.51
69 N-Nitrosoindoline 7633-57-0 320 (L) 3.49 3.40
70 N-Nitroso-N’-methylpiperazine a 16339-07-4 100 (H) b 4.00 3.51
71 N-Nitrosoazacyclononane 20917-50-4 566 (L) b 3.25 3.40
72 3-Nitrosotetrahydro-1,3-oxazine 35627-29-3 600 (L) 3.22 3.29
73 N-Nitroso-1,3-oxazolidine 39884-52-1 1500 (L) 2.82 2.92
74 1-Amyl-1-nitrosourea a 10589-74-9 560 (L) 3.25 3.30
75 N-Nitroso-N-butylurea 869-01-2 400 (L) b 3.40 3.49
76 N-Nitroso-N-ethylurea 759-73-9 300 (L) 3.52 3.46
77 N-Nitroso-N-methylurea 684-93-5 110 (H) 3.96 4.27
78 Propylnitrosourea 816-57-9 480 (L) 3.32 3.13
79 N-Nitroso-N-methylbiuret a 13860-69-0 450 (L) b 3.35 3.73
80 Ethylnitrosobiuret a 32976-88-8 1050 (L) 2.98 3.53
a Test set in QSAR study; b Test set in classification study; c Outlier in the best GA-MLR-based QSAR model.



Int. J. Mol. Sci. 2018, 19, 3015 14 of 22

3.1.3. QSAR Modeling and Model Evaluation

QSARINS 2.2.2 software (Varese, Italy) [57,58] was used to develop QSAR models by means
of GA and MLR methods. After all types of molecular descriptors were generated, we performed
the pre-filtration prior to modeling. The constant or near-constant values (>80%) and the highly
inter-correlated descriptors (>95%) were eliminated due to statistical insignificance. All the compounds
were ranked according to the toxicity value (−logLD50), then one was selected as the test set every five
compounds, and the remaining compounds were used as the training set. A training set was used for
constructing QSAR models, whereas a test set was used for evaluating the external predictive ability of
the models. All subsets and GA tools of QSARINS 2.2.2 software were utilized for descriptor selection.
First, all low-dimensional models (up to 2–3 descriptors) were calculated using the all subset facility
to gain an insight into the best descriptors encoding the effect and to avoid a completely random
start of the GA. The core of chromosomes of the initial population for the GA was the best subset of
descriptors determined at this step. Then, GA was utilized to detect the solution space by maximizing
the leave-one-out (LOO) cross-validation correlation coefficient (Q2

loo) as the fitness function. To obtain
the best variables, the population size, mutation rate and number of generations were set as 200, 20
and 2000, respectively [23,56]. Q2

loo was chosen as it provides a measurement of model stability and
robustness. Following this procedure repeatedly, a population of good models was generated.

The statistical quality and internal predictive ability of QSAR models were evaluated using the
coefficient of determination R2 and modified form R2

adj, root mean square error (RMSE) and Q2
loo.

The QUIK rule (Q Under Influence of K) [59] was used to test the inter-correlation among descriptors
and was set to 0.05 to eliminate models with high multicollinearity. The external predictive ability of
the models was assessed through the test set and evaluated by Q2

ext, Q2
ext = 1 − PRESS/SD, where

PRESS is the sum of squared deviations between the experimental values and the predicted value for
each molecule in the test set, and SD is the sum of squared deviations between the experimental values
of the test set molecules and the mean experimental value of the training set molecules [25]. Q2

F1 [60],
Q2

F2 [61], Q2
F3 [62,63], Concordance Correlation Coefficient (CCC) [64,65], CCCext [66,67] and RMSEext

are also involved. A Y-scrambling procedure (2000 iterations to check the fitting of the randomly
reordered Y-data) was also performed to evaluate the possibility of the chance correlation in the QSAR
models. The dependent variables (−LogLD50) were randomly shuffled and new QSAR models were
established using the original independent variable matrix. If the QSAR model obtained by shuffling
the –LogLD50 values gave significantly lower coefficients of determination than the original model,
we considered that the proposed QSAR model was not obtained casually. These parameters were
calculated according to the following equations:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (3)

R2
adj = 1− n− 1

n− k− 1

(
1− R2

)
(4)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(5)

Q2
loo = 1− ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2 (6)

where yi and y are the actual and average activities and ŷi are predictive activities.
The Multi-Criteria Decision Making (MCDM) method included in QSARINS 2.2.2 software

was used to summarize the model performances relevant to internal and external validations as
scores [56,57]. The scores range from 0 to 1, where 0 and 1 represent the worst and the best validation
criteria, respectively. After numerous rounds of trials, models were finally selected with the best
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MCDM score, fulfilling the statistical thresholds for fitting, internal and external validation, and with
the least possible number of descriptors [66,68].

3.1.4. Application Domain

To consider the scope and limitations of the proposed models, the applicability domain (AD) was
considered. In other words, the AD describes the range of chemical structures for which the models
are considered to be applicable. The predicted values are reliable only for those compounds fall on the
AD. The AD of each model was evaluated by the leverage approach [69]. Williams plot, which is a plot
of standardized cross-validated residuals versus leverages (hat values, h), was used to visualize the
outliers in both the structural and the response spaces. The critical hat value of structural threshold
was set as h* = 3(p + 1)/n, where p is the number of descriptors of the model and n is the number
of training compounds. If h > h*, a compound will be identified as an outlier. For the training set,
compounds with h > h* seriously affect the statistical parameters of models, so they were removed,
and the model was calibrated again. For the test set, if compounds are observed with h > h*, their
predicted values were unreliable. A critical value of 3 for the standardized residual in response space
is usually used to identify statistical outliers. Response outliers in MLR models were identified if its
predicted value is higher than ±3 standardized residuals.

3.2. Classification Study

3.2.1. Data Preparation

Before the classification study, we conducted a preliminary test to determinate the classification
criterion. The same dataset of 80 NNCs used in QSAR studies was divided into three different levels
of toxicity (50, 100, and 200 mg/kg, respectively). The results obtained from the preliminary test
indicated that a toxic level with 200 mg/kg as the classification criterion had the best performance of
classification. Finally, a dataset containing 22 compounds with high toxicity and 58 compounds with
low toxicity was obtained. All these compounds were then randomly divided into a training set and a
test set with a ratio of 7:3. A complete list of the compounds’ classification is presented in Table 6.

3.2.2. Molecular Fingerprints

Molecular fingerprints are developed to describe chemical structures in a chemical database
and widely used in similarity searching and classification. Therefore, substructure features in each
fingerprint dictionary are defined to cover full of representative substructures. In this case, a molecule
was described as a binary string of structural keys. SMiles Arbitrary Target Specification (SMARTS) is
a language used for describing molecular patterns and properties using rules that are extensions of
simplified molecular input line entry specification (SMILES) [70]. Different substructure patterns with
SMARTS lists were predefined in a dictionary. For a SMARTS pattern, if a substructure existed in the
given molecule, the corresponding bit was set to “1” and otherwise set to “0” [70]. Four fingerprints
were used in our study, including the Estate fingerprint (Est, 79 bits), MACCS keys (166 bits), PubChem
fingerprints (881 bits), and Substructure fingerprint (SubFP, 307 bits). All these four fingerprints were
calculated by the PaDEL-Descriptor program [71].

3.2.3. Machine Learning Methods

Seven machine learning methods were used to build the classification models. They are k-nearest
neighbor (kNN), Logistic Regression (LR), Naïve Bayes (NB), Artificial Neural Network (ANN),
Random Forest (RF), Support vector machine (SVM), and Tree. The seven methods were performed
using Orange Canvas 3.11 software (freely available at https://orange.biolab.si/).

k-nearest neighbor (kNN): kNN is a nonparametric method to classify objects based on nearest
training samples in the feature space. For each test sample Z = (x′, y′), the list of its nearest neighbor
was determined by the algorithm calculated the distance or similarity between each training example

https://orange.biolab.si/
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(x, y) [72]. After that it can be classified on the basis of the majority of the nearest neighbors. In order
to reduce the impact of k (the number of nearest neighbors) value, a distance-weighted method was
utilized. In this study, we chose the Euclidean distance and distance-weighted parameters and the k
value was set to 5.

Logistic Regression (LR): LR was developed by statistician David Cox in 1958 [73,74], which has
usually been applied to a binary dependent variable. The two possible dependent variable values can
be labeled as symbols of “0” and “1”, which represent results such as pass/fail, win/lose, alive/dead
or yes/no, respectively.

Naïve Bayes (NB): The NB classifier method is a simple classification method based on the Bayes
rule for the conditional probability [75]. This method allows users to categorize compounds in a
data set based on the equal and independent contribution of their attributes. The prior probability
can be directly estimated from the training set since it is the same to all of the classes, while the
marginal probability is ignored. In this study, the default settings in Orange were applied to perform
the NB classification.

Artificial Neural Network (ANN): ANN has become a prevalent method which can be used
for identifying complex nonlinear relationship for classification and regression [76]. The network
consisted of three layers containing one input layer, one hidden layer, and one output layer. The ANN
method in Orange 3.11 is a multi-layer perceptron (MLP) algorithm with backpropagation. In this
work, the number of neurons per hidden layer was set to 200, and the rectified linear unit function
(ReLu) was chosen as activation function for the hidden layer.

Random Forest (RF): RF was developed by Breiman, which is an ensemble learning method for
classification and regression [77]. The forest is assembled by trees. Each tree is developed from a
bootstrap sample from the training set. The tree grows up to maximum size without pruning. When
developing individual trees, an arbitrary subset of attributes is achieved (hence the term “Random”),
from which the best attribute for the split is selected. The final model is based on the majority of
individually developed trees in the forest. The number of trees in the forest was set to 20.

Support vector machine (SVM): SVM is a machine learning technique that separates the attribute
space with a hyperplane, thus maximizing the margin between the instances of different classes or class
values. It was first developed by Vapnik and co-workers in 1995, which is a kernel-based algorithm
for binary data classification and regression [78]. Polynomial kernel, Gaussian radial basis function
kernel (RBF) and sigmoid kernel are the generally used kernel functions. The penalty coefficient C and
slack variable γ should be introduced to make a compromise between linear separability and maximal
margin. In this study, the RBF kernel was chosen, and the parameters C and γ were tuned on the
training set by 10-fold cross-validation. Orange embeds a popular implementation of SVM from the
LIBSVM package [79]. The linear function was chosen, and the cost was set to 1.00.

Tree: Tree is a simple algorithm that splits the data into nodes by class purity. It is a precursor
to RF. Tree in Orange is designed in-house and can handle both discrete and continuous datasets.
It includes decision nodes, branches, and leaves. A decision tree inputs an object or situation described
by a number of properties and outputs a yes/no decision. An instance is classified by beginning at the
root node of the decision tree, testing the attribute specified by this node, followed by moving down to
the tree branch according to the value of the attribute [80]. In the pre-pruning process, the minimal
instance in leaves is 3, and stops splitting nodes with fewer instances than 5. Other parameters of tree
were used with the default values in Orange.

3.2.4. Performance Evaluation

The 10-fold cross-validation and test set were used to evaluate the performance of all the
established models. For 10-fold cross-validation, the training set was further divided in to ten subsets,
nine of which were chosen as training sets and one subset as a test set in each run. After ten runs,
each subset was used as a test set and the entire dataset was predicted. All models were evaluated by
counting the numbers of true positive (TP), true negative (TN), false positive (FP), and false negative
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(FN) compounds. Further, the classification accuracy (CA), sensitivity (SE), and specificity (SP) were
also calculated by the following equations:

CA = (TP + TN)/(TP + TN + FP + FN) (7)

SE = TP/(TP + FN) (8)

SP = TN/(TN + FP) (9)

The CA is the total percentage of both high toxic and low toxic compounds that were correctly
predicted. The SE is the predictive accuracy of the high toxic compounds and the SP means the
predictive accuracy of low toxicity. Further, the receiver operating characteristic (ROC) curve where
the TP rate (or sensitivity) against the FP rate (1-specificity) was plotted. The area under the ROC
curve (AUC) was also calculated. The values of AUC range from 0.5 to 1.0 [81], where 1 indicates a
perfect classifier, 0.5 means the classifier has no discriminative power.

3.2.5. Analysis of Privileged Substructures

The information gain (IG) [70] and substructure fragment analysis [82,83] were used to identify
the privileged substructure fragments and the structural alerts. If a substructure was more frequently
presented in the class of compounds with high toxicity, this substructure could be regarded as a
privileged substructure involved in chemical toxicity. The frequency of a fragment in high toxic
compounds was defined as follows:

Frequency of a fragment =
NH

f ragment × Ntotal

N f ragment_total × NH
(10)

where NH
f ragment is the number of compounds containing the fragment in the class of high toxic

compounds; Ntotal is the total number of compounds; NH
f ragment_total is the total number of compounds

containing the fragment; and NH is the number of high toxicity compounds.
In addition, the MoSS module in KNIME (available online: http://www.knime.org/) was also

used to search for substructure fragments that are frequently presented in a set of molecules. In the
MoSS module, the “minimum fragment size” and “minimum focus support in %” values are important
for fragment search. In our study, the two values were finally set to 4 and 3, respectively.

4. Conclusions

In this study, we developed the QSAR and classification models of a large set of 80 NNCs with
their rat acute oral toxicity. All QSAR models were established by GA-MLR methods. A reasonable
correlation (Q2

loo = 0.7533, R2 = 0.8071, Q2
ext = 0.7041, R2

ext = 0.7195) was obtained between
experimental and predicted toxicity values for the NNCs studied in the best QSAR model with
eight molecular descriptors. The robustness and fitting goodness of QSAR models were evaluated
using LOO cross-validation, while the test set was used to assess the external predictive power.
The QUIK rule was used to eliminate models with high predictor collinearity. The possibility of chance
correlation of the best model was checked by a Y-scrambling procedure. All the classification models
were obtained by four molecular fingerprints (Est, MACCS, PubChem and SubFP) combined with
seven machine learning methods (kNN, LR, NB, ANN, RF, SVM and Tree). All these models were
examined by 10-fold cross-validation and external test sets to evaluate their internal and external
predictive performance. The best classification model was the MACCS-ANN model with Q and
AUC values of 0.821, 0.905 and 0.792, 0.992 for the training set and external test set, respectively.
Analysis of privileged substructures performed by IG and frequency analysis methods can identify
some substructures (fragments) as structural alerts for acute oral toxicity of NNCs. The substructures
were further tested and verified by MoSS analysis. From the results of GA-MLR-based QSAR and

http://www.knime.org/
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classification models, we can conclude that the polarizability, IP, the presence/absence and frequency
of C-O bond, Nitrile, Hetero N nonbasic, Alkylchloride, Tertiary aliph amine can be regarded as main
attributes for assessing in vivo toxicity of NNCs. We believe that the models we developed reflect
major contributions to our knowledge of the toxicity of NNCs. Compared with GA-MLR-based QSAR
models, the semi-quantitative classification models could determine toxic severity of compounds with
high accuracy directly. All the proposed models can provide useful insights into the structural features
responsible for the acute oral toxicity of NNCs and therefore could help to improve our understanding
of the toxicity mechanisms in vivo for this class of compounds. In summary, our study not only
provides useful tools for predicting the in vivo toxicity of NNCs quantitatively or semi-quantitatively,
but is also helpful to estimate acute toxicity in assessment of environmental safety.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/10/
3015/s1.
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