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Abstract: Overloaded transport can certainly improve transportation efficiency and reduce operating
costs. Nevertheless, several negative consequences are associated with this illegal activity, including
road subsidence, bridge collapse, and serious casualties caused by accidents. Given the complexity
and variability of mountainous highways, this study examines 1862 overloaded-truck-related crashes
that happened in Yunnan Province, China, and attempts to analyze the key factors contributing to
the injury severity. This is the first time that the injury severity has been studied from the perspective
of crashes involving overloaded trucks, and meanwhile in a scenario of mountainous highways. For
in-depth analysis, three models are developed, including a binary logit model, a random parameter
logit model, and a classification and regression tree, but the results show that the random parameter
logit model outperforms the other two. In the best-performing model, a total of fifteen variables
are found to be significant at the 99% confidence level, including random variables such as freeway,
broadside hitting, impaired braking performance, spring, and evening. In regards to the fixed
variables, it is likely that the single curve, rollover, autumn, and winter variables will increase the
probability of fatalities, whereas the provincial highway, country road, urban road, cement, wet,
and head-on variables will decrease the likelihood of death. Our findings are useful for industry-
related departments in formulating and implementing corresponding countermeasures, such as
strengthening the inspection of commercial trucks, increasing the penalties for overloaded trucks,
and installing certain protective equipment and facilities on crash-prone sections.

Keywords: injury severity; overloaded-truck-related crashes; random parameter logit model; mountainous
highways; unobserved heterogeneity

1. Introduction

Over the years, road safety issues have attracted great attention from all walks of
life. Although the industry management departments in various countries have taken
proper measures, and meanwhile achieved certain results, the annual number of road
traffic deaths remains unacceptably high, reaching 1.35 million in 2016 [1]. As we all
know, there are a number of factors that can contribute to road traffic accidents, among
which the inappropriate transportation behavior of commercial trucks, especially truck
overloading, is one of the main causes. In a narrow sense, truck overloading is the act of
loading a commercial truck with more cargo than the vehicle’s rating [2]. This phenomenon
is quite common in middle-income countries, where the demand for cargos transportation
is relatively considerable. Undeniably, overloaded transportation does help enterprises
improve their transportation efficiency and reduce operating costs, but at the same time, it
may also pose serious potential risks to road safety, and can even lead to severe accidents.
Consider the case of China. According to statistics, more than 80% of truck-related crashes
result from truck overloading [3]. In addition, compared with properly loaded vehicles,
overloaded trucks are far more likely to damage road traffic infrastructure, as manifested
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in shortening the service life of the road pavement, increasing the fatigue damage of the
bridge, and even causing the bridge to collapse [4,5]. Truck overloading is also associated
with other negative phenomena, including the disorder of the road transport market and an
increase in maintenance costs for hardware infrastructure [6,7]. Considering the prevalence
and hazards of truck overloading, it is of great practical significance to conduct appropriate
research and analysis on overloaded trucks to improve road safety.

On the whole, however, there are few studies that are specific to overloaded trucks, and
the existing related works are more focused on the dangers of truck overloading [4,5,8–10].
In terms of the injury severity of truck-related crashes, studies oriented to such vehicles
are even less common but may include factors such as the size of the load or whether the
vehicle is overloaded as an element to examine [11,12]. Unlike previous studies, this paper
focuses only on overloaded-truck-related crashes and analyzes the key factors affecting
the injury severity of those crashes, based on five aspects: roadway characteristics, envi-
ronmental characteristics, accident characteristics, vehicle characteristics, and temporal
characteristics. Despite the five characteristics mentioned above having been considered
more in established studies, this paper proposes some new elements in combination with
the categorization features of vehicles and roads in China, thus refining the values of the
variables. On mountainous highways, the driving environment is more complicated, with
long downward slopes, tunnels and even tunnel groups on some sections [13]. Addition-
ally, this type of road is commonly used in China for the transportation of minerals or
construction materials. Considering the two facts above, commercial trucks, especially
overloaded vehicles, may be at greater risk in such an environment. In light of this, as
opposed to most prior studies that have chosen plain areas as the scenario, this paper is
more interested in the crashes that occur in mountainous regions. Analysis results are of
great value for developing strategies for the management of overloaded trucks and the
improvement of road safety on mountainous highways.

Numerous works have demonstrated that logit models are effective tools for exploring
the factors that influence the injury severity of truck-related crashes [14–19]. To address the
heterogeneity among drivers, this paper also introduces random parameters to fit the crash
data. Further, the fitting performances between different models are compared, mainly
considering the traditional logit model and the classification and regression tree method.
The remaining sections in this paper are organized as follows. Next, related works on
the hazards of overloaded trucks and the influencing factors of truck-related crashes are
summarized. In the following section, data description is presented, and the modeling
process is described. As for Section 4, the estimated results of the models are listed, and
the corresponding analysis and discussion follows. A summary of the whole study and a
vision for future studies are stated in the last section.

2. Literature Review

Currently, studies on overloaded trucks tend to focus on their negative effects, such
as destruction of road traffic infrastructure, interference with social order and damage to
the living environment [4–10]. Jacob et al., have confirmed that overloaded trucks can
contribute to a significant reduction in the service life of road pavements [8]. Another
study exploring the effect of overloaded trucks on the surrounding environment has shown
that overloaded vehicles, especially trucks with trailers and semi-trailers, tend to generate
more noise than other types [9]. In addition, some scholars have described the application
practice of the weight-in-motion (WIM) technology, a system that measures a vehicle’s
weight while it is traveling normally or at reduced speeds, and has attempted to perform
prediction or analysis based on the historical data [20–22]. Unfortunately, there is still a
large research gap in the analysis of overloaded-truck-related crashes, particularly in the
exploration of factors that contribute to the injury severity.

For all types of truck-related crash, dozens of characteristics have been explored
in the previous studies up to now, involving multiple scenarios and covering various
perspectives. In the selection of regions studied, both developed and developing countries
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have been involved, especially the latter, whose road traffic deaths tend to take a larger
proportion [23]. Specific to the selection of traffic scenarios, rural and urban roadways [24],
mountainous and non-mountainous highways [12,13,19], freeway merging and diverging
points [25], roadway sections and signalized intersections [26], or other typical locations
such as toll plazas [26], river-crossing tunnels [27], work zones [28] and even highway-rail
grade crossings [29] have been considered. With respect to mountainous highway scenarios,
Wang et al., examined the influence of road geometric design on the injury severity of
truck-related crashes, using two typical freeways in China, and found that curve factors
significantly increased the likelihood of fatalities, but the opposite was true in the case
of downgrade sections [12]. Similarly, Zhou et al. selected freeways in a mountainous
region of China as the scenario and compared the differences in the injury severity between
tunnel sections and general sections [30]. Based on the estimated results, it appears that
trucks were involved in more severe crashes in tunnel sections, and the risk of drivers or
occupants being fatally injured is higher in the long tunnels that range from 1000 m to
3000 m in length.

Likewise, in terms of influencing factors selection, a considerable number of charac-
teristics have been extensively studied, mainly including roadway characteristics, driver
characteristics, environmental characteristics, accident characteristics, vehicle characteris-
tics and temporal characteristics [19,31,32]. The weight of the vehicle or whether the truck
is overloaded should be one of the elements in the above-mentioned vehicle characteristic
group, which normally includes factors such as truck type, braking performance and tire
condition [12,16,18]. As expected, truck overloading has been shown in several studies
to result in more severe injury consequences [12,27,33]. A study conducted by Chen et al.
found that higher casualty levels were associated with overloaded trucks and inferred that
the outcome was related to an increase in braking distance [27]. Focusing on the vehicle
weight factor, Li et al., have demonstrated that higher values are associated with greater
levels of accident injuries and fatalities on normal sections of highways, and they have
emphasized the importance of designing and installing emergency escape ramps for heavy
trucks, especially the truck overloaded [34]. Considering the negative impact of truck
overloading or increased weight on the injury severity, there is a strong need for a separate
detailed study on overloaded-truck-related crashes so as to truly identify the key elements
or scenarios that may lead to a high probability of fatalities.

Among the other five categories, driver characteristics, especially driving behavior,
is identified as the most significant aspect that affects the injury severity of truck-related
crashes [13]. Risky driving behaviors such as disregarding traffic signs or signals, speeding,
drunk or drugged driving, fatigued driving and distracted driving have been found to
induce more severe injury outcomes, while safe driving behaviors, for example, wearing
a seat belt, have been shown to decrease the severity [29,35,36]. Other factors falling
under the driver characteristic group, such as age, gender, alcohol influence, and drug
involvement, also play a role in determining crash occurrence and injury severity [26,37,38].
Regarding the selection of factors related to roadway characteristics, horizontal and vertical
alignment, curve radius, pavement surface conditions, the number of lanes and speed
limits were generally included [24,25,31,39,40]. Concerning the selection of factors related
to environmental characteristics, weather conditions, lighting conditions and traffic volume
were often covered [29,39,41]. With regard to the selection of factors related to accident
characteristics, crash type and the number of vehicles involved were considered in most
cases [37,42]. As for the selection of factors related to temporal characteristics, time of day,
day of week and season were included to a great extent [15,33,38,43].

Methodologically, logit and probit models are the most widely employed methods for
analyzing the injury severity of truck-related crashes [13]. A number of the logit models
used in previous studies have been modified in order to provide a better fit to the data. The
random parameter logit model, for example, is obtained by adding a random term to the
original model. In addition, mainstream hybrid models, like the Bayesian logit model, are
developed by incorporating appropriate theoretical methods into the basic model [14–19].
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Apart from traditional regression models, more and more new methods have been applied
to injury severity analysis in recent years, such as the partial proportional odds model
(PPO) [12], classification and regression tree (CART) [13,35] and latent class clustering
(LCC) [36].

Based on the literature review discussed above, this study decides to center on the
overloaded-truck-related crashes that occurred on the mountainous highways in Yunnan
Province, China. Meanwhile, given that the random parameter logit model can account
for the unobserved heterogeneity, which meets our study objectives, it is chosen in this
paper, as in several others, to analyze the injury severity of those crashes [15,19,41,44,45]. It
is expected that this study will help clarify the key elements affecting the injury severity,
which is of great value for both research gaps filling and road safety governance.

3. Materials and Methods
3.1. Data

Over 3000 truck-related crashes are utilized in this study, which occurred in Yunnan
Province between 2010 and 2015, collected by the local traffic police departments and crash
appraisal departments. In the original dataset, there are a number of pre- and post-crash
data items. In the pre-crash group, roadway characteristics (e.g., road grade, horizontal
alignment, and pavement condition), truck characteristics (e.g., vehicle performance status
and truck type), and environmental characteristics (e.g., lighting condition) are involved,
while in the post-crash category, accident characteristics (e.g., collision type and casualty
figure) and temporal characteristics (e.g., the date of accidents) are recorded. Other char-
acteristics such as seat belt usage and airbag status are also investigated and written into
the dataset.

However, the collected data is inevitably flawed due to possible errors in manual
data entry. Specifically, there are instances where data is missing or inconsistent. In this
regard, prior to data analysis, the existing data need to be properly processed, which
mainly involves three aspects in our study: data repair, data filtering and data regeneration.
Thereafter, five crash characteristic groups are re-formed, including roadway characteristics
(i.e., highway classification, horizontal alignment, pavement material, and road surface
condition), environmental characteristics (i.e., lighting condition), accident characteristics
(i.e., collision type), vehicle characteristics (i.e., truck type and braking performance) and
temporal characteristics (i.e., season and time). Those data items not included in the
revised dataset are used as reference items, so as to provide certain factual support for the
inference. As for the selection of injury severity indicators, the KABCO scale, which has
been frequently used in previous studies, is referenced [40,44]. Nevertheless, as few records
of non-injury outcomes are written into the original dataset, and as casualties are described
in a relatively simple manner, only the indicators of death and injury (both apparent and
non-apparent) are considered. Ultimately, a total of 1862 overloaded-truck-related crashes
are included in the study sample. A brief description of the data characteristics of the
explanatory variables can be found in Table 1.

As shown in Table 1, there were 1160 overloaded-truck-related crashes that resulted
in more severe consequences, accounting for 62.30% of the total, which is 1.65 times the
number of crashes that resulted in only injuries. Regarding the explanatory variables,
more crashes occurred in the following scenarios: country road, straight section, asphalt
pavement, dry surface, daylight, head-on collision, light truck, normal braking performance,
winter, and afternoon. Contrary to intuitive thinking, crashes that occurred on dry roads
accounted for the majority of the sample size, taking up 91.62% of it, and more than
60% of those involved more severe outcomes. An accurate and detailed analysis must be
conducted through modeling.
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Table 1. Statistical characteristics of explanatory variables.

Variables\Indices
Death Injury Total

Frequency Percentage Frequency Percentage Frequency Percentage

Total crashes 1160 62.30% 702 37.70% 1862 100.0%
Roadway characteristics
Highway classification

Freeway 207 65.30% 110 34.70% 317 17.02%
National highway * 182 72.22% 70 27.78% 252 13.53%
Provincial highway 124 59.33% 85 40.67% 209 11.22%

Country road 396 58.41% 282 41.59% 678 36.41%
Urban road 144 57.83% 105 42.17% 249 13.37%

Urban expressway 11 55.00% 9 45.00% 20 1.07%
Other types of roads 96 70.07% 41 29.93% 137 7.36%

Horizontal alignment
Straight * 935 61.31% 590 38.69% 1525 81.90%

Single curve 221 67.38% 107 32.62% 328 17.62%
Consecutive curve 4 44.44% 5 55.56% 9 0.48%

Pavement material
Asphalt * 932 63.32% 540 36.68% 1472 79.05%

Gravel 41 74.55% 14 25.45% 55 2.95%
Cement 164 52.90% 146 47.10% 310 16.65%

Dirt 23 92.00% 2 8.00% 25 1.34%
Road surface condition

Dry * 1077 63.13% 629 36.87% 1706 91.62%
Wet 78 52.00% 72 48.00% 150 8.06%

Other types of conditions 5 83.33% 1 16.67% 6 0.32%
Environmental characteristics

Lighting condition
Daylight 772 61.27% 488 38.73% 1260 67.67%
Dark lit * 315 66.60% 158 33.40% 473 25.40%

Dark, not lit 73 56.59% 56 43.41% 129 6.93%
Accident characteristics

Collision type
Head-on 375 54.82% 309 45.18% 684 36.73%

Broadside 106 48.18% 114 51.82% 220 11.82%
Rear-ending 197 67.47% 95 32.53% 292 15.68%
Sideswipe 77 66.96% 38 33.04% 115 6.18%

Vehicle–pedestrian collision * 206 69.59% 90 30.41% 296 15.90%
Rollover 148 85.55% 25 14.45% 173 9.29%

Hitting an object 51 62.20% 31 37.80% 82 4.40%
Truck characteristics

Truck type
Light truck * 480 60.61% 312 39.39% 792 42.53%

Medium truck 285 64.33% 158 35.67% 443 23.79%
Heavy truck 395 63.00% 232 37.00% 627 33.67%

Braking performance
Normal * 959 60.13% 636 39.87% 1595 85.66%
Impaired 201 75.28% 66 24.72% 267 14.34%

Temporal characteristics
Season

Spring 326 64.30% 181 35.70% 507 27.23%
Summer * 231 56.07% 159 38.59% 412 22.13%
Autumn 256 61.69% 181 43.61% 415 22.29%
Winter 347 65.72% 181 34.28% 528 28.36%

Time
Night 115 66.86% 57 33.14% 172 9.24%

Morning 316 62.08% 93 18.27% 509 27.34%
Afternoon * 420 60.00% 280 40.00% 700 37.59%

Evening 309 64.24% 172 35.76% 481 25.83%

* The variable serves as a reference.
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3.2. Methodology

Due to the heterogeneity of truck drivers, a random parameter logit model was
developed for this problem. In addition, in order to demonstrate the superiority of the
stochastic model, a traditional binary logit model, as well as a classification and regression
tree model, were used as references. The construction process of the above three models is
presented below.

3.2.1. Binary Logit Model

As mentioned earlier, only two injury severity indicators, death and injury, were
selected. Thus, whether an overloaded truck will cause fatalities in the crash can be
approximately regarded as a binary choice problem. In order to solve this problem, a
simple linear probability model is often considered [46]. However, due to the difficulty
that the predicted value calculated by the model can be guaranteed to always fall within
a closed interval [0, 1], and the heteroscedasticity of the disturbance term, it is necessary
to transform the linear probability model into a utility model [47]. On this basis, it is also
essential to select an appropriate probability distribution for the disturbance term according
to practical needs [48].

In general, both the logistic distribution and the standard normal distribution have
higher usage rates; the former can be used to obtain a logit model, while the latter can be
used to derive a probit model. Equation (1) shows the specific formula of a binary logit
model [14,49–51]:

F(XiB) = exp(XiB)/[1 + exp(XiB)] (1)

where Xi is a vector of several explanatory variables; B is a vector of the coefficients to be
estimated, matching with the vector Xi; F(z) is the cumulative distribution function of that
disturbance term; n is the total number of observations (i.e., the crashes); i is the unique
number of each observation, ranging from 1 to n. Correspondingly, the marginal effects of
those explanatory variables can be calculated by Equation (2) [44,52,53]:

∂F(XiB)/∂xj = β j f (XiB) (2)

where xj is an arbitrary variable; β j is the coefficient of a certain variable, f (z) is the
corresponding probability density function; m is the total number of variables added to the
model; j is the unique number of each variable, ranging from 1 to m.

3.2.2. Random Parameter Logit Model

In the traditional binary logit model, the coefficient of each explanatory variable is
assumed to be fixed; that is to say, one plays an equal role in all crashes [44]. However,
this is not exactly the same as in reality. For different drivers, there exist more or fewer
discrepancies in their characteristics such as driving habits, behavior preference and risk
awareness. Thus, despite the same scenario, different drivers may make different decisions,
resulting in different levels of consequences. It is in consideration of the unobserved
heterogeneity problem that random parameters are introduced.

Unlike the assumption of the previous model, the random parameter logit model
assumes that the corresponding coefficients of the explanatory variables can obey a certain
distribution. Referring to the existing studies, the random parameter is also assumed to
be normally distributed in our study, and to be written as a linear combination of a fixed
parameter and a random term, as shown in Equation (3) [15,41,44,54–56]:

βi = β + µi (3)

where βi is the coefficient of the variable for observation i considering the random utility,
and µi is a normally distributed term corresponding to that observation. Combined with
Equation (1), a random parameter logit model can be obtained, as shown in Equation (4):

F(XiBi) = exp(XiBi)/[1 + exp(XiBi)] (4)

where Bi is a vector of those random coefficients corresponding to observation i.
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The estimation of random parameters usually requires simulation, mainly involving
the Maximum Likelihood Estimate and the Halton Sequence [41,43]. In general, 200 Halton
draws are often utilized [19,39,41,44,45], while in this study, the sampling frequency is
increased to 500, so as to improve the accuracy of the estimated results.

3.2.3. Classification and Regression Tree

In machine learning, a Decision Tree (DT) is a supervised learning method, while a
Classification and Regression Tree (CART) is one of the algorithms under this category,
either as a non-parametric classification method or as a non-parametric regression one [13].
When the dependent variable is continuous, the generated tree is a regression tree, but when
it is discrete, a classification tree is generated. The major difference between CART and
other algorithms under DT is that the tree built by CART is necessarily a binary tree [35,57].
In other words, no matter what type of decision tree is used, or how many values the
characteristic variables have, each node can only be split into two child nodes based on the
relationship between the value of the variable and the discriminant rule, where the one that
satisfies the rule is “yes” and the one that does not is “no”. In general, the left branch of
the tree generated corresponds to the branch with “yes” feedback, while the right branch
corresponds to the one with “no” feedback. By recursively splitting each characteristic
node according to such rules until there are no further splits that can be made, a decision
tree based on CART can be obtained [13,35]. Based on the tree-building process presented
above, it can be concluded that the CART algorithm is relatively simple compared with
the previous logistic regression models [20,57]. Since the dependent variable in this study
is a discrete one that is either death or injury, the decision tree generated using CART is a
classification tree. Subsequently, it is sometimes necessary to prune the trees based on the
classification results, as well as to select the optimal tree [13,35,57].

4. Results and Discussion

Based on the revised dataset, a traditional binary logit model, a random parameter
logit model, and a decision tree based on CART are developed, whose estimated results are
shown in Table 2 and Figure 1.

Figure 1. Decision tree built by CART. Note. a/b = the number of “yes” feedback/the number of
observations.
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Table 2. Estimated results for the binary logit model and the random parameter logit model.

Variables\Items
Binary Logit Model Random Parameter Logit Model

Coefficient Std. Err. p>|z| Coefficient Std. Err. p>|z|
Roadway characteristics
Highway classification

Freeway 0.635 0.211 0.003 −0.733 (0.900) 0.186 <0.001
Provincial highway −0.539 0.213 0.011 −0.520 0.179 0.004

Country road −0.580 0.175 0.001 −0.623 0.148 <0.001
Urban road −0.380 0.206 0.065 −0.491 0.175 0.005

Urban expressway −0.433 0.494 n.s. a −0.368 0.452 n.s.
Other types of roads −0.299 0.252 n.s. −0.166 0.214 n.s.

Horizontal alignment
Single curve 0.387 0.140 0.006 0.3954 0.118 0.001

Consecutive curve −0.068 0.723 n.s. −0.195 0.692 n.s.
Pavement material

Gravel 0.242 0.338 n.s. 0.190 0.281 n.s.
Cement −0.398 0.138 0.004 −0.364 0.116 0.002

Dirt 1.358 0.761 0.074 1.149 0.623 0.065
Road surface condition

Wet −0.365 0.182 0.045 −0.465 0.158 0.003
Other types of conditions 1.049 1.110 n.s. 0.719 0.795 n.s.

Environmental characteristics
Lighting condition

Daylight 0.145 0.240 n.s. 0.144 0.219 n.s.
Dark, not lit −0.300 0.220 n.s. −0.216 0.215 n.s.

Accident characteristics
Collision type

Head-on −0.692 0.155 <0.001 −0.602 0.130 <0.001
Broadside −0.908 0.192 <0.001 −0.877 (1.472) 0.171 <0.001

Rear-ending −0.270 0.198 n.s. −0.112 0.173 n.s.
Sideswipe −0.385 0.251 n.s. −0.381 0.211 0.071
Rollover 0.751 0.260 0.004 0.693 0.215 0.001

Hitting an object −0.464 0.276 0.093 −0.525 0.231 0.023
Vehicle characteristics

Truck type
Medium truck 0.156 0.130 n.s. 0.099 0.110 n.s.
Heavy truck 0.114 0.120 n.s. 0.142 0.101 n.s.

Braking performance
Impaired 0.581 0.164 0.000 0.617 (0.657) 0.146 <0.001

Temporal characteristics
Season

Spring 0.268 0.144 0.063 0.556 (2.538) 0.136 <0.001
Autumn 0.303 0.150 0.043 0.321 0.121 0.008
Winter 0.438 0.142 0.002 0.419 0.115 <0.001

Time
Night 0.421 0.268 n.s. 0.439 0.236 0.063

Morning 0.118 0.127 n.s. 0.148 0.102 n.s.
Evening 0.422 0.243 0.083 0.873 (3.369) 0.236 <0.001

Model statistics
Number of observations 1862 1862
Log-likelihood at zero −1233.730 −1151.216

Log-likelihood at convergence −1151.216 −1144.624
AIC 2364.4 2362.6

a n.s. refers to non-significant (at the 90% confidence level).

4.1. Model Comparison
4.1.1. Binary Logit Model vs. Random Parameter Logit Model

Table 2 demonstrates that there are certain differences between the estimated results of
these two models, firstly reflected in the number of significant variables. In the traditional
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binary logit model, a total of nine variables are significant at the 99% confidence level,
while in the random parameter logit model, the number of significant variables rises to 15,
five of which are found to be random.

In order to evaluate the estimation effect of the two models more accurately, and to
compare their goodness-of-fit, Log-likelihood Function and Akaike Information Criterion
(AIC) are introduced. According to the results shown in Table 2, the model including
random parameters has a greater value of Log-likelihood at convergence and a smaller
value of AIC, compared with the traditional one. Theoretically, for models that utilize
the same dataset, one with a greater Log-likelihood at convergence and a smaller AIC is
considered to be superior [41]. Therefore, it can be concluded that the random parameter
logit model outperforms the traditional model.

On this basis, this study also attempts to determine the difference between those two
models by utilizing a likelihood ratio test. The null hypothesis of the test is that there is no
statistical difference between the binary logit model and the one with random parameters.
Subsequently, Equation (5) can be used to calculate the corresponding Chi-square statistic
value [58]:

χ2 = −2(LLβTraditional − LLβRandom) (5)

χ2 = −2[−1151.216− (−1144.624)] = 13.184 (6)

where χ2 is the test statistic; LLβTraditional is the Log-likelihood at the convergence of the
binary logit model; and LLβRandom is the Log-likelihood at the convergence of the random
parameter logit model. In light of the above Chi-square statistic value and the correspond-
ing degree of freedoms, 5 (the number of random parameters), it can be found that the
calculated value (13.184) is greater than the critical value (12.833) at the 97% confidence
level. Consequently, the aforementioned null hypothesis is rejected, which again proves
that the random parameter logit model is superior to the traditional one.

4.1.2. Binary Logit Model vs. Classification and Regression Tree Model

Similarly, there are also several differences between the results obtained by these two
models with respect to the discrimination of influencing factors, which are mainly reflected
in the categories of the factors. In the binary logit model, a total of eight categories of
influencing factors are significant at the 99% confidence level, while the number of major
influencing factors in the decision tree model is only 6. Furthermore, the factors included in
these two models also differ to some extent. Specifically, horizontal alignment, pavement
material and braking performance are factors that are unique to the binary logit model,
while the factor of truck type is unique to the CART model.

However, unlike the comparison between the logistic regression models, in the field of
machine learning, the prediction accuracy of different algorithms is often compared using
the ROC curve and the AUC value [59]. In the ROC curve image, the horizontal axis is
typically labeled with the false positive rate (FPR), the proportion of samples incorrectly
judged as positive among all negative samples, while the vertical one is labeled by the true
positive rate (TPR), the percentage of samples correctly interpreted as positive among all
positive samples [59–63]. Theoretically, the model with lower FPR and higher TPR is a
more ideal model. Therefore, the more skewed the ROC curve is to the upper left, the more
effective the algorithm is. Correspondingly, the point (0, 1) represents the optimal model,
in which all samples are correctly classified [59–61].

Based on the ROC curve, a statistical evaluation metric of the AUC value is proposed
in order to quantitatively characterize the classification capability of the algorithm. The
initialism “AUC” stands for “area under the curve”, specifically, the ROC curve, and is
measured between 0 and 1 [59,61,62]. When AUC equals 1, it means that the model is a
perfect classifier, but this is rarely the case. When the value of AUC is between 0.5 and 1, it
denotes that the model is superior to random guessing. When AUC equals 0.5, it indicates
that the model is as effective as random guessing [59,61]. Obviously, it is more accurate and
straightforward to compare the prediction effect of different algorithms by means of AUC.



Int. J. Environ. Res. Public Health 2022, 19, 4244 10 of 17

Therefore, the evaluation index of AUC was used for this study to compare the excellence
of the binary logit model with the classification and regression tree model. The calculated
results show that the AUC value is 0.631 for the binary logit model, while the value of
CART is only 0.579, which is lower than the former. Consequently, it can be concluded that
the binary logit model outperforms CART in terms of prediction.

Combining the comparison result of the two logit models, it is also possible to conclude
that the random parameter logit model is superior to CART as the most suitable model.
Thus, the subsequent analysis is conducted based only on the estimated results obtained
from the random parameter logit model.

4.2. Detailed Analysis and Discussion

Table 3 shows the marginal effects of the logit model with random parameters. As
those explanatory variables that are significant at the 99% confidence level only occur
in four characteristic groups (roadway characteristics, accident characteristics, vehicle
characteristics, and temporal characteristics), the detailed analysis and discussion are
limited to these categories.

Table 3. Marginal effects for the random parameter logit model.

Variables\Items
Marginal Effects

Death

Roadway characteristics
Highway classification

Freeway −0.165
Provincial highway −0.117

Country road −0.140
Urban road −0.110

Urban expressway −0.083
Other types of roads −0.037

Horizontal alignment
Single curve 0.089

Consecutive curve −0.044
Pavement material

Gravel 0.043
Cement −0.082

Dirt 0.258
Road surface condition

Wet −0.105
Other types of conditions 0.162

Environmental characteristics
Lighting condition

Daylight 0.032
Dark, not lit −0.049

Accident characteristics
Collision type

Head-on −0.135
Broadside −0.197

Rear-ending −0.025
Sideswipe −0.086
Rollover 0.156

Hitting an object −0.118
Temporal characteristics

Truck type
Medium truck 0.022
Heavy truck 0.032

Braking performance
Impaired 0.139
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Table 3. Cont.

Variables\Items
Marginal Effects

Death

Temporal characteristics
Season

Spring 0.125
Autumn 0.072
Winter 0.094

Time
Night 0.099

Morning 0.033
Evening 0.196

4.2.1. Roadway Characteristics

In the roadway characteristic group, a total of seven variables are significant at the 99%
confidence level, including freeway, provincial highway, country road, urban road, single
curve, cement, and wet. However, only the freeway variable is found to be random in the
model and to be normally distributed with a mean of −0.733 and a standard deviation
of 0.900. It can be calculated that 79.1% of overloaded-truck-related crashes occurring
on freeways are less than 0, while 20.9% of these crashes are greater than 0. In other
words, 79.1% of overloaded-truck-related crashes that took place on freeways are less
likely to cause deaths, whereas 20.9% of these crashes increase the probability of severe
consequences. As compared to other types of roads, freeways in China have a relatively
simple traffic composition. Most freeways are used exclusively by motor vehicles, with
very few motorcycles, non-motorized vehicles, or pedestrians [64]. As a result of this, direct
collisions between trucks and human bodies are extremely unlikely, and fatalities are more
likely to result from vehicle–vehicle crashes. Given the predominance of rear-end and
sideswipe collisions in freeway crashes, and the relatively minor injury severity in these
collisions [41,65], drivers or occupants are more likely to suffer only injuries on freeways.
However, several existing studies have confirmed that high-speed limits may increase
the probability of severe crashes [31,49,66]. As overloaded trucks have a longer braking
distance than other vehicles, there is still a risk that the truck will collide at a higher speed
and cause fatalities when the distance between the preceding and following vehicles is not
kept properly [27].

As for the remaining six variables, all coefficients are found to be fixed. However, only
the single curve variable increases the probability of death, with a marginal effect of 0.089.
As everyone knows, the visibility of mountainous highways is poor, especially at the bends
of the two-lane winding mountain roads. Hence, it is quite challenging for drivers to detect
oncoming vehicles in advance and take proper measures in time [66]. Drivers are thus
more likely to experience collisions on single-curve sections with more severe outcomes
than on straight sections.

On the contrary, the provincial highway, country road, and urban road variables tend
to reduce the likelihood of death, with marginal effects of −0.117, −0.140, and −0.110,
respectively. In principle, the lower functional grade of highways or roads, compared
with national highways and mainly embodied in the narrow lane width or the small
number of lanes, limits the speed of vehicles. In low-speed operation, the impact generated
by the crash is relatively small, consequently, with lower odds of resulting in severe
outcomes [29,67]. Besides, according to a previous study, the lower driving speed may also
be related to the changeable alignment of mountainous highways [12]. Additionally, the
cement and wet variables can likewise result in minor outcomes, with marginal effects of
−0.082 and −0.105, respectively. In terms of causes, the former may be due to the anti-skid
characteristics of cement pavements, while the latter, slightly different from the intuitive
opinion, may be due to the higher risk awareness of drivers [11,32,40].
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4.2.2. Accident Characteristics

At the 99% confidence level, a total of three variables in the accident characteristic
group are significant, which are head-on, broadside and rollover. However, only the
broadside variable is found to be random, and to obey a normal distribution, with a
mean of −0.878 and a standard deviation of 1.472. It can be calculated that 72.6% of
overloaded-truck-related crashes whose collision type is broadside hitting are less than 0,
while 27.4% of these crashes are greater than 0. In other words, among the overloaded-
truck-related crashes with a broadside hitting characteristic, 72.6% of those are less likely
to result in severe consequences, whereas less than one-third of the crashes may increase
the likelihood of death. Intuitively, that negative effect seems reasonable because the
vehicle body, especially the body of the truck, can shield the driver or occupants from
some of the impact generated by the broadside hitting [44,65]. In multi-truck crashes, the
impacted part is usually far from the cab, so the odds of fatal injuries to the driver or
occupants are also reduced. However, in certain scenarios, broadside hitting may also have
severe consequences, closely related to the driver’s reckless driving behavior and poor
risk awareness [15,45]. An example would be a truck traveling at a high speed through an
unsignalized intersection and colliding with a car.

As for the head-on and rollover variables, both coefficients are found to be fixed,
but one is negative and the other is positive, with marginal effects of −0.135 and 0.156,
respectively. In truck-car crashes, due to the massive size of the overloaded truck, as well as
the effective role played by the energy absorption equipment, which is installed in the front
of the car, the consequences of a head-on collision between these two types of vehicles are
relatively less severe [68]. For truck–truck crashes, however, this finding is not in agreement
with the established research results [65]. It is speculated that the negative impact of a
head-on collision is more related to the slower driving speed of trucks that are overloaded.
In rollover accidents, the vehicle’s center of gravity is raised as a result of overloading,
and drivers or occupants inside the truck are at a high risk of fatal injury, especially if the
seat belt is not worn properly [24,32,33,49]. Further, if an overloaded truck is involved in a
rollover accident on the winding mountain road section, and meanwhile runs off the road,
the huge drop between the cliff and the valley may result in more severe injuries.

4.2.3. Vehicle Characteristics

In the vehicle characteristic group, only the impaired variable, which refers to dimin-
ished or failed braking performance, is found to be significant and random at the 99%
confidence level. Based on the estimated results, the variable is normally distributed with
a mean of 0.617 and a standard deviation of 0.657. Correspondingly, 17.4% of crashes
involving overloaded trucks with impaired braking performance are less than 0, while
82.6% of these crashes are greater than 0. In other words, 17.4% of crashes caused by over-
loaded trucks whose braking performance is impaired are less likely to result in a fatality,
whereas more than four-fifths of crashes increase the likelihood that someone would be
fatally injured or even dead. The positive effect of damaged braking systems on a vehicle
would appear to be reasonable. Combining the effects of truck overloading and impaired
braking performance, the braking distance of overloaded trucks is greatly increased [27].
If the system fails completely, it is more likely that the vehicle will collide at its original
or even higher speed. As a result, the impact of the crash on drivers or occupants may be
greatly increased, and accordingly, increase the probability of death. However, because
part of the fact that mountainous highways’ long downhill sections, for example, have
been set up with emergency escape ramps, vehicles with impaired braking performance
can reduce their speed. It is therefore possible for a few overloaded trucks to cause only
injuries in a crash, especially in a single-vehicle collision [34].

4.2.4. Temporal Characteristics

In the temporal characteristic group, a total of four variables are significant at the 99%
confidence level, including spring, autumn, winter and evening. However, two of these
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variables, autumn and winter, are found to be fixed, with marginal effects of 0.072 and
0.094, respectively. That is to say, in comparison with the overloaded-truck-related crashes
that occur in summer, those occurring in autumn and winter are more likely to result in
fatalities. In an analysis of the historical weather records of Yunnan Province, it has been
found that foggy days are most common during the winter, accounting for 40% of the total
number of foggy days in a year, while autumn comes in second place [69]. In general, the
presence of dense fog or agglomerate fog in mountainous areas can greatly reduce visibility,
making it difficult for drivers to identify the road conditions ahead. Whenever there is a
small radius curve, and the driver fails to take proper measures in time, the truck is very
likely to run off the road or even fall off the cliff, resulting in severe outcomes [12].

In contrast, the remaining two variables, spring and evening, are found to be random
in the model. For the spring variable, it obeys a normal distribution, with a mean of 0.556
and a standard deviation of 2.538. It can be calculated that 41.3% of overloaded-truck-
related crashes occurring in spring are less than 0, while 58.7% of these crashes are greater
than 0. In other words, 41.3% of overloaded-truck-related crashes that took place in spring
are less likely to cause deaths, whereas 58.7% of these crashes increase the probability of
severe consequences. Due to the typically dry climate, with relatively little precipitation,
in most parts of Yunnan Province during spring, it is likely that this finding relates more
to the driving habits of overloaded truck drivers [69]. Drivers who underestimate driving
risks and break traffic rules, especially when speeding, often fail to take timely braking
measures, thus increasing the probability of severe consequences [33,36]. On the other
hand, those who adhere to the rules and remain cautious will greatly reduce their chances
of severe consequences.

As for the evening variable, it is also normally distributed with a mean of 0.873 and
a standard deviation of 3.369. It can be calculated that 39.7% of overloaded-truck-related
crashes occurring in the evening are less than 0, while 60.3% of these crashes are greater
than 0. In other words, among the overloaded-truck-related crashes that occurred in the
evening, 40.1% of those are less likely to result in severe consequences, whereas about
three-fifths of the crashes may increase the injury severity. One possible explanation for this
positive impact is the poor visibility in the evening, which drastically reduces the driver’s
ability to identify risks. In the event of an abnormal situation on the road, it is less likely
that the driver will be able to react quickly and correctly, possibly resulting in a high-speed
crash [29,38,43]. This is particularly true for those overloaded trucks with poor braking
performance. Several studies have shown that high-speed crashes tend to increase the
injury severity, and thus an overloaded truck that collides in the evening may bring about
more serious consequences [13,70]. This analysis can also be applied to fatigued driving. In
contrast, when a driver is not fatigued but is attentive to his surroundings, the likelihood
of a serious crash will be reduced to some extent.

5. Conclusions

Overloaded transportation can indeed bring substantial economic profits to transport
enterprises. However, various consequences resulting from this illegal activity, such as road
subsidence, bridge collapse, as well as serious casualties in the event of accidents, should not
be overlooked. Considering the prevalence and seriousness of truck overloading, this study
focused on the overloaded-truck-related crashes that occurred on mountainous highways,
utilizes the truck crash data in Yunnan Province between 2010 to 2015, and developed a
random parameter logit model to analyze the impacts of five types of characteristics (i.e.,
roadway characteristics, environmental characteristics, accident characteristics, vehicle
characteristics, and temporal characteristics). As far as we know, this is the first attempt at
exploring factors that contribute to the injury severity of crashes from the perspective of
overloaded trucks. In addition, based on the characteristics of the road system in China,
this study provided a more detailed categorization of the highway classification factor,
which has never been attempted before. A similar process was also used to categorize the
truck type factor.



Int. J. Environ. Res. Public Health 2022, 19, 4244 14 of 17

Based on the estimated results, the following conclusions can be drawn. First, the
binary logit model considering random parameters outperformed the traditional one as
well as CART, which is closely related to the model’s ability to account for part of the
unobserved heterogeneity. Second, at the 99% confidence level, a total of fifteen variables
were found to be significant in the random parameter logit model. These variables covered
four characteristic groups (i.e., roadway characteristics, accident characteristics, vehicle
characteristics, and temporal characteristics), but only five of them were found to be
random, which are freeway, broadside hitting, impaired braking performance, spring, and
evening. For those fixed variables, single curve, rollover, autumn, and winter were likely to
increase the probability of severe consequences, while the provincial highway, country road,
urban road, cement, wet, and head-on variables generally reduced the likelihood of death.
In terms of the random variables, more overloaded-truck-related crashes that occurred in
spring or the evening may increase the probability of fatalities. There was a similar pattern
in crashes involving overloaded trucks with impaired braking performance. However, the
findings were just the opposite in the scenario of freeway or broadside hitting.

In the face of those severe outcomes resulting from overloaded-truck-related crashes,
proper countermeasures should be proposed and implemented as soon as possible. For
example, related laws and regulations should be continually improved, so as to provide
strong support for strengthening the supervision of transport enterprises and punishing
those operators involved in truck overloading. On this basis, more checkpoints should be
set up at the entrances and exits of cities and towns, as well as on those accident-prone
sections, in order to verify the actual load of trucks. It is also recommended to install more
protective facilities or equipment, for example, emergency escape ramps, on mountainous
highways to create safer driving conditions for drivers. Limited by the quality of our dataset,
only a small number of factors are available for analysis, and thus the study perspective is
still not comprehensive enough. In this regard, further studies may consider accessing other
datasets to add new factors. Additionally, the five random variables obtained in this study
were estimated based on the selected dataset and passed the significance test. However, it
is still possible that other random variables remain uncovered as a result of missing data.
Further studies may consider replacing another dataset for validation. Furthermore, other
suitable methods can be applied to the injury severity analysis of overloaded-truck-related
crashes, in the hope of continuously improving the accuracy of the estimates.
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