Cardiovascular events in hyperuricemia population and a cardiovascular benefit-risk assessment of urate-lowering therapies: a systematic review and meta-analysis

Li Zhao^{1,2}, Ling Cao^{1,2}, Tian-Yi Zhao^{1,2}, Xue Yang^{1,2}, Xiao-Xia Zhu^{1,2}, He-Jian Zou^{1,2}, Wei-Guo Wan^{1,2}, Yu Xue^{1,2}

¹Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China; ²Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai 200040, China.

Abstract

Background: Hyperuricemia and gout have become public health concerns; many important guidelines have recommended xanthine oxidase inhibitors (XOIs) as the first-line urate-lowering therapies (ULTs) to treat chronic gout with hyperuricemia. However, whether treating hyperuricemia and gout with ULTs modifies cardiovascular risks remains controversial. The aim of this study was to assess the incident risk of cardiovascular (CV) events (CVE) in hyperuricemia population, assess the cardiovascular benefit-risk of ULTs in hyperuricemia patients with or without gout in diverse cardiovascular risk sub-groups, and specify the safety of different ULTs.

Methods: We searched PubMed, Embase, the Cochrane Library, Wanfang, Chongqing VIP (CQVIP, en.cqvip.com), and China National Knowledge Infrastructure Database for prospective cohort studies and randomized controlled trials (RCTs) in English and Chinese. Potential medications included XOIs, and uricosurics. RCTs were divided into sub-groups analysis based on blinding status and patients' history of CV diseases. Risk ratios (RRs) were calculated and were reported with corresponding 95% confidence intervals (CIs) by fixed-effects or random-effects model.

Results: Seven prospective cohort studies and 17 RCT studies were included. The risks of both major adverse cardiovascular events (MACE) (RR = 1.72, 95% CI 1.28–2.33) and CVE (RR = 1.35, 95% CI 1.12–1.62) were higher in the hyperuricemia population than non-hyperuricemia one. In seven RCT studies where XOIs were compared with no-treatment or placebo, the results of five low CV risk studies showed that XOIs lowered the risks of both MACE (RR = 0.35, 95% CI 0.20–0.62) and CVE (RR = 0.61, 95% CI 0.44–0.85); whereas two high CV risk studies showed that XOIs lowered the risk of CVE (RR = 0.69, 95% CI 0.54–0.88) rather than MACE (RR = 0.62, 95% CI 0.29–1.35). In nine RCT studies where the cardiovascular safety between febuxostat and allopurinol were compared, no statistical difference was found in the risk of MACE or CVE.

Conclusions: The hyperuricemia population does have a higher incidence of CVE, and the results suggested that XOIs might reduce the incidence of MACE and total CVE. In addition, from the perspective of cardiovascular safety, febuxostat equaled allopurinol in our meta-analysis.

Keywords: Hyperuricemia; Gout; Cardiovascular event; Febuxostat; Allopurinol

Introduction

Gout is the most common form of inflammatory arthritis involving the joints characterized by urate crystal deposition. Hyperuricemia is prerequisite in developing gout which is curable by keeping serum uric acid <6 mg/dL in most instances.^[1] Many important guidelines, including the 2007 British Society for Rheumatology guidelines,^[2] the 2011 Japanese guidelines,^[3] the 2012 American College of Rheumatology guidelines,^[1,4] the 2014 3e guidelines issued by multinational experts^[5] and the 2016 European League Against Rheumatism gout treatment guidelines,^[6] and so on, have recommended xanthine oxidase inhibitors

Access	this article online
Quick Response Code:	Website: www.cmj.org
	DOI: 10.1097/CM9.00000000000082

(XOIs) as the first-line urate-lowering therapy for treating chronic gout with hyperuricemia. Besides gout, hyperuricemia is considered to cause vascular endothelial dysfunction resulting in complications of cerebral, cardiovascular, renal dysfunction, and non-alcoholic fatty liver disease. Therefore, uric acid lowering was widely noted in these related studies.^[3,7] However, it remains controversial whether treating hyperuricemia and gout with urate-acid lowering therapies (ULTs) including XOI or uricosuric modifies cardiovascular risks.

Allopurinol and febuxostat are two most widely used XOIs. Compared with allopurinol (approved since

Chinese Medical Journal 2020;133(8)

Received: 10-09-2019 Edited by: Li-Shao Guo

Correspondence to: Dr. Yu Xue, Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai 200040, China E-Mail: yxue@unirheuma.org

Copyright © 2020 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

1965),^[8] febuxostat is a novel urate-lowering agent (ULT) and was first approved in European Union in April 2008, followed by USA and later in Japan, for the treatment of chronic hyperuricemia where urate deposition occurred (including a history or presence of tophus and/or gouty arthritis).^[9,10] In contrast to allopurinol (a purine analog), febuxostat inhibits both the oxidized and reduced forms of xanthine oxidase and decreases the formation of uric acid as a non-purine inhibitor of xanthine oxidase.^[11] Febuxostat provides highly selective and potent inhibition of xanthine oxidase and greater hypouricemic activity than commonly used doses of allopurinol.^[12] However, there are concerns about more heart-related deaths with febuxostat compared with allopurinol, and drug safety alerts were released by Health Canada on 1 April 2016 and American Food and Drug Administration (FDA) on November 15, 2017.^[13,14] Hyperuricemia and gout were reported to be linked with an increased risk of cardiovascular disease, that complicated the interpretation of cardiovascular side effects of ULTs in hyperuricemia/gout patients.^[15,16]

With the concerns of cardiovascular safety in hyperuricemia patients, especially in those using ULTs, we conducted this study to compare the incident risk of cardiovascular (CV) events (CVEs) between hyperuricemia and nonhyperuricemia population, assess the cardiovascular benefit-risk of ULTs in hyperuricemia patients with or without gout, and specify the safety of different uratelowering drugs in patients with diverse cardiovascular risk background in CVE.

Methods

This meta-analysis was performed according to the Cochrane Handbook for Systematic Reviews of Interventions^[17] and was reported according to the preferred reporting items for systematic reviews and meta-analyses statement.^[18] The protocol for this meta-analysis is available in PROSPERO (CRD42018090238).

Data sources and search strategy

We searched the PubMed, Embase, the Cochrane Library for the Cochrane Database of Systematic Reviews and the Cochrane Central Register of Controlled Trials, Wanfang, Chongqing VIP (CQVIP, en.cqvip.com), and China National Knowledge Infrastructure (CNKI) Database using the keywords "hyperuricemia," "gout," "cardiovascular," "uric acid lowering," "allopurinol," "febuxostat," "benzbromarone," and the corresponding Chinese words for studies published until October 2019. After the initial electronic retrieval, we manually screened the identified literature.

Inclusion criteria: patients, outcomes, and study design

We used two main outcomes to assess the inclusion criteria. The primary outcome was major adverse cardiovascular events (MACEs), including cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and unstable angina with urgent coronary revascularization. The secondary outcome was all new-onset CVE, including arrhythmia, heart failure, coronary heart disease (CHD), peripheral vascular disease, and MACE. To compare the incident risk of CVE between hyperuricemia and non-hyperuricemia population, studies were eligible for inclusion if they (1) were prospective cohort studies of adults, (2) with longer than one year of followup, (3) with a sample size of at least 100 subjects, (4) with an inception cohort free of CHD or ongoing ULTs, and (5) reported CVE. Studies reporting interventional and secondary prevention trials were excluded.

To assess the cardiovascular benefit-risk of ULTs in hyperuricemia patients with or without gout, and to specify the safety of different urate-lowering drugs, trials were selected based on the following inclusion criteria: (1) studies of hyperuricemia adults with or without gout, (2) randomized controlled trials (RCTs), (3) eligible trials have to report cardiovascular safety of a ULT, (4) potential medications including allopurinol, febuxostat, and benzbromarone, (5) any dosing regimen and sample size were allowed, (6) with longer than one week of follow-up, and (7) the comparative group can use placebo or another ULT.

Study selection, quality assessment, and data extraction

Three reviewers (Zhao L, Cao L, and Zhao TY) separately reviewed all identified records in duplication. Full text was retrieved if either reviewer thought that a certain study definitely met the criteria or featured possible eligibility. All the reviewers processed subsequent global screening independently, and adequate discussion was held to resolve any disagreement or question about the inclusion during the procedure.

Three reviewers independently assessed the methodological quality of eligible studies using the Cochrane Risk of Bias tool^[17] for RCTs or using the Newcastle-Ottawa scale for prospective cohort studies.^[19] The Cochrane Risk of Bias tool mainly evaluated the methodological quality of studies from the following aspects: random sequence generation, allocation concealment, blinding of participants or personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias factors. The quality of each item was divided into low risk of bias, unclear, high risk of bias. And any disagreement between reviewers was solved through discussion. Final map of judgments of studies was synthesized by Review Manager 5.3 software (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). The Newcastle-Ottawa scale mainly assessed the quality from three domains: the selection of cohorts (including representativeness of the exposed cohort, the selection of the non-exposed cohort, ascertainment of exposure, and demonstration with outcome of interest absent at the start of study); comparability of cohorts on the basis of the design or analysis; outcome status (including assessment of outcomes, whether the follow-up long enough for outcomes to occur, and adequacy of follow-up of cohorts).

One reviewer (Zhao L) was responsible for extracting data from the original literature into the form, and other reviewers (Cao L and Zhao TY) verified the data independently. The data was extracted in five domains: general information including title, authors, publication year, and country; design characteristics of the study such as blinding, group settings; baseline characteristics of the study population as follows: number, sex, cardiovascular risk hierarchy (assessed according to criteria mentioned in the next paragraph), diagnosis; intervention details such as medicine, dose, frequency of administration, as well as duration of treatment; details of outcome measures as mentioned above and results.

Stratification of cardiovascular risk

To better illustrate the cardiovascular benefit-risk of ULT in different population with different cardiovascular risk, we evaluated studies according to patients' previous CVE, those with any of the following belonged to high CV risk: heart failure, atrial fibrillation, chronic heart disease, myocardial infarction, cerebrovascular accident, or transient ischemic attack.

Planned sub-group, data analysis and synthesis

To illustrate the correlation between outcomes and intervention more clearly and observe the influence of blinding, we conducted a sub-group analysis according to whether double-blinding was exerted.

We performed meta-analysis to calculate risk ratios (RRs) and 95% confidence intervals (CIs) using the Mantel-Haenszel statistical method with Review Manager 5.3 software. Based on the practice recommendation of the Cochrane Handbook,^[17] studies with zero event in both the intervention and the control groups were not included in the meta-analysis when RRs were calculated.

Statistical heterogeneity between summarized data was evaluated using the I^2 statistic. A fixed-effects model was used to process the data if the I^2 value was less than 50%, otherwise, a random-effects model was utilized to reduce errors due to heterogeneity.

Sensitivity analysis and publication bias test

Sensitivity analysis was processed by using Stata MP 14 software (StataCorp LP, College Station, Texas, USA) to exclude each study in turn. To test bias of publication, we performed Begg rank correlation test and Egger linear regression test^[20] in Stata. All the data entered into the software and the results of the calculation were verified by all the reviewers independently.

Results

Selection and description of studies

We obtained 3733 records from Pubmed, Embase, Cochrane Library database, and 3013 records from Wanfang, CQVIP, CNKI database for a total of 6746 citations [Figure 1]. Of these, 2768 citations were excluded for duplication. 3890 publications were excluded because they did not fulfill the inclusion criteria based on their titles and abstracts after the separate screening by all three reviewers. For further screening, we obtained full-text articles of the remaining citations. In scrutinizing the articles, we finally identified seven prospective cohort studies^[21-27] and 17 RCTs^[11,28-43] eligible for metaanalysis. The other 64 publications were excluded for the following reasons: eight were reviews, 15 were not CV or ULT related, 35 failed to present both primary and secondary outcomes, one shared the same queue of articles published by same authors 5 years ago,^[44] five were retrospective studies.

Finally, seven prospective cohort studies and 17 RCTs were included in our study. The seven prospective cohort studies were described according to exposure degree as shown in Table 1. All of these studies reported MACE while three of them^[21,22,27] failed to clarify CVE. All studies were grouped according to the method of stratification of exposure factors (serum uric acid). To facilitate statistics, we combined the groups whose serum uric acid exceeded the diagnostic criteria into the hyperuricemia group.

The 17 RCTs from four countries were included in our meta-analysis [Table 2]. The publication years varied from 2014 to 2019, 11 among them were double-blinded. According to the previously mentioned CV risk, only three RCTs recruited subjects fulfilled high CV risk standard, and the rest were described as low CV risk. Then these RCTs were divided into two groups for different analysis purpose, XOIs *vs.* placebo/non-XOIs and febuxostat *vs.* allopurinol. There was no eligible study about uricosurics included.

Methodological quality assessment

Different standards of judgement were utilized to assess the methodological quality of prospective cohort studies and RCTs as mentioned previously. The result was presented in Supplementary Table 1, http://links.lww.com/CM9/A177 and Supplementary Figure 1, http://links.lww.com/CM9/A177.

Hyperuricemia and cardiovascular risk

Seven prospective cohort studies were included in which, inception cohorts were free of cardiovascular diseases or ongoing ULTs. In comparison between hyperuricemia and non-hyperuricemia based on seven prospective cohort studies [Figure 2], the risk of MACE was higher in the hyperuricemia population (RR = 1.72, 95% CI 1.28–2.33) with a significant heterogeneity ($I^2 = 88\%$, P < 0.001) [Figure 2A]. Moreover, the pooled RR for CVE cased on four studies^[23-26] was 1.35 (95% CI 1.12–1.62) also with a significant heterogeneity ($I^2 = 81\%$, P = 0.001) [Figure 2B].

Comparison between XOIs and non-XOIs/placebo on cardiovascular risk

The pooled RR of MACE in comparison between XOIs and non-XOIs/placebo with all five low CV risk studies was 0.35 [Figure 3A] (RR = 0.35, 95% CI 0.20–0.62), and a mild heterogeneity was calculated ($I^2 = 0\%$, P = 0.43). Interestingly, when we performed a sub-group analysis, the

Figure 1: Flow diagram of the selection of randomized controlled trials (RCTs) and prospective cohort studies treating hyperuricemia and gout with urate-lowering therapies. CQVIP: Chongqing VIP; CNKI: China National Knowledge Infrastructure; CV: Cardiovascular; ULT: Urate-lowering agent.

pooled estimated RR indicated no significant difference of MACE incidence between the two groups in doubleblinded trials (RR = 0.66, 95% CI 0.22–2.03, $I^2 = 16\%$) based on three RCTs,^[11,30,32] while the MACE risk of ULTs was reduced by 70% in non-double-blinded subgroup (RR = 0.30, 95% CI 0.16–0.56, $I^2 = 0\%$) based on two RCTs.^[34,36]

When came to risk of CVE with low CV risk [Figure 3B], the trend seemed to be the same, the reduction of CVE incidence only presented in XOIs groups of non-doubleblinded studies (RR = 0.48, 95% CI 0.32–0.74, $I^2 = 71\%$) and the whole RCTs (RR = 0.61, 95% CI 0.44–0.85, $I^2 = 9\%$) rather than double-blinded trials (RR = 0.82, 95% CI 0.49–1.37, $I^2 = 0\%$).

In addition, two high CV risk studies^[35,42] which carried out on hyperuricemia subjects with chronic heart failure or stage 3 chronic kidney disease was included. In the analysis of these studies, the RR exhibited divergence between MACE and CVE. Specifically, XOIs lowered the risk of CVE by 31% but failed on MACE (RR = 0.69, 95% CI 0.54–0.88; RR = 0.62, 95% CI 0.29–1.35, respectively) [Figure 4A and 4B].

Comparison between allopurinol and febuxostat on cardiovascular risk

The pooled estimated RR based on five trials indicated no significant difference in comparison between allopurinol and febuxostat on MACE of low CV risk population (RR = 0.51, 95% CI 0.21–1.24) regardless of blinding with a mild heterogeneity ($I^2 = 0\%$, P = 0.56) [Figure 5A]. Similarly, there was no significant difference between the two medications on CVE of low CV risk subjects (RR = 0.84, 95% CI 0.65–1.09) regardless of blinding [Figure 5B].

Only one high CV risk study^[28] which involved subjects with established cardiovascular comorbidities at baseline, was included. The results were statistically insignificant in both MACE and CVE (RR = 1.05, 95% CI 0.89-1.23;

Included studies	Country	Exposure grouping: serum urate acid (male/female) (µmol/L)	Sample size (<i>n</i>)	Gender (male)	MACE (<i>n</i>)	CVE (<i>n</i>)
Sciacqua, 2015 ^[22]	Italy	<270 (only female)	215	0	21	Not described
		270-360 (only female)	215	0	27	Not described
		>360 (only female)	215	0	42	Not described
Franse, 2000 ^[27]	USA	80-290/80-240	1160	486	135	155
		300-340/250-280	1058	494	126	147
		350-390/290-330	1092	434	141	168
		400-670/340-610	1017	445	131	168
Zalawadiya, 2015 ^[23]	USA	<420	2800	308	111	Not described
		420-510	2579	921	130	Not described
		520-610	2977	1789	186	Not described
		>620	2653	2048	208	Not described
Turak, 2014 ^[24]	Turkey	≤ 288	239	128	9	127
		294-324/294-312	259	141	8	134
		330-384/330-360	213	118	36	153
		>384/>360	210	113	50	165
Kanbay, 2012 ^[25]	Turkey	≤420/≤360	89	55	1	13
		>420/>360	214	96	32	100
Ekundayo, 2010 ^[26]	USA	<420/<360	1181	529	104	312
		≥420/≥360	1181	510	121	369
Fang, 2000 ^[28]	USA	<321/<238	1525	666	75	Not described
		321-363/238-280	1472	674	77	Not described
		364-416/281-333	1500	700	105	Not described
		>416/>333	1429	662	164	Not described

Table 1: Characteristics of included prospective cohort studies treating hyperuricemia and gout with urate-lowering therapies.

MACE: Major adverse cardiovascular events; CVE: Cardiovascular events.

					In	terventio	n		Control					
Included studies	Country	Double- blinding	CV risk	Follow-up duration (months)	Treatment	Sample size (<i>n</i>)	MACE (<i>n</i>)	CVE (<i>n</i>)	Treatment	Sample size (<i>n</i>)	MACE (<i>n</i>)	CVE (<i>n</i>)		
XOIs <i>vs</i> . placebo or non-XOIs														
Dalbeth, 2017 ^[31]	USA	Yes	Low	24	Febuxostat	157	3	5	Placebo	157	2	6		
Goicoechea, 2015 ^[35]	Spain	No	Low	84	Allopurinol	57	4	16	Non-XOIs	56	12	23		
Schumacher, 2008 ^[12]	ÛSA	Yes	Low	7	Febuxostat	670	3	11	Placebo	134	0	1		
					Allopurinol	268	0	1						
Saag, 2016 ^[33]	USA	Yes	Low	12	Febuxostat	64	1	5	Placebo	32	3	4		
Tuta, 2014 ^[37]	Romania	No	Low	12	Allopurinol	52	6	6	Non-XOIs	63	26	26		
Givertz, 2015 ^[36]	USA	Yes	High	6	Allopurinol	128	5	52	Placebo	125	7	67		
Kimura, 2018 ^[43]	Japan	Yes	High	27	Febuxostat	219	5	15	Placebo	222	9	29		
Saag, 2019 ^[71]	USA	Yes	Low	3	Febuxostat	1427	0	32	Placebo	356	0	10		
Febuxostat vs. allopurin	ol													
Lu, 2016 ^[34]	China	No	Low	6	Febuxostat	41	1	1	Allopurinol	41	5	5		
Jiang, 2014 ^[39]	China	Yes	Low	6	Febuxostat	40	1	1	Allopurinol	20	0	0		
Nong, 2018 ^[30]	China	No	Low	5	Febuxostat	68	0	0	Allopurinol	68	0	1		
Wang, 2013 ^[40]	China	Yes	Low	6	Febuxostat	315	0	20	Allopurinol	159	0	13		
Tang, 2017 ^[32]	China	No	Low	2	Febuxostat	44	0	1	Allopurinol	44	0	12		
Becker, 2010 ^[41]	USA	Yes	Low	6	Febuxostat	1513	4	76	Allopurinol	756	4	45		
Huang, 2014 ^[38]	China	Yes	Low	7	Febuxostat	344	0	0	Allopurinol	172	1	1		
Becker, 2009 ^[42]	USA	No	Low	40	Febuxostat	1288	95	95	Allopurinol	178	9	9		
White, 2018 ^[29]	USA	Yes	High	32	Febuxostat	3098	335	560	Allopurinol	3092	321	525		

CV: Cardiovascular; CVE: Cardiovascular events; MACE: Major adverse cardiovascular events; XOIs: Xanthine oxidase inhibitors.

.

A								
	hyperuric	cemia	non-hyperu	ricemia		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% C	r	M-H, Random, 95% Cl
Ekundayo,2010	121	1181	104	1181	16.6%	1.16 [0.91, 1.49]		+
Fang,2000	164	1429	257	4497	17.4%	2.01 [1.67, 2.42]		-
Franse,2000	131	1017	402	3310	17.5%	1.06 [0.88, 1.28]		+
Kanbay.2012	32	214	1	89	2.1%	13.31 [1.85, 95.90]		· · · · · · · · · · · · · · · · · · ·
Sciacqua,2015	42	215	48	430	14.4%	1.75 [1.20, 2.56]		
Turak,2014	50	210	53	711	14.8%	3.19 [2.24, 4.55]		
Zalawadiya,2015	524	8209	111	2800	17.3%	1.61 [1.32, 1.97]		*
Total (95% CI)		12475		13018	100.0%	1.72 [1.28, 2.33]		•
Total events	1064		976					
Heterogeneity: Tau ² =	0.13; Chi ² =	49.84,	df = 6 (P < 0.0)	0001); l ² =	= 88%			
R	Z = 3.56 (P	= 0.000	4)			Disk Datio		Favours hyperuricemia Favours non-hyperuricemia
	nyperurio	emia	non-nyperu	ricemia		RISK Ratio		RISK RATIO
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C		M-H, Random, 95% Cl
Ekundayo,2010	369	1181	312	1181	30.3%	1.18 [1.04, 1.34]		
Franse,2000	168	1017	470	3310	27.9%	1.16 [0.99, 1.37]		•
Kanbay.2012	100	214	13	89	9.3%	3.20 [1.90, 5.39]		
Turak,2014	165	210	414	711	32.4%	1.35 [1.23, 1.48]		
Total (95% CI)		2622		5291	100.0%	1.35 [1.12, 1.62]		•
Total events	802		1209					
Heterogeneity: Tau ² =	= 0.03; Chi ² =	15.95,	df = 3 (P = 0.0)	01); $l^2 = 8$	1%		-	
Test for overall effect:	Z = 3.15 (P	= 0.002)		00070701		0.01	0.1 1 10 1
								Favours hyperuricemia Favours non-hyperuricemia

Figure 2: Comparison between hyperuricemia and non-hyperuricemia in MACE (A, P value in Begg test = 0.764, in Egger test = 0.765) and in CVE (B, P value in Begg test = 0.734, in Egger test = 0.402). CVE: Cardiovascular events; MACE: Major adverse cardiovascular events.

RR = 1.08, 95% CI 0.95–1.23, respectively) [Figure 6A and 6B].

Sensitivity analysis and publication bias

We conducted a sensitivity analysis by observing whether estimated RRs pooled after excluding each study in turn at previous 95% CIs. There were no significant changes [Supplementary Figures 2–4, http://links.lww.com/CM9/ A177]. The results of Begg rank correlation test and Egger linear regression test calculated to assess the publication bias were attached to descriptions of each figure. Egger publication bias plots, indicated that there was no significant publication bias.

Discussion

Many studies have shown that hyperuricemia was associated with CVE such as hypertension, CHD, peripheral vascular disease, heart failure, metabolic syndrome, and stroke. However uric acid as an antioxidant has evolutionary advantages to protect human from oxidative damage and prolong life span, which is in conflict with many epidemiologic studies.^[45-52] In our meta-analysis, we included seven prospective cohort studies, which were inception cohorts without cardiovascular diseases or ongoing ULTs. Our result showed that hyperuricemia increased the risk of MACE by 72% compared with that of non-hyperuricemia patients (RR = 1.72, 95% CI 1.28-2.33). This result was in consistency with the meta-analysis conducted by Kim et al, which indicated that hyperuricemia was associated with an increased risk of CHD incidence (RR = 1.34, 95%) CI 1.19–1.49) and mortality (RR = 1.46, 95% CI 1.20– 1.73).^[53] Whether hyperuricemia directly or indirectly increases the risk of cardiovascular disease remains

uncertain. However current data suggested more aggressive uric acid management in hyperuricemia patients with potential cardiovascular risk. There was a certain limitation in this part of analysis. Based on the current understanding of biology and pathophysiology of hyperuricemia and gout, it was inappropriate to analyze a mixed population of individuals with gout and asymptomatic hyperuricemia. Although the two have many conditions in common, the impact of gout on cardiovascular disease is different from that of hyperuricemia. All of these studies did not give the information of exclusion of gout in the enrolled population except one study.^[42] We believed they were more likely to be a mixed population, and unfortunately we were unable to separate these data into gout vs. asymptomatic hyperuricemia.

Substantial literature reported that the mechanism of hyperuricemia contributing to cardiovascular risk may be linked to vascular endothelial dysfunction.^[3,7] The production of uric acid by xanthine oxidase also generates free radicals that might adversely affect mitochondrial function and production of adenosine triphosphate (ATP) which leading to endothelial dysfunction. XOIs are thus supposed to be capable of reducing free radicals' production and the risk of CVE.^[8,51,54-58] In several studies, allopurinol treatment significantly reduced the risk of CV diseases and improved endothelial functions.^[59-61] These encouraging clinical data have led to the increased use of allopurinol for these diseases.^[62] However, it remains controversial, whether XOIs might improve CV outcomes in hyperuricemia patients. A meta-analysis done by Zhang *et al*^[54] in 2014 suggested that XOIs might improve outcomes of patients with cardiovascular disease but more evidence was required. Then in 2016, the same team updated their meta-analysis in which new studies

Study or Subarour	Evente	Total	Evente	Total	Moinht	MU Eived OF		M H Eine	d 05% CI
Study or Subgroup	Events	Total	Events	Total	weight	WI-H, FIXed, 95% C		WI-FI, FIXE	a, 95% CI
1.4.1 non-double blind		67	10	50	00 50/	0.00 10 44 0.051			
Solcoechea,2015	4	57	12	00	28.5%	0.33 [0.11, 0.95]		_	
uta,2014	6	52	26	110	55.3%	0.28 [0.12, 0.63]		-	
	10	109	20	119	03.0%	0.30 [0.10, 0.50]		1000 C	
otal events	10	(0.0	38						
leterogeneity: Chr = 0.0	-2.70 (D	(P = 0.00)	$82); 1^{2} = 0\%$						
est for overall effect. Z	= 3.70 (P	= 0.00	02)						
.4.2 double blind									
albeth 2017	3	157	2	157	4 7%	1 50 10 25 8 851			
aag 2016	1	64	3	32	9.4%	0 17 [0 02 1 54]	-		
chumacher 2008	3	038	0	134	2 1%	1 01 0 05 19 381			
ubtotal (95% CI)	5	1159	0	323	16.2%	0.66 [0.22 2.02]			
otal events	7		5						
leterogeneity: Chi ² = 2 (37. df = 2	P = 0	$(31): l^2 = 16\%$						
est for overall effect: Z	= 0.73 (P	P = 0.47)						
	0.10 (1	0.11	,						
otal (95% CI)		1268		442	100.0%	0.35 [0.20, 0.62]		•	
otal events	17		43			222 19 19			
leterogeneity: Chi ² = 3.8	81, df = 4	(P = 0.	43): $I^2 = 0\%$					1.	1
est for overall effect: Z	= 3.68 (P	P = 0.00	02)				0.01	0.1 1	10
est for subaroun differe	nces Ch	$i^2 = 1.5$	0 df = 1 (P = 0)	22) 12 =	33 3%			Favours XOIs	Favours non-XOIs/pla
	XOIs		non-YOk/nla	cabo		Pick Patio		Pick F	Patio
Study or Subgroup	XOIs	Total	non-XOIs/pla	cebo	Weight	Risk Ratio		Risk F	Ratio
Study or Subgroup	XOIs Events	Total	non-XOIs/pla Events	cebo Total	Weight	Risk Ratio M-H. Fixed, 95% CI	ŝ	Risk F M-H, Fixed	Ratio d. 95% Cl
Study or Subgroup	XOIs Events	Total	non-XOIs/pla Events	cebo Total	Weight	Risk Ratio M-H. Fixed, 95% CI		Risk F M-H, Fixe	Ratio d. 95% Cl
Study or Subgroup 1.5.1 non-double blind Goicoechea,2015	XOIs Events	Total	non-XOIs/pla Events 23	cebo Total 56	Weight 30.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15]	2	Risk F M-H, Fixer	Ratio d. 95% Cl
Study or Subgroup .5.1 non-double blind Soicoechea,2015 Tuta,2014 Subtotal (95% CI)	XOIs Events I 16 6	Total 57 52	non-XOIs/pla Events 23 26	cebo <u>Total</u> 56 63	Weight 30.5% 30.9% 61.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 (0.31, 0.74]	<u>k</u>	Risk F M-H, Fixer	Ratio d. 95% Cl
<u>itudy or Subgroup</u> .5.1 non-double blind Soicoechea,2015 Tuta,2014 Subtotal (95% CI)	XOIs Events 16 6	Total 57 52 109	non-XOIs/pla Events 23 26	cebo Total 56 63 119	Weight 30.5% 30.9% 61.5%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74]	<u>.</u>	Risk F M-H, Fixer	Ratio d. 95% Cl
Study or Subgroup .5.1 non-double blind Goicoechea,2015 Tuta,2014 Subtotal (95% CI) Total events	XOIs Events 16 6 22	Total 57 52 109	non-XOIs/pla Events 23 26 49	cebo Total 56 63 119	Weight 30.5% 30.9% 61.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74]	k	Risk F M-H, Fixed	Ratio d. 95% Cl
tudy or Subgroup .5.1 non-double blind Soicoechea,2015 Tuta,2014 Subtotal (95% CI) Total events leterogeneity: Chi ² = 3.	XOIs Events 16 6 22 49, df = -	57 52 109	non-XOIs/pla Events 23 26 49 0.06); I ² = 71%	cebo Total 56 63 119	Weight 30.5% 30.9% 61.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74]	<u>.</u>	Risk F	Ratio d. 95% Cl
Study or Subgroup .5.1 non-double blind Goicoechea,2015 Tuta,2014 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3. Test for overall effect: Z	XOIs Events 16 6 22 49, df = - = 3.29 (F	57 52 109 1 (P = 0.00	non-XOIs/pla Events 23 26 49 0.06); I ² = 71% 01)	cebo Total 56 63 119	Weight 30.5% 30.9% 61.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74]	2	Risk F	Ratio d. 95% Cl
5.1 non-double blind Soicoechea,2015 iuta,2014 iubtotal (95% CI) iotal events leterogeneity: Chi ² = 3. est for overall effect: Z	XOIs Events 16 6 22 49, df = - 3.29 (f	57 52 109 1 (P = 0 P = 0.00	non-XOIs/pla Events 23 26 49 0.06); I ² = 71% 01)	cebo Total 56 63 119	Weight 30.5% 30.9% 61.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74]		Risk F	Ratio d. 95% Cl
5.1 non-double blind Soicoechea,2015 Tuta,2014 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3. Test for overall effect: Z .5.2 double blind balbeth 2017	XOIs Events 16 6 22 49, df = - 2 = 3.29 (F	57 52 109 1 (P = 0 P = 0.00	non-XOIs/pla Events 23 26 49 0.06); I ² = 71% 01)	cebo Total 56 63 119 76	Weight 30.5% 30.9% 61.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74]	2 	Risk F	Ratio d. 95% Cl
Study or Subgroup .5.1 non-double blind Soicoechea,2015 Tuta,2014 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3. Fest for overall effect: Z .5.2 double blind Dalbeth,2017 Sago 2016	XOIs <u>Events</u> 16 6 22 49, df = - 2 = 3.29 (F 5 5	57 52 109 1 (P = 0 P = 0.00 82 64	non-XOIs/pla Events 23 26 49 0.06); l ² = 71% 01) 6 4	cebo Total 56 63 119 76 32	Weight 30.5% 30.9% 61.5% 8.2% 7.0%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17]	<u>,</u>	Risk F	Ratio d. 95% Cl
Study or Subgroup 1.5.1 non-double blind Soicoechea,2015 Futa,2014 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 3. Fest for overall effect: Z 1.5.2 double blind Dalbeth,2017 Saag,2016 Saag,2019	XOIs <u>Events</u> 1 16 6 22 49, df = - 2 49, df = - 3.29 (F 5 5 5 32	57 52 109 1 (P = 0 P = 0.00 82 64 1420	non-XOIs/pla Events 23 26 49 0.06); l ² = 71% 01) 6 4 10	Cebo Total 56 63 119 76 32 356	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62]	<u>,</u>	Risk F	Ratio d. 95% Cl
5.1 non-double blind 5.1 non-double blind 5.1 non-double blind 5.1 non-double blind 5.1 non-double blind 5.1 non-double blind 5.2 double blind 5.2 double blind 5.3 double blind 5.3 double blind 5.4 double blind 5.4 double blind 5.5 do	XOIs Events 16 6 22 49, df = - 5 5 5 32 12	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938	non-XOIs/pla Events 23 26 49 0.06); I ² = 71% 01) 6 4 10	76 32 356 32	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08]		Risk F	Ratio d. 95% Cl
5.1 non-double blind Soicoechea,2015 'uta,2014 'uta,2014 'utatal (95% CI) 'otal events leterogeneity: Chi ² = 3. 'est for overall effect: Z .5.2 double blind balbeth,2017 Gaag,2019 Schumacher,2008 Subtotal (95% CI)	XOIs Events 16 6 22 49, df = 3.29 (f 5 5 32 32 12	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938 2504	non-XOIs/pla Events 23 26 49 0.06); $ ^2 = 71\%$ 01) 6 4 10 1	cebo Total 56 63 119 76 32 356 134 598	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3% 38.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08] 0.82 [0.49, 1.37]	<u>4</u>	Risk F	Ratio d. 95% Cl
5.1 non-double blind Soicoechea,2015 'uta,2014 'uta,2014 'utatal (95% Cl) 'otal events leterogeneity: Chi ² = 3. 'est for overall effect: Z .5.2 double blind Dalbeth,2017 Saag,2016 Saag,2019 Schumacher,2008 Subtotal (95% Cl) 'otal events	XOIs <u>Events</u> 1 16 6 22 49, df = - 5 5 32 12 54	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938 2504	non-XOIs/pla Events 23 26 49 0.06); ² = 71% 01) 6 4 10 1 21	Cebo Total 56 63 119 76 32 356 134 598	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3% 38.5%	Risk Ratio M-H, Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08] 0.82 [0.49, 1.37]	<u>A</u>	Risk F M-H, Fixer	Ratio d. 95% Cl
tudy or Subgroup .5.1 non-double blind Soicoechea,2015 iuta,2014 iuta,2014 iutatotal (95% CI) fotal events leterogeneity: Chi ² = 3. .5.2 double blind balbeth,2017 iaag,2016 iaag,2019 ichumacher,2008 iubtotal (95% CI) fotal events leterogeneity: Chi ² = 0	XOIs <u>Events</u> 1 16 6 22 49, df = - 5 5 32 12 54 70 df = - 54	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938 2504 3 (P = 0	non-XOIs/pla Events 23 26 49 (.06); $ ^2 = 71\%$ 01) 6 4 10 1 21 (.87): $ ^2 = 0\%$	cebo Total 56 63 119 76 32 356 134 598	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3% 38.5%	Risk Ratio M-H, Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08] 0.82 [0.49, 1.37]	<u>A</u>	Risk F	Ratio d. 95% Cl
5.1 non-double blind 5.1 non-double blind 5.1 non-double blind 5.1 non-double blind 5.1 non-double blind 5.1 non-double blind 5.2 double blind 5.2 double blind 5.2 double blind 5.2 double blind 5.3 double blind 5.4 double blind 5.5 do	XOIs Events 16 6 22 49, df = - 5 5 32 12 54 70, df = 3 54 70, df = 3 54 70, df = 3 70, d	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938 2504 3 (P = 0 P = 0.45	non-XOIs/pla Events 23 26 49 0.06); $l^2 = 71\%$ 01) 6 4 10 1 21 0.87); $l^2 = 0\%$	Cebo Total 56 63 119 76 32 356 134 598	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3% 38.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08] 0.82 [0.49, 1.37]	2 	Risk F	Ratio d. 95% Cl
Study or Subgroup .5.1 non-double blind Soicoechea,2015 Tuta,2014 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3. Test for overall effect: Z .5.2 double blind Dalbeth,2017 Saag,2016 Saag,2019 Schumacher,2008 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0. Test for overall effect: Z Total (95% CI)	XOIs Events 1 16 6 22 49, df = 1 5 5 32 12 54 70, df = 3 54 57 54 57 54 57 54 57 54 57 54 57 54 57 54 57 57 57 57 57 57 57 57 57 57	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938 2504 3 (P = 0 P = 0.45 2612	non-XOIs/pla Events 23 26 49 1.06); $ ^2 = 71\%$ 01) 6 4 10 1 21 1.877; $ ^2 = 0\%$ 5)	cebo Total 56 63 119 76 32 356 134 598	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3% 38.5%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08] 0.82 [0.49, 1.37]	r 	Risk F M-H, Fixed	Ratio d. 95% Cl
Study or Subgroup .5.1 non-double blind Soicoechea,2015 'uta,2014 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3. Test for overall effect: Z .5.2 double blind Dalbeth,2017 Saag,2019 Schumacher,2008 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0. Test for overall effect: Z Total (95% CI)	XOIs <u>Events</u> 1 16 6 22 49, df = 1 = 3.29 (f 5 5 32 12 54 70, df = 3 = 0.76 (f 70	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938 2504 3 (P = 0 P = 0.45 2613	non-XOIs/pla Events 23 26 49 0.06); $ ^2 = 71\%$ 01) 6 4 10 1 21 0.87); $ ^2 = 0\%$ 5)	cebo Total 56 63 119 76 32 356 134 598 717	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3% 38.5% 100.0%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08] 0.82 [0.49, 1.37] 0.61 [0.44, 0.85]		Risk F M-H, Fixed	Ratio d. 95% Cl
5.1 non-double blind 5.1 non-double blind 5.2 non-double blind 5.2 non-double blind 5.3 non-double blind 5.4 non-double blind 5.5 non-double blind	XOIs Events 16 6 22 49, df = - 5 5 32 12 54 70, df = 3 29 (f - 5 5 32 12 54 70, df = - 54 76 54 76 54 76 76 76 76 76 76 76 76 76 76	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938 2504 3 (P = 0 P = 0.45 2613	non-XOIs/pla Events 23 26 49 0.06); $l^2 = 71\%$ 01) 6 4 10 1 21 0.87); $l^2 = 0\%$ 5) 70 (28), $l^2 = 0\%$	cebo Total 56 63 119 76 32 356 134 598 717	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3% 38.5% 100.0%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08] 0.82 [0.49, 1.37] 0.61 [0.44, 0.85]		Risk F M-H, Fixed	Ratio d. 95% Cl
tudy or Subgroup .5.1 non-double blind Soicoechea,2015 Uta,2014 Subtotal (95% CI) Sotal events Leterogeneity: Chi ² = 3. est for overall effect: Z .5.2 double blind Dalbeth,2017 Saag,2016 Schumacher,2008 Subtotal (95% CI) Sotal events Leterogeneity: Chi ² = 0. est for overall effect: Z Sotal (95% CI) Sotal events Leterogeneity: Chi ² = 5.	XOIs Events 16 6 22 49, df = - 5 5 32 12 54 70, df = 5 ; 2 = 0.76 (F 76 51, df = 5 2 = 0.26 (F)	57 52 109 1 (P = 0 P = 0.00 82 64 1420 938 2504 3 (P = 0 P = 0.45 2613 5 (P = 0	non-XOIs/pla Events 23 26 49 0.06); $ ^2 = 71\%$ 01) 6 4 10 1 21 0.87); $ ^2 = 0\%$ 5) 70 0.36); $ ^2 = 9\%$	cebo Total 56 63 119 76 32 356 134 598 717	Weight 30.5% 30.9% 61.5% 8.2% 7.0% 21.0% 2.3% 38.5% 100.0%	Risk Ratio M-H. Fixed, 95% CI 0.68 [0.41, 1.15] 0.28 [0.12, 0.63] 0.48 [0.31, 0.74] 0.77 [0.25, 2.43] 0.63 [0.18, 2.17] 0.80 [0.40, 1.62] 1.71 [0.22, 13.08] 0.82 [0.49, 1.37] 0.61 [0.44, 0.85]	0.01	Risk F M-H, Fixed	Ratio d. 95% Cl

Figure 3: Comparison between XOIs and non-XOIs/placebo in MACE with low CV risk (A, P value in Begg test = 0.462, in Egger test = 0.275), in CVE with low CV risk (B, P value in Begg test = 0.851, in Egger test = 0.687). CV: Cardiovascular; CVE: Cardiovascular events; MACE: Major adverse cardiovascular events; XOIs: Xanthine oxidase inhibitors.

with large sample size were added.^[63] However, the results remained similar to the previous one that XOIs (allopurinol or oxypurinol) did not exert a large reduction in mortality but also could not exclude the possibility of substantial harm or benefit. Our meta-analysis included eight RCTs (six studies in low CV risk patients and two studies in high CV risk patients), potential medications were XOIs (allopurinol or febuxostat), and comparator group used placebo or received no treatment. To avoid investigator bias, we stratified these studies into doubleblinded and non-double-blinded sub-groups. Interestingly, analysis of the blinding sub-group came to opposite results.

Non-double-blinded RCT studies showed that XOIs lowered the risk of both MACE and CVE in hyperuricemia patients (RR = 0.30, 95% CI 0.16–0.56; RR = 0.48, 95% CI 0.31–0.74, respectively), whereas double-blinded studies showed that XOIs neither lowered the risk of MACE, nor the CVE (RR = 0.66, 95% CI 0.22–2.02; RR = 0.82, 95% CI 0.49–1.37, respectively). Total 13,468 and 1995 patients were included in double-blinded and non-double-blinded studies, respectively. The follow-up time of double-blinded studies varied from 6 to 24 months, while follow-up time of non-blinded studies varied from 2 to 84 months. No significant difference was seen between

	XOIs		non-XOIs/pla	acebo		Risk Ratio			Risk Ratio	0	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		М-Н.	Fixed. 9	5% CI	
Givertz,2015	5	128	7	125	44.2%	0.70 [0.23, 2.14]					
Kimura 2018	5	219	9	222	55.8%	0.56 [0.19, 1.65]					
Total (95% CI)		347		347	100.0%	0.62 [0.29, 1.35]					
Total events	10		16								
Heterogeneity: Chi ² = (0.07, df = '	1 (P = 0)	.79); 12 = 0%			L.	0.04			10	400
Test for overall effect:	7 = 1.20 / 1	D = 0 23	8)			0	0.01	0.1	1	10	100
rest for overall effect.	2 - 1.20 (1	- 0.20	,					Favorities			
rest for overall effect.	2 - 1.20 (1	- 0.20	,					Favours /	NOIS Fav	ours non-Aois	placebu
B	2 - 1.20 (1	- 0.20	,,					Favours /	NOIS Pav		placebo
3	XOIs	- 0.20	non-XOIs/pla	acebo		Risk Ratio		Favours 7	Risk Ratio		placebo
3 Study or Subgroup	XOIs	Total	non-XOIs/pla Events	acebo Total	Weight	Risk Ratio M-H, Fixed, 95% CI	1	Pavours 2	Risk Ratio	5% CI	placebo
3 Study or Subgroup Givertz,2015	XOIs Events 52	<u>Total</u> 128	non-XOIs/pla Events 67	Total	Weight 52.7%	Risk Ratio M-H, Fixed, 95% Cl 0.76 [0.58, 0.99]		Havours 7	Risk Ratio	5% CI	placebo
3 Study or Subgroup Givertz,2015 Kimura 2018	XOIs Events 52 15	Total 128 219	non-XOIs/pla Events 67 29	Total 125 222	Weight 52.7% 22.4%	Risk Ratio M-H. Fixed, 95% Cl 0.76 [0.58, 0.99] 0.52 [0.29, 0.95]		M-H.	Risk Ratio	5% CI	рысерс
3 Study or Subgroup Givertz,2015 Kimura 2018 Kojima 2019	XOIs Events 52 15 28	Total 128 219 537	non-XOIs/pla Events 67 29 32	Total 125 222 533	Weight 52.7% 22.4% 25.0%	Risk Ratio M-H. Fixed. 95% CI 0.76 [0.58, 0.99] 0.52 [0.29, 0.95] 0.87 [0.53, 1.42]		M-H.	Risk Ratio	5% CI	рысерс
3 <u>Study or Subgroup</u> Givertz,2015 Kimura 2018 Kojima 2019 Total (95% CI)	XOIs Events 52 15 28	Total 128 219 537 884	non-XOIs/pla Events 67 29 32	Total 125 222 533 880	Weight 52.7% 22.4% 25.0% 100.0%	Risk Ratio M-H, Fixed, 95% Cl 0.76 [0.58, 0.99] 0.52 [0.29, 0.95] 0.87 [0.53, 1.42] 0.73 [0.59, 0.92]		Раубитя / 	Risk Ratio	5% CI	рысерс
3 <u>Study or Subgroup</u> Givertz,2015 Kimura 2018 Kojima 2019 Total (95% CI) Total events	XOIs Events 52 15 28 95	Total 128 219 537 884	non-XOIs/pla Events 67 29 32 128	Total 125 222 533 880	Weight 52.7% 22.4% 25.0% 100.0%	Risk Ratio M-H, Fixed, 95% Cl 0.76 [0.58, 0.99] 0.52 [0.29, 0.95] 0.87 [0.53, 1.42] 0.73 [0.59, 0.92]		Раубитя / 	Risk Ratio	5% CI	рысерс
3 <u>Study or Subgroup</u> Givertz,2015 Kimura 2018 Kojima 2019 Total (95% CI) Total events Heterogeneity: Chi ² = 1	XOIs <u>Events</u> 52 15 28 95 1.73, df = 3	Total 128 219 537 884 2 (P = 0	non-XOIs/pla <u>Events</u> 67 29 32 128 .42); I ² = 0%	acebo Total 125 222 533 880	Weight 52.7% 22.4% 25.0% 100.0%	Risk Ratio M-H, Fixed, 95% Cl 0.76 [0.58, 0.99] 0.52 [0.29, 0.95] 0.87 [0.53, 1.42] 0.73 [0.59, 0.92]	0.01	M-H.	Risk Ratio	5% CI	100

Figure 4: Comparison between XOIs and non-XOIs/placebo in MACE with high CV risk (A), in CVE with high CV risk (B). CV: Cardiovascular; CVE: Cardiovascular events; MACE: Major adverse cardiovascular events; XOIs: Xanthine oxidase inhibitors.

the baselines of two sub-groups. Our results resemble the results of Zhang *et al*'s study to some extent. XOIs might have their protection properties in lowering cardiovascular risk. However, in the double blinded studies the relative results were not statistically significant due to being underpowered based on only 28 MACE. More double-blinded RCTs are still needed to address this issue.

Would the CV protection properties differ between XOIs? Would this difference exactly lead to the contrary results from the hypothesis? Since early in 2009, the febuxostat's drug labels have already carried a warning and precaution about CVE because the pre-approval clinical trials showed a higher rate of CVE in patients who were treated with febuxostat compared to allopurinol.^[12,13,64] The Cardiovascular Safety of Febuxostat and Allopurinol in Patients with Gout and Cardiovascular Morbidities (CARES) trial, was; therefore, conducted as an FDA requirement to better understand these differences. The 2017 FDA drug alert mentioned in the beginning of this article was just due to the preliminary results of this safety trial which was conducted in over 6000 gout patients treated with either febuxostat or allopurinol. The results showed that in patients with gout and major cardiovascular coexisting conditions, febuxostat was non-inferior to allopurinol with respect to rates of adverse CVE. However all-cause mortality and cardiovascular mortality were higher with febuxostat than with allopurinol.^[28] This article was published on March, 2018 and was included in our study. Since it was the only one eligible study focused on high CV risk patients, it was analyzed separately, and the result of febuxostat vs. allopurinol was statistically insignificant in both MACE and CVE (RR = 1.05, 95% CI 0.89–1.23; RR = 1.08, 95% CI 0.95–1.23). Choi *et al*^[71] published a review article which talked about the implications of the CARES trial and associated it with the FDA public safety alert, that may help us to understand deeply. CARES did not prove that febuxostat raises CV mortality risk;

however, it suggested greater risk with febuxostat than allopurinol. CARES results did not support first line use of febuxostat, and raised questions on febuxostat placement at various pharmacologic ULT decision tree branches. The FDA safety alert highlighted the need for sharing ULT medical decision with gout patients, including discussion of CV safety of febuxostat.^[67]

The effect of urate-lowering drugs was different between XOIs and uricosuric. For benzbromarone, there was no eligible study included in our study. Recently, Kim *et al*^[65] sought to examine the effect of ULTs with either probenecid or allopurinol on cardiovascular risk in older patients with gout. Using Medicare to claim data of over a 6-year period, the authors identified a total of 9722 probenecid initiators propensity score-matched to 29,166 allopurinol initiators with mean age of 76 \pm 7 years. Treatment with probenecid appeared to be associated with a modestly decreased risk of CV events including MI, stroke, and HF exacerbation compared with allopurinol. From a mechanic view, probenecid was not only a uricosuric, but also an inhibitor of pannexin 1 channels (an ATP release channel) which involved in inflammasome activation and interleukin (IL)-1 β release.^[66] IL-1 β was also known to play a pivotal role in the pathogenesis of gout inflammation and atherosclerosis.^[67] Therefore, it was plausible to meet the conclusion that probenecid may have cardioprotective effects in gout patients and this conclusion might challenge the first line choice of XOIs as ULTs. However, it should be considered that only prospective RCTs can prove causality; retrospective analysis can only suggest associations.

There were still several limitations in this analysis. The CVE rates were low. Most RCTs were single-center, which are more prone to investigator bias. There was a highly variable length of follow-up (2 to 84 months). The metaanalysis could be underpowered, as studies were not

	febuxo	stat	allopur	inol		Risk Ratio		Risk Rati	0	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fixed, 9	5% CI	
2.3.1 non-double blind										
u,2016	1	41	5	41	36.5%	0.20 [0.02, 1.64]	_			
Subtotal (95% CI)		41		41	36.5%	0.20 [0.02, 1.64]	-			
Total events	1		5							
Heterogeneity: Not appl	icable									
Test for overall effect: Z	= 1.50 (P = 0.13	3)							
2.3.2 double blind										
Becker.2010	4	1513	4	756	38.9%	0.50 [0.13, 1.99]				
Huang.2014	0	344	1	172	14.6%	0.17 [0.01, 4.08]	←			
Jiang.2014	1	40	0	20	4.8%	1.54 [0.07, 36,11]				
Schumacher 2008	3	670	0	268	5.2%	2 81 [0 15 54 14]		1		_
Subtotal (95% CI)		2567		1216	63.5%	0.69 [0.25, 1.89]				
Total events	8		5	00000	Sec. 2.4.5	Charles and the second second				
Heterogeneity: Chi ² = 2	08 df =	3 (P = 0	56) 12 =	0%						
Test for overall effect: Z	= 0.72 (P = 0.47		0 /0						
Fotal (95% CI)		2608		1257	100.0%	0.51 [0.21, 1.24]		-		
Lotal events	9		10							
Hotorogeneity: Chi ² = 2	07 df =	1 (P = 0	56) 12 -	0%			H			
Test for overall effect: 7	- 1 10 /			0 /0			0.01	0.1 1	10	10
Test for outproup different	- 1.40 (1	U. 14) 0 df = 1	(D - 0)	201 12 - 7	00/	F	avours febuxostat Fav	ours allopurinol	
rest for subdroub differe	ences. C	n= = 1.t	19. 01 - 1	(P = 0.)	$501.1^{-} - 7.$	976				
E										
,	febuyo	etat	allonur	inol		Dick Patio		Dick Dati	0	
Study or Subgroup	febuxo	stat	allopur	inol	Woight	Risk Ratio	1	Risk Rati	0	
Study or Subgroup 2.4.1 non-double blind	febuxo: Events	stat Total	allopur Events	inol Total	Weight	Risk Ratio M-H, Fixed, 95% C		Risk Rati M-H, Fixed, 9	o 5% Cl	
Study or Subgroup 2.4.1 non-double blind Becker,2009	febuxos Events I 95	stat Total 1288	allopur Events 9	inol <u>Total</u> 178	Weight 13.7%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 1.46 [0.75, 2.84]		Risk Rati M-H. Fixed, 9	o 5% Cl	
Study or Subgroup 2.4.1 non-double blind Becker,2009 _u,2016	febuxos Events I 95 1	stat Total 1288 41	allopur Events 9 5	inol <u>Total</u> 178 41	Weight 13.7% 4.3%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64]		Risk Rati M-H, Fixed, 9	o 5% Cl	
Study or Subgroup 2.4.1 non-double blind Becker,2009 _u,2016 Nong,2018	febuxos Events 95 1 0	stat Total 1288 41 68	allopur Events 9 5 1	inol <u>Total</u> 178 41 68	Weight 13.7% 4.3% 1.3%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 _u,2016 Nong,2018 Tang,2017	febuxos Events 95 1 0 1	stat Total 1288 41 68 44	allopur Events 9 5 1 12	inol Total 178 41 68 44	Weight 13.7% 4.3% 1.3% 10.4%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 _u,2016 Nong,2018 Tang,2017 Subtotal (95% CI)	febuxos Events 95 1 0 1	stat Total 1288 41 68 44 1441	allopur Events 9 5 1 12	inol <u>Total</u> 178 41 68 44 331	Weight 13.7% 4.3% 1.3% 10.4% 29.7%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 _u,2016 Nong,2018 Tang,2017 Subtotal (95% CI) Total events	febuxos Events 95 1 0 1 97	stat Total 1288 41 68 44 1441	allopur Events 9 5 1 12 27	inol <u>Total</u> 178 41 68 44 331	Weight 13.7% 4.3% 1.3% 10.4% 29.7%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 _u,2016 Nong,2018 Tang,2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1(febuxos Events 95 1 0 1 97 0.29. df =	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P =	allopur <u>Events</u> 9 5 1 12 27 0.02): l ² =	inol <u>Total</u> 178 41 68 44 331 = 71%	Weight 13.7% 4.3% 1.3% 10.4% 29.7%	Risk Ratio <u>M-H, Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fest for overall effect: Z	febuxos <u>Events</u> 95 1 0 1 97 0.29, df = 1.10 (l	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P = P = 0.27	allopur <u>Events</u> 9 5 1 12 27 0.02); l ² =	inol <u>Total</u> 178 41 68 44 331 = 71%	Weight 13.7% 4.3% 1.3% 10.4% 29.7%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 .u,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fest for overall effect: Z	febuxo: Events 95 1 0 1 97 0.29, df = 1.10 (l	stat Total 1288 41 68 44 1441 = 3 (P = P = 0.27	allopur <u>Events</u> 9 5 1 12 27 0.02); I ² = ')	inol Total 178 41 68 44 331 = 71%	Weight 13.7% 4.3% 1.3% 10.4% 29.7%	Risk Ratio <u>M-H, Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 .u,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fest for overall effect: Z 2.4.2 double blind Becker,2010	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = = 1.10 (l	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P = P = 0.27 1513	allopur <u>Events</u> 9 5 1 12 27 0.02); ² = ') 45	inol <u>Total</u> 178 41 68 44 331 = 71% 756	Weight 13.7% 4.3% 1.3% 10.4% 29.7%	Risk Ratio <u>M-H, Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fest for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = = 1.10 (l 76 0	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344	allopur <u>Events</u> 9 5 1 12 27 0.02); ² =) 45 1	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7%	Risk Ratio <u>M-H, Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08]		Risk Rati	o 5% CI 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 .u,2016 Nong,2018 Tang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fest for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Jiang,2014	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = = 1.10 (l 76 0 1	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40	allopur <u>Events</u> 9 5 1 12 27 0.02); ² =) 45 1 0	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6%	Risk Ratio <u>M-H, Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 .u,2016 Nong,2018 Tang,2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 10 Fest for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Jiang,2014 Schumacher.2008	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = = 1.10 (l 76 0 1 1 1	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670	allopur <u>Events</u> 9 5 1 12 27 0.02); ² =) 45 1 0 1 0 1	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2%	Risk Ratio <u>M-H, Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 3.9.1]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 .u,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fost for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Bichumacher,2008 Wang,2013	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = 2 = 1.10 (l 76 0 1 11 20	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670 315	allopur <u>Events</u> 9 5 1 12 27 0.02); ² =) 45 1 0 1 0 1 3	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 208 159	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52]		Risk Rati	o 5% Cl 	5
Study or Subgroup 2.4.1 non-double blind Becker,2009 .u,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fost for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Schumacher,2008 Wang,2013 Subtotal (95% CI)	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = 1 20 76 0 1 11 20	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670 315 2882	allopur <u>Events</u> 9 5 1 12 27 0.02); ² = ') 45 1 0 1 13	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268 159 1375	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9% 70.3%	Risk Ratio <u>M-H, Fixed, 95% Cl</u> 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52] 0.88 [0.65, 1.20]		Risk Rati	o 5% Cl 	5
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fost for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Schumacher,2008 Wang,2013 Subtotal (95% CI)	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = 1 20 108	stat Total 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670 315 2882	allopur <u>Events</u> 9 5 1 12 27 0.02); ² =) 45 1 0 1 13 60	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268 159 1375	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9% 70.3%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.75 [0.44, 1.26] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52] 0.88 [0.65, 1.20]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Tang,2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 10 Test for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Signa,2014 Schumacher,2008 Wang,2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = (1) 10 10 10 10 10 10 10 10 10 10	stat <u>Total</u> 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670 315 2882 4 (P = 0	allopur <u>Events</u> 9 5 1 12 27 0.02); ² = ') 45 1 0 1 13 60 44): ² =	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268 159 1375 0%	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9% 70.3%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.75 [0.44, 1.26] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52] 0.88 [0.65, 1.20]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Tang,2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 10 Test for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Schumacher,2008 Wang,2014 Schumacher,2008 Wang,2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3. Test for overall effect: Z	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = = 1.10 (l 76 0 1 1 20 108 .73, df = - = 0.81 (l	stat Total 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670 315 2882 4 (P = 0 P = 0.42	allopur <u>Events</u> 9 5 1 12 27 0.02); ² =) 45 1 0 1 13 60 .44); ² =	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268 159 1375 0%	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9% 70.3%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52] 0.88 [0.65, 1.20]		Risk Rati	o 5% Cl 	
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fest for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Jiang,2014 Schumacher,2008 Nang,2013 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 3. Fest for overall effect: Z Fotal (95% CI)	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = (- - - - - - - - - - - - -	stat Total 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670 315 2882 4 (P = 0 P = 0.42 4323	allopur <u>Events</u> 9 5 1 12 27 0.02); ² = () 45 1 0 1 13 60 .44); ² =	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268 159 1375 0% 1706	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9% 70.3%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52] 0.88 [0.65, 1.20]		Risk Rati	o 5% Cl	5
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Fang,2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 10 Fest for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Biang,2014 Schumacher,2008 Wang,2013 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 3. Fest for overall effect: Z	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = 1 10 10 76 0 1 11 20 108 .73, df = - = 0.81 (l	stat Total 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670 315 2882 4 (P = 0 P = 0.42 4323	allopur <u>Events</u> 9 5 1 12 27 0.02); ² = () 45 1 0 1 13 60 .44); ² =	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268 159 1375 0% 1706	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9% 70.3% 100.0%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52] 0.88 [0.65, 1.20] 0.84 [0.65, 1.09]		Risk Rati	o 5% Cl	5
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Tang,2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 10 Test for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Biang,2014 Schumacher,2008 Wang,2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3. Total (95% CI) Total events	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = = 1.10 (l 76 0 1 11 20 108 73, df = = 0.81 (l 205 3.60 df =	stat Total 1288 41 68 44 1441 = 3 (P = 0.27 1513 344 40 670 315 2882 4 (P = 0.42 4 323 8 (P = 0.42	allopur <u>Events</u> 9 5 1 12 27 0.02); ² =) 45 1 0 1 13 60 .44); ² =) 87 0.02); ²	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268 159 1375 0% 1706 = 41%	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9% 70.3% 100.0%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52] 0.88 [0.65, 1.20] 0.84 [0.65, 1.09]		Risk Rati	° 5% Cl	5
Study or Subgroup 2.4.1 non-double blind Becker,2009 Lu,2016 Nong,2018 Tang,2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 10 Test for overall effect: Z 2.4.2 double blind Becker,2010 Huang,2014 Jiang,2014 Schumacher,2008 Wang,2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3. Test for overall effect: Z Fotal (95% CI) Total events Heterogeneity: Chi ² = 13 Cost for everst State of the sector of th	febuxo: <u>Events</u> 95 1 0 1 97 0.29, df = 1.10 (l 76 0 1 11 20 108 .73, df = - 1.08 .73, df = - 1.08 .73, df = - 1.00 .205	stat Total 1288 41 68 44 1441 = 3 (P = P = 0.27 1513 344 40 670 315 2882 4 (P = 0 P = 0.42 4323 = 8 (P = P = 0.27) - 28 - 28 - 28 - 28 - 28 - 29 - 29	allopur <u>Events</u> 9 5 1 12 27 0.02); ² = () 45 1 0 1 13 60 .44); ² = 2) 87 0.09); ² =	inol <u>Total</u> 178 41 68 44 331 = 71% 756 172 20 268 159 1375 0% 1706 = 41%	Weight 13.7% 4.3% 1.3% 10.4% 29.7% 51.9% 1.7% 0.6% 1.2% 14.9% 70.3% 100.0%	Risk Ratio M-H, Fixed, 95% Cl 1.46 [0.75, 2.84] 0.20 [0.02, 1.64] 0.33 [0.01, 8.04] 0.08 [0.01, 0.61] 0.75 [0.44, 1.26] 0.84 [0.59, 1.21] 0.17 [0.01, 4.08] 1.54 [0.07, 36.11] 4.40 [0.57, 33.91] 0.78 [0.40, 1.52] 0.88 [0.65, 1.20] 0.84 [0.65, 1.09]		Risk Rati	o 5% CI 	10

Figure 5: Comparison between febuxostat and allopurinol in MACE with low CV risk (A, *P* value in Begg test = 0.994, in Egger test = 0.888), in CVE with low CV risk (B, *P* value in Begg test = 0.348, in Egger test = 0.605). CV: Cardiovascular; CVE: Cardiovascular events; MACE: Major adverse cardiovascular events.

powered to report CVE. Since the follow-up durations were largely different among the studies, we did a subgroup meta-analysis based on short-term (<12 m) and long-term (\geq 12 m), separately [Supplementary Figure 5, http://links.lww.com/CM9/A177]. Compared with notreatment or placebo, XOIs lowered the risk of CVE (RR = 0.52, 95% CI 0.38–0.73) and MACE (RR = 0.38, 95% CI 0.23–0.62) in long-term sub-group, but not in short-term sub-group (CVE: RR = 0.79, 95% CI 0.61– 1.01; MACE: RR = 0.73, 95% CI 0.26–2.08). When comparing febuxostat and allopurinol, febuxostat slightly lowered CVE (RR = 0.74, 95% CI 0.56–0.99) in shortterm sub-group; however, no significant difference was seen in MACE and long-term sub-group. In addition, the doses of XOIs might also be important in their cardiovascular effects. Doses of allopurinol ranged from

Figure 6: Comparison between febuxostat and allopurinol in MACE with high CV risk (A), in CVE with high CV risk (B). CV: Cardiovascular; CVE: Cardiovascular events; MACE: Major adverse cardiovascular events.

100 to 600 mg/day and doses of febuxostat ranged from 40 to 120 mg/day. There might be a dose-dependent relationship between XOIs and cardiovascular effects. However, we were unable to do dosage sub-group analysis since there were less studies and no detailed information as well. Moreover, the CV safety evaluation of XOIs in high CV risk patients is the priority. Unfortunately, there were only two trials with high CV risk patients. The outcomes showed that XOIs lowered the risk of CVE with high CV risk rather than MACE with high CV risk (RR = 0.69, 95% CI 0.54–0.88; RR = 0.62, 95% CI 0.29–1.35, respectively). Inflammation was the key role in developing CVE in hyperuricemia and gout. Recurrent acute gout attack, chronic gouty arthropathy, and uncontrolled high serum uric acid are three major elements which contributed to inflammation. Most of the studies have been not only too small in sample size but also too short to show CV benefits by controlling gout attacks and lowering uric acid. There was some substantive heterogeneity in comparison between hyperuricemia and non-hyperuricemia in MACE and CVE due to large range of population.

Because of the uncertainty, larger clinical trials with a longer follow-up period are needed to determine the cardiovascular safety and efficacy of XOIs in hyperuricemia and gout. Two large RCTs are now underway. The PRIZE study is a multi-center randomized study for evaluating vascular function under uric acid control using febuxostat in 500 patients with asymptomatic hyperuricemia (uric acid >7.0 mg/dL). Participants will be centrally randomized to receive either febuxostat (10-60 mg/day) or non-pharmacological treatment. Follow-up will be continued for 24 months. The PRIZE study will be the first study to provide important data on the effects of febuxostat on atherosclerosis in patients with asymptomatic hyperuricemia.^[69] The FAST study is a cardiovascular safety study using the prospective, randomized, open, blinded endpoint design. Recruited patients are aged over 60 years, randomized to either allopurinol or febuxostat. It plans

to randomize 5000 patients with at least 3 years of follow-up. The primary endpoint is Anti-Platelet Trialists' Collaboration composite cardiovascular endpoint of nonfatal myocardial infarction, non-fatal stroke or cardiovascular death.^[70] The Febuxostat for Cerebral and caRdiorenovascular Events prEvEntion stuDy was a study to compare febuxostat with allopurinol on the effect of preventing cerebral, cardiovascular, and renal events in patients with hyperuricemia. 1070 patients were followed for at least 3 years.^[68] In this study the non-febuxostat group included 533 hyperuricemia patients and 27% of which accepted allopurinol; however, no detailed information was available for the allopurinol sub-group, which made our further analysis impossible. Thus, we excluded it from our study regretfully. The results of these two trails are worth waiting. We are keeping focus on their progress and will update our meta-analysis as soon as these results are available.

Conclusions

Our meta-analysis indicates that patients with hyperuricemia do have an increased risk of CVEs, and XOIs may reduce the incidence of MACE and total CVE. In addition, CV safety between allopurinol and febuxostat has no significant difference; however, all-cause mortality and cardiovascular mortality were higher in patients with febuxostat than allopurinol. Because of the limitations of the previous studies, data of large and long-term ongoing trials are worth waiting.

Funding

This work was supported by a grant from the National Natural Science Foundation of China (No. 81601396).

Conflicts of interest

None.

References

- 1. Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, *et al.* 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res 2012;64:1431–1446. doi: 10.1002/acr.21772.
- Jordan KM, Cameron JS, Snaith M, Zhang W, Doherty M, Seckl J, et al. British Society for Rheumatology and British Health Professionals in Rheumatology guideline for the management of gout. Rheumatology 2007;46:1372–1374. doi: 10.1093/rheumatology/kem056a.
- Yamanaka H. Japanese guideline for the management of hyperuricemia and gout: second edition. Nucleosides Nucleotides Nucleic Acids 2011;30:1018–1029. doi: 10.1080/15257770.2011.596496.
- Khanna D, Khanna PP, Fitzgerald JD, Singh MK, Bae S, Neogi T, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 2: therapy and anti-inflammatory prophylaxis of acute gouty arthritis. Arthritis Care Res 2012; 64:1447–1461. doi: 10.1002/acr.21773.
- Sivera F, Andrés M, Carmona L, Kydd AS, Moi J, Seth R, et al. Multinational evidence-based recommendations for the diagnosis and management of gout: integrating systematic literature review and expert opinion of a broad panel of rheumatologists in the 3e initiative. Ann Rheum Dis 2014;73:328–355. doi: 10.1136/annrheumdis-2013-203325.
- Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castañeda-Sanabria J, *et al.* 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 2017;76:29–42. doi: 10.1136/annrheumdis-2016-209707.
- Mercuro G, Vitale C, Cerquetani E, Zoncu S, Deidda M, Fini M, et al. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol 2004;94:932–935. doi: 10.1016/j.amjcard.2004.06.032.
- Schlesinger DN. Management of acute and chronic gouty arthritis. Drugs 2004;64:2399. doi: 10.2165/00003495-200464210-00003.
- 9. Schlesinger N. New agents for the treatment of gout and hyperuricemia: febuxostat, puricase, and beyond. Curr Rheumatol Rep 2010;12:130–134. doi: 10.1007/s11926-010-0093-2.
- TMX-67 (febuxostat) Approved in Japan Teijin-developed Novel Drug for Chronic Management of Hyperuricemia; 2011. Available from http://www.medicalnewstoday.com/releases/214469.php. [Accessed October 8, 2019]
- Schumacher HR Jr, Becker MA, Wortmann RL, Macdonald PA, Hunt B, Streit J, et al. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum 2008;59:1540–1548. doi: 10.1002/art.24209.
- Becker MA, Schumacher HR Jr, Wortmann RL, MacDonald PA, Eustace D, Palo WA, *et al*. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med 2005;353:2450– 2461. doi: 10.1056/NEJMoa050373.
- FDA Drug Safety Communication: FDA to Evaluate Increased Risk of Heart-related Death and Death From all Causes With the Gout Medicine Febuxostat (Uloric). Available from https://www.fda.gov/ drugs/drug-safety-and-availability/fda-drug-safety-communica tion-fda-evaluate-increased-risk-heart-related-death-and-deathall-causes. [Accessed October 8, 2019]
- 14. Health Canada. Summary Safety Review ULORIC (febuxostat) -Assessing the Potential Risk of Heart Failure. Available from https:// www.canada.ca/en/health-canada/services/drugs-health-products/ medeffect-canada/safety-reviews/summary-safety-review-uloricfebuxostat-assessing-potential-risk-heart-failure.html. [Accessed October 8, 2019]
- Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 2007;116:894–900. doi: 10.1161/CIRCULATIONAHA.107.703389.
- Krishnan E, Svendsen K, Neaton JD, Grandits G, Kuller LH. MRFIT Research Group. Long-term cardiovascular mortality among middleaged men with gout. Arch Intern Med 2008;168:1104–1110. doi: 10.1001/archinte.168.10.1104.
- Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions. 2nd EditionChichester (UK): John Wiley & Sons; 2019.
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions:

explanation and elaboration. BMJ 2009;339:b2700. doi: 10.7326/0003-4819-151-4-200908180-00136.

- Mcpheeters ML. Newcastle-Ottawa Quality Assessment Scale. Available from: http://www.ncbi.nlm.nih.gov/pubmedhealth/ PMH0049210/. [Accessed October 8, 2019]
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ 1997;315:629– 634. doi: 10.1136/bmj.315.7109.629.
- Sciacqua A, Perticone M, Tassone EJ, Cimellaro A, Miceli S, Maio R. Uric acid is an independent predictor of cardiovascular events in postmenopausal women. Int J Cardiol 2015;197:271–275. doi: 10.1016/ j.ijcard.2015.06.069.
- Zalawadiya SK, Veeranna V, Mallikethi-Reddy S, Bavishi C, Lunagaria A, Kottam A, *et al.* Uric acid and cardiovascular disease risk reclassification: findings from NHANES III. Eur J Prevent Cardiol 2015;22:513–518. doi: 10.1177/2047487313519346.
- Turak O, Afsar B, Ozcan F, Canpolat U, Grbovic E, Mendi MA, et al. Relationship between elevated morning blood pressure surge, uric acid, and cardiovascular outcomes in hypertensive patients. J Clin Hypertens 2014;16:530–535. doi: 10.1111/jch.12359.
- 24. Kanbay M, Yilmaz MI, Sonmez A, Solak Y, Saglam M, Cakir E, et al. Serum uric acid independently predicts cardiovascular events in advanced nephropathy. Am J Nephrol 2012;36:324–331. doi: 10.1159/000342390.
- Ekundayo OJ, Dell'Italia LJ, Sanders PW, Arnett D, Aban I, Love TE, et al. Association between hyperuricemia and incident heart failure among older adults: a propensity-matched study. Int J Cardiol 2010;142:279–287. doi: 10.1016/j.ijcard.2009.01.010.
- 26. Franse LV, Pahor M, Di Bari M, Shorr RI, Wan JY, Somes GW, et al. Serum uric acid, diuretic treatment and risk of cardiovascular events in the systolic hypertension in the elderly program (SHEP). J Hypertens 2000;18:1149–1154. doi: 10.1097/00004872-200018080-00021.
- Fang J, Alderman MH. Serum uric acid and cardiovascular mortality: the NHANES I epidemiologic follow-up study, 1971-1992. JAMA 2000;283:2404–2410. doi: 10.1001/jama.283.18.2404.
- White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med 2018;378:1200–1210. doi: 10.1056/ NEJMoa1710895.
- Guimin N, Peng H. Clinical study and safety analysis of febuxostat in treatment of gout (in Chinese). Chin J Clin Rational Drug Use 2018;11:38–39. doi: 10.15887/j.cnki.13-1389/r.2018.01.019.
- Dalbeth N, Saag KG, Palmer WE, Choi HK, Hunt B, MacDonald PA, et al. Effects of febuxostat in early gout: a randomized, double-blind, placebo-controlled study. Arthritis Rheumatol 2017;69:2386–2395. doi: 10.1002/art.40233.
- Tang YHT. Application and safety of febuxostat in patients with hyperuricemia complicated with chronic renal insufficiency (in Chinese). Chin J Modern Drug Application 2017;11:124–125. doi: 10.14164/j.cnki.cn11-5581/r.2017.20.066.
- 32. Saag KG, Whelton A, Becker MA, MacDonald P, Hunt B, Gunawardhana L. Impact of febuxostat on renal function in gout subjects with moderate-to-severe renal impairment. Arthritis Rheumatol 2016;68:2035–2043. doi: 10.1002/art.39654.
- Lu F. The efficacy and safety of febuxostat in the treatment of patients with gout and hyperuricemia (in Chinese). Chin J Health Care Nutrition 2016;26:179. doi: 10.3969/j.issn.1004-7484.2016.26.245.
- 34. Goicoechea M, Garcia S, Verdalles U, Verde E, Macias N, Santos A, et al. Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am J Kidney Dis 2015;65:543–549. doi: 10.1053/j.ajkd.2014.11.016.
- 35. Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, *et al.* Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation 2015; 131:1763–1771. doi: 10.1161/CIRCULATIONAHA.114.014536.
- 36. Tuta L, Stanigut A. Allopurinol therapy for hyperuricemia reduces inflammation and progression of renal disease in moderate chronic kidney disease. Nephrol Dial Transplant 2014;29 Suppl 3:iii118 (Conference, 51st ERA-EDTA Congress Amsterdam Netherlands). DOI: 10.1093/ndt/gfu145
- 37. Huang X, Du H, Gu J, Zhao D, Jiang L, Li X, et al. An allopurinolcontrolled, multicenter, randomized, double-blind, parallel betweengroup, comparative study of febuxostat in Chinese patients with gout and hyperuricemia. Int J Rheum Dis 2014;17:679–686. doi: 10.1111/ 1756-185X.12266.

- Jiang LL, Jin X, Shen Y, Ma JH, Wu JD. The efficacy and safety of febuxostat in the treatment of patients with gout and hyperuricemia (in Chinese). J Practical Med 2014;17:2827–2830. doi: 10.3969/j. issn.1006-5725.2014.17.047.
- 39. Wang LY, Zhao Y, Zheng Y, Li XX, Zhang X, Xu JH, et al. Effect and safety of febuxotant versus allopurinol in reducing serum urate in subjects with hyperuricemia and gout: a multi-center, randomized, double-blind, parallel controlled trail (in Chinese). Chin J Clinicians (Electronic Edition) 2013;7:2798–2803. doi: 10.3877/cma.j.issn. 1674-0785.2013.07.012.
- 40. Becker MA, Schumacher HR, Espinoza LR, Wells AF, MacDonald P, Lloyd E, *et al.* The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: the CONFIRMS trial. Arthritis Res Ther 2010;12:R63. doi: 10.1186/ar2978.
- Becker MA, Schumacher HR, MacDonald PA, Lloyd E, Lademacher C. Clinical efficacy and safety of successful longterm urate lowering with febuxostat or allopurinol in subjects with gout. J Rheumatol 2009;36:1273–1282. doi: 10.3899/jrheum.080814.
- 42. Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 2018;72:798–810. doi: 10.1053/j.ajkd.2018.06.028.
- 43. Saag KG, Becker MA, Whelton A, Hunt B, Castillo M, Kisfalvi K, et al. Efficacy and safety of febuxostat extended and immediate release in patients with gout and renal impairment: a phase III placebo-controlled study. Arthritis Rheumatol 2019;1:143–153. doi: 10.1002/art.40685.
- 44. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, *et al.* Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010;5:1388–1393. doi: 10.2215/CJN.01580210.
- Baker JF, Krishnan E, Chen L, Schumacher HR. Serum uric acid and cardiovascular disease: recent developments, and where do they leave us? Am J Med 2005;118:816–826. doi: 10.1016/j.amjmed.2005. 03.043.
- Becker MA, Jolly M. Hyperuricemia and associated diseases. Rheum Dis Clin North Am 2006;32:275–293. doi: 10.1016/j. rdc.2006.02.005.
- Abeles AM. Hyperuricemia, gout, and cardiovascular disease: an update. Curr Rheumatol Rep 2015;17:13. doi: 10.1007/s11926-015-0495-2.
- Tseng CH. Independent association of uric acid levels with peripheral arterial disease in Taiwanese patients with type 2 diabetes. Diabet Med 2004;21:724–729. doi: 10.1111/j.1464-5491.2004.01239.x.
- Baker JF, Schumacher HR, Krishnan E. Serum uric acid level and risk for peripheral arterial disease: analysis of data from the multiple risk factor intervention trial. Angiology 2007;58:450–457. doi: 10.1177/ 0003319707303444.
- 50. Kim SY, De Vera MA, Choi HK. Gout and mortality. Clin Exp Rheumatol 2008;26:S115. doi: 10.1002/art.24044.
- Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. New Engl J Med 2008;359:1811–1821. doi: 10.1056/ NEJMra0800885.
- 52. Braga F, Pasqualetti S, Ferraro S, Panteghini M. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clin Chem Lab Med 2015;54:7–15. doi: 10.1515/cclm-2015-0523.
- 53. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res 2010;62:170–180. doi: 10.1002/ acr.20065.
- Zhang J, Dierckx R, Cleland JG. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and metaanalysis. Cardiovasc Therapeutics 2014;32:57–58. doi: 10.1111/ 1755-5922.12059.
- 55. Bredemeier M, Lopes LM, Eisenreich MA, Sheila H, Guilherme KB, d'Avila R, *et al.* Xanthine oxidase inhibitors for prevention of cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovascular Disord 2018;18:24. doi: 10.1186/s12872-018-0757-9.
- 56. Saavedra WF, Paolocci N, St John ME, Skaf MW, Stewart GC, Xie JS, et al. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling

in the failing heart. Circ Res 2002;90:297-304. doi: 10.1161/hh0302.104531.

- 57. Anker SD, Doehner W, Rauchhaus M, Sharma R, Francis D, Knosalla C, *et al.* Uric acid and survival in chronic heart failure validation and application in metabolic, functional, and hemodynamic staging. Circulation 2003;41:1991–1997. doi: 10.1161/01. CIR.0000065637.10517.A0.
- Krishnan E. Gout and the risk for incident heart failure and systolic dysfunction. BMJ Open 2012;2:e000282. doi: 10.1136/bmjopen-2011-000282.
- 59. Dubreuil M, Zhu Y, Zhang Y, Seeger JD, Lu N, Rho YH, et al. Allopurinol initiation and all-cause mortality in the general population. Ann Rheum Dis 2014;74:1368–1372. doi: 10.1136/ annrheumdis-2014-205269.
- Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int 2005;67:1739–1742. doi: 10.1111/j.1523-1755.2005.00273.x.
- Grimaldi-Bensouda L, Alpérovitch A, Aubrun E, Danchin N, Rossignol M, Abenhaim L, *et al.* Impact of allopurinol on risk of myocardial infarction. Ann Rheum Dis 2015;74:836–842. doi: 10.1136/annrheumdis-2012-202972.
- Struthers A, Shearer F. Allopurinol: novel indications in cardiovascular disease. Heart 2012;98:1543–1545. doi: 10.1136/heartjnl-2012-302249.
- 63. Zhang J, Dierckx R, Mohee K, Clark AL, Cleland JG. Xanthine oxidase inhibition for the treatment of cardiovascular disease: an updated systematic review and meta-analysis. ESC Heart Fail 2017;4:40–45. doi: 10.1002/ehf2.12112.
- 64. Schumacher HR Jr, Becker MA, Lloyd E, MacDonald PA, Lademacher C. Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. Rheumatology 2009;48:188–194. doi: 10.1093/rheumatology/ken457.
- 65. De Vera MA, Rahman MM, Bhole V, Kopec JA, Choi HK. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann Rheum Dis 2010;69:1162–1164. doi: 10.1136/ard.2009.122770.
- Silverman W, Locovei S, Dahl G. Probenecid, a gout remedy, inhibits pannexin 1 channels. Am J Physiol Cell Physiol 2008;295:C761– C767. doi: 10.1152/ajpcell.00227.2008.
- Fearon WF, Fearon DT. Inflammation and cardiovascular disease: role of the interleukin-1 receptor antagonist. Circulation 2008; 117:2577–2579. doi: 10.1161/CIRCULATIONAHA.108.772491.
- 68. Kojima S, Matsui K, Ogawa H, Jinnouchi H, Hiramitsu S, Hayashi T, et al. Rationale, design, and baseline characteristics of a study to evaluate the effect of febuxostat in preventing cerebral, cardiovascular, and renal events in patients with hyperuricemia. J Cardiol 2017;69:169–175. doi: 10.1016/j.jjcc.2016.02.015.
- 69. Oyama J, Tanaka A, Sato Y, Tomiyama H, Sata M, Ishizu T, *et al.* Rationale and design of a multicenter randomized study for evaluating vascular function under uric acid control using the xanthine oxidase inhibitor, febuxostat: the PRIZE study. Cardiovasc Diabetol 2016;15:87. doi: 10.1186/s12933-016-0409-2.
- 70. MacDonald TM, Ford I, Nuki G, Mackenzie IS, De Caterina R, Findlay E, et al. Protocol of the febuxostat versus allopurinol streamlined trial (FAST): a large prospective, randomised, open, blinded endpoint study comparing the cardiovascular safety of allopurinol and febuxostat in the management of symptomatic hyperuricaemia. BMJ Open 2014;4:e005354. doi: 10.1136/bmjopen-2014-005354.
- 71. Choi H, Neogi T, Stamp L, Dalbeth N, Terkeltaub R. New perspectives in rheumatology: implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated Food and Drug Administration public safety alert. Arthritis Rheumatol 2018; 70:1702–1709. doi: 10.1002/art.40583.

How to cite this article: Zhao L, Cao L, Zhao TY, Yang X, Zhu XX, Zou HJ, Wan WG, Xue Y. Cardiovascular events in hyperuricemia population and a cardiovascular benefit-risk assessment of urate-lowering therapies: a systematic review and meta-analysis. Chin Med J 2020;133:982–993. doi: 10.1097/CM9.0000000000682