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Extracellular vesicles (EVs) are heterogeneous populations of nano- and micro-sized

vesicles secreted by various cell types. There is mounting evidence that EVs have

widespread roles in transporting proteins, lipids, and nucleic acids between cells and

serve as mediators of intercellular communication. EVs secreted from stem cells could

function as paracrine factors, and appear to mimic and recapitulate several features of

their secreting cells. EV-mediated transport of regulatory RNAs provides a novel source

of trans-regulation between cells. As such, stem cells have evolved unique forms of

paracrine mechanisms for recapitulating their potencies with specialized functions by

transporting non-coding RNAs (ncRNAs) via EVs. This includes the dissemination of stem

cell-derived EV-ncRNAs and their regulatory effects elicited in differentiation, self-renewal,

pluripotency, and the induction of reparative programs. Here, we summarize and discuss

the therapeutic effects of mesenchymal stem cell-derived EV-ncRNAs in the induction of

intrinsic regenerative programs elicited through regulating several mechanisms. Among

them, most noticeable are the EV-mediated enrichment of ncRNAs at the injury sites

contributing the regulation of matrix remodeling, epithelial mesenchymal transitions,

and attraction of fibroblasts. Additionally, we emphasize EV-mediated transmission of

anti-inflammatory RNAs from stem cells to injury site that potentially orchestrate the

resolution of the inflammatory responses and immune alleviation to better facilitate

healing processes. Collectively, this knowledge indicates a high value and potential of

EV-mediated RNA-based therapeutic approaches in regenerative medicine.

Keywords: extracellular vesicles, exosomes, mesenchymal stem cells, non-coding RNA, gene expression
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INTRODUCTION

Extracellular vesicles (EVs) comprise a heterogeneous population
of nano- and micro-sized vesicles secreted by virtually all
cell types studied so far (Yáñez-Mó et al., 2015; Mateescu
et al., 2017). The best-described EVs are the exosomes and
microvesicles, which differ in their respective sizes, shapes,
and origins. Exosomes are produced through the endocytic
pathway, followed by the fusion of multivesicular endosomes
with the plasma membrane where they are then released into
the extracellular space (for detailed mechanisms see Nawaz
et al., 2014). During the process of their biogenesis, EVs
acquire repertoire of bioactive cargo such as proteins and lipids
(Keerthikumar et al., 2016), coding- and non-coding RNAs
(ncRNAs) including both microRNAs and long noncoding RNAs
(miRNAs, lncRNAs) (reviewed by Fatima andNawaz, 2017c), and
presumably DNA (Thakur et al., 2014). The secreted EVs serve
as mediators of intercellular communication (Ratajczak et al.,
2006b; Mathivanan et al., 2010; Nawaz and Fatima, 2017), could
disseminate biological information between cells and contribute
as paracrine factors in health and disease (Bellingham et al., 2012;
Buzas et al., 2014; Hoshino et al., 2015). EVs not only exchange
biological material between neighboring cells but can also travel
long distances, allowing the dissemination of genetic content
between distal organs and regulate gene expression of host tissues
(Fatima and Nawaz, 2017a; Thomou et al., 2017).

A complete understanding of stem cell biology is a
prerequisite for gaining mechanistic insights into human
diseases. The current applications of stem cells in translational
medicine take advantage of their potency for regeneration
and repairing tissue damage. The best studied in this context
are the mesenchymal stem cells (MSCs). According to the
International Society for Cellular Therapy, MSCs are defined
as plastic adherent cells with the capacity to differentiate
into osteoblasts, chondrocytes, myocytes, and adipocytes
(Dominici et al., 2006). MSCs express markers such as
CD73, CD90, and CD105, and lack the expression of several
markers including CD14, CD34, CD45, or CD11b, CD79-α,
or CD19 and HLA-DR surface molecules (Dominici et al.,
2006).

The commonly considered sources of MSCs are bone marrow
(BM), adipose tissue, the umbilical cord, nervous tissue, dental
pulp, amniotic fluid, the placenta, and menstrual blood (Hass
et al., 2011; Eirin et al., 2014). MSCs derived from these sources
represent remarkable differences in morphology, proliferation,
self-renewal ability, and differentiation potential (Dominici
et al., 2006). Interestingly, their capacity to differentiate toward
osteoblasts, chondrocytes, myocytes, and adipocytes, coupled
with their ability to stay activated during injury and colonization
to injury site offer a promising source in tissue regeneration.
Although, the differentiation potential of MSCs is considerably
less than that of embryonic stem cells (ESCs) as well as from
induced pluripotent stem cells (iPS), they nevertheless hold
greater promise for cell-based clinical applications (Uccelli et al.,
2008). The benefits of MSC-based therapies are evident from
their success in ameliorating the symptoms of many diseases
including, diabetes, osteoarthritis, spinal cord injury, myocardial

injury, graft vs. host disease, and bone repair shown in many
clinical and preclinical models (Wei et al., 2013). The emerging
biology of stem cells suggests that colonizing activity at the
injury site is not always required and stem cells can extend their
therapeutic effects in part via secreted paracrine factors at the site
of injury (Nagaishi et al., 2016).

Recent studies propose that at least a part of MSC effects
are mediated by MCS-derived EVs (Deregibus et al., 2007; Lai
et al., 2016). MSC-derived EVs were tested in human patients
with therapy-refractory graft-vs.-host disease. In this small study,
using MSC-derived EVs from bone marrow donors to treat these
patients, it was concluded that the MSC EVs were safe as well as
effective in treating the disease (Kordelas et al., 2014). This study
partly confirmed the direct application ofMSC-derived EVs as an
effective immune-suppressive factor. However, such therapeutic
effects need to be confirmed in more patients.

NcRNAs are non-protein coding RNAs, which represent part
of the genome that does not encode genetic information into
proteins. In principle, ncRNAs are broadly categorized into short
ncRNAs and long ncRNAs (lncRNAs) or long intergenic ncRNA
(lincRNA). Several ncRNA species exist within the genome
such as Piwi-interacting RNAs (piRNAs), small nuclear, and
nucleolar RNAs (snRNAs, snoRNAs), and short interfering RNAs
(siRNAs) among others described elsewhere (Fatima and Nawaz,
2017c). It is well-established that about 90% of the genome
sequence is actively transcribed, but the translated proportion
is <2% of the whole genome, which has been considered
as “junk DNA.” But, the Encyclopedia of DNA Elements
(ENCODE) project has revealed that more than 90% of the
human genome contains functional ncRNAs (ENCODE Project
Consortium, 2004, 2007), and thus untranslated fraction of the
genome is no longer considered to be entirely without function
(Lee, 2012).

The frequently studied class of ncRNAs are the miRNAs,
which are precisely regulated during developmental processes. It
is estimated that miRNAs regulate ∼30% of all protein-coding
genes and are fundamental in shaping the global transcriptome
of eukaryotes (Filipowicz et al., 2008; Grosshans and Filipowicz,
2008). The miRNAs are customarily known to regulate gene
expression at post-transcriptional level governing several key
cellular pathways related to development, differentiation and
cellular fates (Pasquinelli and Ruvkun, 2002; Ambros, 2003,
2004; Ivey and Srivastava, 2010). The contribution of ncRNAs
in regulating healing and repair process of stem cells is now
well-accepted and is thought to be more sophisticated than
earlier studies suggested (Ounzain et al., 2013; Ounzain and
Pedrazzini, 2015; Zhou et al., 2016). There is evolving evidence
implicating stem cell-derived EVs in the maintenance of stem cell
characteristics such as self-renewal, differentiation, maturation
and cell fate determination (reviewed in Nawaz et al., 2016b).
However, the roles of EV-derived ncRNA are only recently
beginning to be explored. An increasing body of evidence has
clarified that EV-ncRNAs could serve as potential mediators
of the extended paracrine effects of stem cells. Since ncRNAs
are central to gene regulation and cellular fates, it can be
speculated that most of the EV-mediated regulatory roles elicited
in cells/organs are mediated through ncRNAs. The ncRNAs
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are expressed in a tissue-specific manner, precisely regulated
and actively involved in variety of developmental processes
(Pasquinelli and Ruvkun, 2002; Ambros, 2003; Carrington
and Ambros, 2003; Marson et al., 2008; Gangaraju and Lin,
2009; Pauli et al., 2011; Fatica and Bozzoni, 2014; Perry
and Ulitsky, 2016). Lineage specific commitments of stem
cells and the maintenance of their characteristic features such
as pluripotency, self-renewal, differentiation, and efficiency of
cellular reprogramming are largely regulated by ncRNAs (Dinger
et al., 2008; Judson et al., 2009; Loewer et al., 2010; Shenoy
and Blelloch, 2014; Xu et al., 2016; Deng et al., 2017; Hou
et al., 2017; Wei et al., 2017; Zhang W. et al., 2017). Thus,
the ncRNAs may govern the equilibrium between pluripotency
and differentiation in the embryo and embryonic stem cells,
and lineage specific fate decisions (Ivey and Srivastava, 2010;
Flynn and Chang, 2014). Recent studies have shown that MSC-
derived EVs are enriched in distinct ncRNA species such as
miRNAs, tRNA, and Piwi-interacting RNA (piRNAs) which
contribute to maintaining stem cell potency (Baglio et al., 2015),
induction of cell survival and inhibition of cell differentiation
of cord blood hematopoietic stem cells (De Luca et al., 2016).
The comparison of transcriptomic (RNA-Seq) and proteomic
profiles of ESC-derived EVs and EVs from human bone-
marrow (BM-MSC) revealed distinctly different RNA profiles
between EVs of two stem cell populations (Billing et al.,
2016).

STEM CELL-DERIVED ncRNAs AND EVs:
ALLIES IN STEM CELL POTENCY

Evidence now exists to support that EVs mimic several
features of their parent cells and profoundly contribute to
stem cell fate decisions (Nawaz et al., 2016b). Ratajczak and
colleagues provided the first evidence that stem cell-derived
EVs contain mRNA transcripts for pluripotent transcriptional
factors such as HoxB4, Nanog, Oct-4, and Rex-1, which
can be horizontally transferred to recipient cells, supporting
hematopoietic progenitor cells expansion (Ratajczak et al.,
2006a). EV-mediated transfer of miRNAs downregulate vascular
cell adhesion molecule (VCAM1) expression, contributing to
hematopoietic progenitor cell mobilization (Salvucci et al., 2012).

Quesenberry and colleagues proposed that EV-mediated
communication and exchange of genetic material is the
continuum model of stem cell biology, where the differentiation
decision of stem cells is conditioned by the cell cycle transit
and environmental stimuli (Quesenberry et al., 2010). It is
tempting to speculate that the dependency of progenitor cell
differentiation and lineage commitment could be reprogrammed
by continuous flow of genetic material bidirectionally between
progenitors and differentiated cells (Nawaz et al., 2016b). Stem
cells preferably keep population equilibrium between progenitors
and the differentiated mature cells. Thus, a deficiency of mature
cells in a particular tissue could be sensed by progenitors, which
produce more progenies to be differentiated into mature cells.
As such, this equilibrium could be facilitated by EV-mediated
bidirectional exchange of genetic material, which favors stem

cell populations to maintain a stable co-existence (Nawaz et al.,
2016b).

The secretion of a selective pattern of miRNAs from
stem cells and their transfer to target cells via EVs raises
enormous potential for stem cells to recapitulate lineage specific
characteristics (Collino et al., 2010; Guo et al., 2011). Additional
roles for EV-miRNAs in differentiation are observed where
EV-miR-486 delivery confers a rapid response to hypoxia in
erythroleukemia cells by targeting Sirt1 gene, and modulates
hypoxia-induced erythroid differentiation (Shi et al., 2017).
Likewise, ESC-derived EVs could transport selective subset of
miRNA and transcriptional factor related mRNAs which may
induce pluripotency in their target cells and turn on early
retinogenic program of differentiation (Katsman et al., 2012).
It is increasingly being recognized that stem cells have evolved
mechanisms for maintaining stem cell specific features at least, in
part through EV-mediated dissemination of ncRNAs (Figure 1).

TISSUE REGENERATION AND ORGAN
PROTECTION

The secretion of EVs from biologically active cells may be context
dependent i.e., relating to disease progression or induction of
regenerative programs (Fatima and Nawaz, 2015). As such, EV-
mediated transportation of stem cell-derived ncRNA to the
injured sites is considered one of the versatile regulatory routes
of tissue regeneration and organ protection. This section will
discuss roles of EVs in mediation of paracrine effects and the
mechanisms in the context of tissue remodeling and repairing
injuries.

Matrix Remodeling and Inhibition of
Epithelial-Mesenchymal-Transition
MSC-derived EVs are demonstrated to optimize the matrix
elements by activation of collagen regulation synthesis by stromal
fibroblasts, which further support the healing processes (Zhang
et al., 2015; Hu et al., 2016). MSCs transfer miR-125a to
endothelial cells via EVs, which promotes the formation of
endothelial tip cells and angiogenesis by repressing angiogenic
inhibitor delta-like 4 (DLL4; Liang et al., 2016). Additionally,
MSC-derived EVs containing miRNAs could inhibit the TGF-
β/SMAD2 pathway and suppress myofibroblast differentiation
during wound healing (Fang et al., 2016). The wound healing
process is mainly facilitated by endothelial cell proliferation and
fibroblast activation for which growth factors play a central role.
Notably, the platelet-rich plasma (PRP) is rich source of growth
factors and has a widespread role in repairing chronic wounds
mainly through endothelial cell activation and angiogenesis. The
role of PRP-derived EVs bearing the cargo of growth factors is
much appreciated for the induction of fibroblast and endothelial
cell proliferation and migration which favor angiogenesis and
re-epithelialization in chronic wounds (Guo et al., 2017).

While the proliferation of fibroblasts facilitates matrix
remodeling in favor of tissue repair, the excess number of
fibroblasts may cause the thickening of the tissue and hinder the
repair process. Epithelial-mesenchymal-transition (EMT) holds
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FIGURE 1 | Stem cell potency and differentiation: Stem cells secrete extracellular vesicles (EVs) carrying non-coding RNAs (ncRNAs) that are transported to other

cells. Such horizontal transfer is implicated in recapitulating variety of stem cell features in recipient cells, such as pluripotency, differentiation, and stem cell

maintenance and their ability to facilitate regenerative processes. EV-mediated transport of ncRNAs elicits regulatory programs in recipient cells; maintain tissue

homeostasis and immune regulation that may favor repair processes.

a central role in fibroblast functionality. In fact, EMT promotes
the genesis of fibroblasts where the excess of fibroblasts may
exhibit the phenomenon of organ fibrosis with deleterious effects
in adult tissues (Kalluri and Neilson, 2003). Therefore, fibroblast
optimization is essential for repairing defects, whereby inhibition
of EMT potentially supports tissue repair (Câmara and Jarai,
2010; Xi et al., 2014). Recent studies show that MSC-derived
EVs influence the inhibition of EMT during injuries in order
to favor the healing process. In two concordant studies it was
shown that the proximal tubular epithelial cells (PTEC) treated
with TGF-β1may repress E-cadherin and exhibit EMT associated
morphological changes, whereas the cells administered with
MSC-derived EVs may reverse the morphological changes by
resuming the E-cadherin expression; allowing the protection of
mice against renal failure (He et al., 2015; Wang et al., 2015a).

Notably, EVs from BM-MSCs demonstrate inhibitory effects
on TGF-β1-mediated EMT in renal PTEC cells in-vivo (Wang
et al., 2015a). This is interesting to consider that EMT inhibition
was stronger in younger rats than older rats, indicating that renal
protection is more active during young age and less in older
age, and may play a role in the fibrosis of aging renal tissues
(Wang et al., 2015a). In principle, such roles of EVs are projected
by transferring selective patterns of miRNAs from MSCs to the
injured renal PTEC cells, which inhibit EMT (He et al., 2015;
Wang et al., 2015a). As stated earlier, EMT inhibition is potential
choice for supporting tissue regenerative reprograms; EVs may
serve new vehicle for inhibition of EMT and might be a useful
therapeutic strategy in regenerative processes.

Transcriptional Repression of Apoptotic
Genes: Role of Anti-Apoptotic miRNAs
The contribution of stem cell-derived EVs is increasingly being
recognized in ameliorating organ functions through preventing
cell death, promoting cell survival, and progenitor’s self-renewal.
MSC-derived EVs transfer anti-apoptotic miRNAs to injured
cells, which not only promote cell survival but may also elicit
transcriptional modulation of target genes in injured renal
epithelial cells as noticed in in-vitro as wells in-vivo models of
kidney injury (Lindoso et al., 2014; Cantaluppi et al., 2015). More
evidence describe that the MSC-derived EVs could transfer anti-
apoptotic miRNAs to cardiomyocytes, which transcriptionally
repress apoptotic genes in cardiomyocytes and facilitate cell
survival with enhanced angiogenesis, ultimately ameliorating
the cardiomyocytes functions (Yu et al., 2013; Wang et al.,
2015b, 2017). Similarly, EVs from cardiac progenitor cells
(CPCs) transport anti-apoptotic miRNAs, which target apoptotic
genes and inhibit apoptosis in cardiomyocytes, stimulate tube
formation in endothelial cells, which favor angiogenesis, and thus
improve heart function (Barile et al., 2014; Xiao et al., 2016).
Agarwal and colleagues reported miRNA-mediated reparative
potential of CPC-derived EVs from pediatric patients (Agarwal
et al., 2017). This study demonstrates that the functional
improvements are associated with increased angiogenesis,
reduced fibrosis, and improved hypertrophy, resulting in
improved cardiac function and such outcomes are linked to
miRNA functions. Shao et al. (2017) recently reported that MSCs
and MSC-derived EVs exhibit similar miRNA expression profile,
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which could be one of the reasons that MSC-derived EVs can
replace MSCs for cardiac repair. This indicates that that MSC-
derived EVs could be used alone to promote cardiac repair and
are superior to MSCs in repairing injured myocardium. Wang
and colleagues argue that endometrium MSCs (EnMSCs) confer
superior cardioprotection as compared to BM-MSCs or adipose
tissue derived MSCs (AD-MSCs) showing miR-21 as a potential
mediator of EnMSC therapy (Wang et al., 2017).

Recently a study has demonstrated that EVs secreted from
cardiosphere-derived cells are highly enriched in Y RNA
fragment (EV-YF1) (Cambier et al., 2017). EVs transfer YF1
to macrophages (YF1 transfection of macrophages) thereby
inducing the IL-10 transcription and secretion of IL-10 which
ameliorates cardiomyocyte functions. Interestingly, EV-YF1-
primed macrophages co-cultured with rat cardiomyocytes were
potently protective against oxidatively stressed cardiomyocytes
through induction of IL-10 expression. Additionally,
the in-vivo intracoronary injection of EV-YF1 following
ischemia/reperfusion reduced the infarct size (Cambier et al.,
2017). Interestingly, a profound regenerative potential of cardiac
stem cells (CSCs)-derived EVs has been demonstrated in a mice
model of cardiomyopathy (Vandergriff et al., 2015). This study
demonstrates the double advantage of EVs; firstly, the mice used
in experiment was immunocompetent, but showed no adverse
immune reaction against therapeutic EVs. Secondly, although
mice received heterologous source of CSC-derived EVs (i.e.,
from human CSCs) but no cross reactivity was observed between
EVs of two different sources.

Cellular Differentiation, Reprogramming,
and Induction of Repair Programs
EVs derived from cells relay the stem cell messages to induce
regeneration, resistance to apoptosis, and the induction of
intrinsic repair cascades of injured cells. It has been shown that
EVs secreted by MSCs undergoing osteogenic differentiation
differs in the content of miRNAs compared to undifferentiated
MSCs (Xu et al., 2014). These EVs are osteoinductive and are
involved in RNA surveillance pathway, Wnt signaling, and RNA
transport contributing to regulation of osteogenic differentiation
(Xu et al., 2014). EVs carrying miR-196a from BM-MSCs
govern the expression of osteogenic genes during osteoblasts
differentiation (Qin et al., 2016). Additionally, EVs mediate a
dialogue between osteoblasts and adipocytes during adipocyte
and osteoblast differentiation. It has recently been suggested
that the adipocyte/osteoblast balance is profoundly regulated
at transcriptional level aided by EV-mediated transmission of
miRNAs (Martin et al., 2015). EVs derived from miR-140-5p
overexpressing human synovial MSCs could enhance cartilage
tissue regeneration and prevent osteoarthritis of the knee in a
rat model by regulating Wnt signaling and by blocking the side
effects of ECM secretion (Tao et al., 2017b).

EV-mediated transfer of miRNAs to CPCs could induce
glycolytic switch within CPCs, which supports adaptation to
hypoxic stress in cardiovascular tissues (Ong et al., 2014).
Interestingly, EVs released from glucose-treated ECs contained
significantly lower amounts of miR-126 and elicited reduced

endothelial repair capacity in-vitro and in-vivo. This indicates
that under diabetic or hyperglycemic conditions EVs may exhibit
poor capacity to vascular endothelial repair. Moreover, the
expression analysis of miR-126 in circulating EVs from patients
with stable coronary artery disease with and without diabetes
mellitus revealed significantly reduced miR-126 expression in
EVs from diabetic patients (Jansen et al., 2013). In fact, EVs
released from apoptotic endothelial cells (ECs) transfer miR-
126 and influence the repair of recipient human coronary
artery ECs (Jansen et al., 2013). Endothelial progenitor cells
have also been shown to exhibit cellular reprograming by
transferring EV-miRNAs to renal cells which protect kidney
against ischemia reperfusion injury (Cantaluppi et al., 2012).
EVs from pericardial fluid (secreted from heart) could mediate
vascular repair responses in ECs by transferring pericardial fluid-
miRNAs and inhibiting TGF-BR1 (Beltrami et al., 2017). This
improves the survival, proliferation, and networking of ECs and
could restore the angiogenic capacity of ECs, which promotes
post-ischemic blood flow recovery in-vivo (Beltrami et al., 2017).

A recent study demonstrates that aging in mice initiates
with a substantial loss of hypothalamic stem/progenitor cells
(Zhang Y. et al., 2017). Conversely, aging retardation and lifespan
extension were achieved in mid-aged mice that were locally
implanted with healthy hypothalamic stem cells. This effect (i.e.,
slowing of aging) is mediated by stem cell-derived exosomal
miRNAs in the cerebrospinal fluid and concomitant regulation
of aging factors in the brain microenvironment (Zhang Y. et al.,
2017). Additionally, EV-miRNAs from MSCs are transferred
to neural cells where they could regulate nerve growth and
exhibit neuro-protective effects in in-vivo animal models (Xin
et al., 2012; Cui et al., 2016). Stem cell-derived EVs have also
been implicated in the protection of eye functions during/and
after laser injuries. In fact, MSC-derived EVs ameliorate retinal
laser injury partially by downregulating monocyte chemotactic
protein in the retina (Yu et al., 2016). Additionally, MSC-
derived EVs transfer miRNAs and promote the survival of
retinal ganglion cells and regeneration of axons in an in-vivo
rat model (Mead and Tomarev, 2017). This suggests that MSC-
derived EVs could be used as a tool for cell-free therapy for
traumatic and degenerative ocular disease. EVs secreted from
AD-MSCs contain MALAT1-ncRNA which promotes neural
regeneration and enhanced neuronal survival through regulating
PKCδII splicing (El Bassit et al., 2016). miR-181-5p-modified
AD-MSCs are selectively transferred to damaged liver cells via
EVs, and prevent liver fibrosis by activating autophagy and
down-regulating Stat3, Bcl-2, fibronectin, collagen I, vimentin,
and α-SMA in the hepatic cells (Qu et al., 2017). Several other
EV-miRNAs, which are potential therapeutic source to organ
protection and amelioration of injuries, are listed in Table 1.

NCRNA-MEDIATED INFLAMMATION
REGULATION AND HEALING

The successful healing process would require the alleviation
of inflammatory insults during the course of tissue injury
(White and Mantovani, 2013; Koniusz et al., 2016). In fact, the
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TABLE 1 | List of extracellular vesicle-microRNAs form stem cells and their roles in regulation of stem cell maintenance and healing processes.

microRNAs Stem cell source Implications in tissue repair References

miR-148a, miR-532-5p, miR-378,

let-7f

Porcine adipose-tissue derived MSCs Modulation of angiogenesis, differentiation and

adipogenesis

Eirin et al., 2014

miR-223, miR-564, miR-451,

miR-142-3p

Human bone marrow derived MSCs

and liver resident stem cells

Multi-organ development, cell survival and differentiation,

immune system regulation

Collino et al., 2010

miR-486 CD34+ human hematopoietic cells

(Erythroleukemia cells)

Regulation of erythroid differentiation Shi et al., 2017

miRNAs of 290 cluster Mouse embryonic stem cells De-differentiation and regulation of pluripotency in Müller

cells, induction of early retinogenic program of

differentiation

Katsman et al., 2012

miR-199b, miR-218, miR-148a,

miR-135b, miR-221

Human bone marrow-derived MSCs Osteogenic differentiation Xu et al., 2014

miR-196a Human bone marrow-derived MSCs Osteoblasts differentiation and expression of osteogenic

genes

Qin et al., 2016

miR-140-5p Human synovial MSCs Cartilage tissue regeneration inhibition of osteoarthritis Tao et al., 2017b

miR-21, -23a, -125b, and -145 Umbilical cord-derived MSCs Cutaneous wound healing Fang et al., 2016

miR-344a, miR-133b-3p, miR-294,

miR-423-3p, miR-872-3p

Rat bone marrow-derived MSCs Renal protection by reduced renal fibrosis and inhibition

of EMT in aging kidney

Wang et al., 2015a

miR-148b-3p, 451, 485-3p, 495,

548c-3p, let-7a, 375, 410, 548c-5p,

561, 886-3p

Human bone marrow-derived MSCs Renal protection by inhibiting apoptosis, enhanced cell

survival, cytoskeleton reorganization, and recovery of

process in PTECs

Lindoso et al., 2014

miR-221 Rat bone marrow MSC MSCs Cardio-protection by enhanced cell survival, and

inhibition of cardiomyocyte apoptosis

Yu et al., 2013

miR-21, miR-210 Mouse cardiac fibroblast-derived iPS Cardio-protection by inhibiting cardiomyocyte apoptosis Wang et al., 2015b

miR-21 Rat endometrium, bone marrow, and

adipose tissues-derived MSCs

Cardiac protection through anti-apoptotic activity,

enhanced cell survival, enhanced microvessel density

and angiogenic effects

Wang et al., 2017

miR-21 Mice cardiac progenitor cells (CPCs) Myocardium protection through anti-apoptotic activity,

enhanced cell survival, cardiac repair

Xiao et al., 2016

miR-210, miR-132, miR-146a-3p CPCs from atrial appendage explants

from patients who underwent heart

valve surgery

Cardiac protection through anti-apoptotic activity, tube

formation and enhanced angiogenesis

Barile et al., 2014

miR-126, miR-210 Mice cardiac progenitor cells Induction of glycolytic switch, activation of prosurvival

kinases, cardiac protection

Ong et al., 2014

miR-145 Rat bone marrow-derived MSCs Neuro-restoration through increased vascular and white

matter remodeling

Cui et al., 2016

miR-133b Rat bone marrow-derived MSCs Neuro-protection through nerve growth and

development

Xin et al., 2012

Let-7b, miR-21, miR-146a, and

miR-181, miR-181c

Human umbilical cord-derived MSCs Resolution of chronic inflammation and wound healing Ti et al., 2015, 2016;

Li et al., 2016

miR-146a Human umbilical cord-derived MSCs Inflammation regulation, macrophage M2 polarization

and enhanced survival in sepsis mice

Song et al., 2017

miR-126-3p Rat synovium MSCs Cutaneous wound healing Tao et al., 2017a

miR-290-295 cluster Mouse embryonic stem cells Cardiac protection through enhanced

neovascularization, cardiomyocyte production and

survival, and reduced fibrosis

Khan et al., 2015

miR-125b Human chorionic plate-derived MSCs Reduced fibrosis, and enhanced regeneration in

damaged mice liver

Hyun et al., 2015

miR-223 Bone marrow-derived MSCs Cardio-protection by protecting apoptosis and

inflammatory response in sepsis mice model

Wang X. et al., 2015

MSCs, Mesenchymal stem cells; iPS, induced pluripotent stem cells; CPCs, cardiac progenitor cells; PTECs, renal proximal tubular epithelial cells.

pro-inflammatory environment could modify the composition
of EVs and the biological activities of immune effector cells;
therefore, tissue regeneration therapy requires alleviation of
inflammatory responses and immunosuppressive environment at
the site of injury (Fatima and Nawaz, 2017b). This is possible

through EV-assisted transfer/attraction of stem cell-derived
ncRNAs at injury site, which efficiently govern inflammatory
pathways.

The role of EVs have been well demonstrated in regulating
inflammation resolution and immune regulation (Alexander
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et al., 2015; Nawaz et al., 2016a; Robbins et al., 2016; Silva et al.,
2017), however, the contribution of EVs through ncRNAs in
regulating inflammation resolution in the context of tissue repair
is only more recently beginning to be explored. For instance,
EVs carrying let-7b from preconditioned MSCs are shown to
have avid effects on the regulation of macrophage plasticity
and transition from inflammatory phase toward the proliferative
phase (macrophage polarization), which favors the resolution of
chronic inflammation (Ti et al., 2015). The umbilical cord MSC-
derived EVs containing miR-21, miR-146a, and miR-181 have
been demonstrated to regulate inflammation during the course
of tissue repair (Ti et al., 2016).

Pretreatment with pro-inflammatory cytokines could improve
the immunomodulatory efficacy of MSCs. Recent data suggest
that the inflammatory effects of cytokines are regulated by MSC-
derived EVs carrying miRNAs. For instance, IL-1β pre-treated
MSCs (βMSCs) are shown to demonstrate upregulation of anti-
inflammatory miRNAs such as miR-146a in response to IL-
1β stimulation. In fact, IL-1β is transferred to macrophages
via EVs and results in M2 polarization (characterized by anti-
inflammatory phase), and increased survival in a septic mice
model (Song et al., 2017). This is somewhat concordant with a
study where bone marrow-derived macrophages efficiently take
up EVs, which confer their switch from M1 to M2 phenotype
enabling them to exhibit anti-inflammatory properties (Lo Sicco
et al., 2017). In contrast, the inhibition of miR-146a may partially
negate the immunomodulatory properties of βMSC-EVs. This
indicates that IL-1β pre-treatment of MSCs could effectively
enhance the immunomodulatory properties of MSCs through
EV-mediated transfer of miR-146a. The educated βMSCs-EVs
may contribute to enhanced immunomodulatory properties of
βMSCs both in-vitro and in-vivo and may extend improved
therapeutic application ofMSCs in inflammatory disorders (Song
et al., 2017).

Epithelial lining is thought to serve a direct exposure to
macrophages and inflammatory responses. Therefore, EVs from
stimulated epithelial cells could promote macrophage activation
in-vitro and facilitate the re-colonization of immunomodulatory
cells in-vivo as noticed in bronchoalveolar lavage fluid (Lee
et al., 2016). The macrophage-mediated pro-inflammatory
effects are reliant on delivery of proinflammatory miRNAs
from epithelial cells, indicating that the epithelial cell-EV-
miRNAs are potential stimulators of macrophage-regulated lung
inflammatory responses (Lee et al., 2016). Recently, in-vivo
assays have demonstrated the profound effects of MSC-derived
EVs in inflammation resolution favored toward enhanced
diabetic cutaneous wound healing (Tao et al., 2017a). MiR-
181c expression in human umbilical cord MSC-derived EVs
could reduce burn-induced inflammation by downregulating the
Toll-like receptor 4 (TLR4) signaling pathway (Li et al., 2016).
Interestingly, EVs from human iPS could be engineered for
siRNA delivery to human primary pulmonary microvascular
endothelial cells that alleviate inflammatory responses in
recipient cells by selective gene silencing of inflammatory genes
(Ju et al., 2017). Collectively, such features of EVs makes
them potential tools for immune/inflammatory resolve that is
prerequisite for repairing processes (Figure 2).

CONCLUDING REMARKS

Since ncRNAs are expressed endogenously and regulate
several cellular process through orchestrating gene expression
organization of cells in cis; the secretion of ncRNAs via EVs
could be envisaged for the purpose that cells might have evolved
mechanism of trans-regulation between cells (Fatima and
Nawaz, 2017c). EV-assisted transportation of ncRNAs between
long distance organs is a newly recognized mechanism of gene
expression regulation and extending the physiological and
pathological communications between organs (Thomou et al.,
2017). In this context, stem cells may secrete ncRNAs via EVs and
deliver them to injured sites for inducing and regulating tissues’
intrinsic programs. The precise knowledge of such mechanisms
could help developing strategies for engineering EVs with
therapeutic RNAs and delivering them to injured sites. Keeping
in view the proposition that ncRNAs exhibit heterogeneous
regulatory mechanisms; it would be essential to determine the
functional readouts arising from ncRNA regulatory effects in
injured tissues.

Despite improvements in the approaches applied to tissue
repair and organ transplantation over the last decade, cell-
based therapies still have potential risks such as, the increased
risk of infection, toxicity, tumorigenicity, and immunogenicity.
Moreover, cell-based therapies need to consider additional
complications such as off-target effects after transplant such as
genetic instability, loss of functional properties or induction
of senescence, immune-mediated rejection (graft vs. host
disease), and the transformation of resident cells into malignant
phenotypes, which collectively could limit the therapeutic
applications of stem cells. More recently, MSC-derived EVs,
which include both exosomes and microvesicles, are being
examined for their therapeutic role in MSC-based cellular
therapy since these vesicles are biological entities and are not
associated with potential risk factors. In this context, EV-based
cell-free therapies are considered promising tools, which improve
patients’ outcomes considerably with reduced complications in
comparison to cell-based therapies (Lai et al., 2013; Fatima and
Nawaz, 2015; Armstrong et al., 2017; Toh et al., 2017). Since
MSC-derived EVs are non-immunological and the intriguing
advantages of stem cell-derived EVs in therapy are largely
due to the ability of EVs to stimulate endogenous repair
processes within the injured tissue as well as their efficient
regulation of immune tolerance and inflammation resolve.
Furthermore, EVs could be reproduced in large quantities, easier
to handle, are stable off shelf treatment material, less expensive,
and do not raise potential ethical and legal issues. However,
steering traditional stem cell-based therapies toward EV-based
therapies need advance research and rigorous validation in
vitro and in vivo models and in clinical trials. It could
be of great interest to applying combination of EV-based
therapies with existing approaches in order to improve the
therapeutic benefits. Due to their therapeutic potentials, there
is a natural desire to test MSC-derived EVs in many diverse
clinical indications and there have been proposed best practice
to use EVs as therapeutics (Fais et al., 2016; Reiner et al.,
2017).
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FIGURE 2 | Stem cell-derived EV-ncRNAs and tissue repair: (A) Extracellular vesicles (EVs) carrying non-coding RNAs (ncRNAs) and growth factors may activate

fibroblasts or/and endothelial cells. This promotes matrix reorganization and rapid responses in tissue regeneration. Fibroblasts proliferation is further enhanced by

epithelial mesenchymal transition (EMT). This may contribute excess of fibroblasts at injury site or the formation of excess fibrous connective tissue. EV-ncRNAs

regulate/inhibit EMT and ensure fibroblast optimization, which favors the repair process. (B) EVs transport anti-apoptotic miRNAs at the site of injury, which

transcriptionally repress the expression of apoptotic genes and inhibit apoptosis thereby promoting cell survival during healing process. (C) EV-ncRNAs resolve

inflammation by inducing macrophage polarization and transition from inflammatory phase to proliferative phase, whereas anti-inflammatory miRNAs from MSCs foster

anti-inflammatory actions.

In addition to considering the regulatory effects and
functional readouts of EVs, it is important also to consider
the type of donor cells and implementation of more
sensitive methods for obtaining EVs. To the extent that
MSC-derived EVs can be used for cell-free regenerative
medicine, much will depend on the quality, reproducibility,
and potency of their production, in the same manner that
these parameters dictate the development of cell-based
MSC therapies (Phinney and Pittenger, 2017). Therefore,
a development of highly sensitive platforms and standard
operating procedures (SOPs) for obtaining the Good
Manufacturing Practice (GMP) grade EVs, and developing
best practice in animal models are highly recommended
(Fais et al., 2016; Gimona et al., 2017; Reiner et al.,
2017).
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