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Abstract: Dental caries, as a common oral infectious disease, is a worldwide public health issue. Oral
biofilms are the main cause of dental caries. Streptococcus mutans (S. mutans) is well recognized as the
major causative factor of dental caries within oral biofilms. In addition to mechanical removal such
as tooth brushing and flossing, the topical application of antimicrobial agents is necessarily adjuvant
to the control of caries particularly for high-risk populations. The mainstay antimicrobial agents for
caries such as chlorhexidine have limitations including taste confusions, mucosal soreness, tooth
discoloration, and disruption of an oral microbial equilibrium. Antimicrobial small molecules are
promising in the control of S. mutans due to good antimicrobial activity, good selectivity, and low
toxicity. In this paper, we discussed the application of antimicrobial small molecules to the control of
S. mutans, with a particular focus on the identification and development of active compounds and
their modes of action against the growth and virulence of S. mutans.
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1. Introduction

Dental caries is a chronic infectious disease across all ages of human beings [1], which
seriously endangers human oral and general health and affects the quality of life [2]. Under
normal conditions, the oral flora maintains a symbiotic relationship with the host [3].
However, under cariogenic conditions, such as frequent sugar intake, cariogenic bacteria
compete with oral commensals and cause microbial dysbiosis. The dysbiosis of oral
biofilm metabolizes carbohydrates and produces excessive acid, leading to pH declination
and consequently tooth demineralization and tooth decay [4–6]. Among oral biofilms,
Streptococcus mutans (S. mutans) is well recognized as the major cariogenic species due
to its acidogenicity and aciduricity. Besides, S. mutans synthesizes exopolysaccharides
(EPSs), which mediate the adhesion between cells and the tooth surface and contribute to
the formation of oral biofilms and the development of dental caries [7,8]. Compared to
planktonic cells, microbial biofilms show higher tolerance to acid and higher resistance to
antimicrobial drugs [9]. Therefore, the control of S. mutans, particularly in its biofilm forms,
is in great urgency.

Mechanical plaque removal and the application of chemotherapeutics are commonly
used for the control of dental caries. Daily mechanical plaque control including tooth
brushing and flossing is commonly used at all age groups for the prevention of dental
caries. However, in the high-risk group for caries, the topical application of antimicrobials
is necessary [10]. Broad-spectrum antimicrobials such as chlorhexidine digluconate (CHX)
are widely used to control cariogenic pathogens [11]. However, CHX has limitations such
as taste confusions, mucosal soreness, tooth discoloration, and drug resistance [12,13].
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Therefore, new strategies or agents to control caries are needed. Small molecules are
compounds with a molecular weight of less than 1000 Da [14]. Recently, small molecules
have become promising alternatives for the control of oral biofilms due to good cell
permeability, good stability, low cost, and low toxicity [15,16]. Various antimicrobial
small molecules from natural products and synthetic compounds have been identified
and developed. In this review, we aim to discuss antimicrobial small molecules against
S. mutans based on the way they are developed, with a particular focus on their modes of
action and mechanisms against the growth and virulence of S. mutans.

2. Drug Repurposing

Drug repurposing, also known as drug repositioning, is a commonly used drug
development approach. Compared to new drug development, drug repurposing has many
advantages including lower drug development cost, lower toxicity, and faster benchtop-to-
clinic transition [17]. Besides, due to the long-term use of broad-spectrum antimicrobial
agents, drug resistance is becoming increasingly prevalent in S. mutans [18]. Repositioning
existing drugs as antibiotics is necessary for saving manpower and material sources. Small-
molecule compounds exhibiting antimicrobial activity against other microorganisms have
been widely screened for new uses against S. mutans.

Screening FDA-approved drugs is an effective way to identify old drugs with new
therapeutic effects against S. mutans. Saputo et al. screened 853 FDA-approved drugs
and identified 126 candidates that exhibit antimicrobial activity against planktonic growth
of S. mutans, among which 24 drugs inhibit biofilm formation, 6 drugs kill pre-existing
biofilms, and 84 drugs exhibit both bacteriostatic and bactericidal effects against S. mutans
biofilms. The 126 candidates were further classified into 6 categories, including antibacteri-
als, ion channel effectors, antineoplastic drugs, antifungals, stains and disulfiram, many of
which are small molecules such as biapenem, cefdinir, and zinc pyrithione [19]. Among
the 126 candidates, a class of derivatives of the fat-soluble secosteroid vitamin D shows
activity against S. mutans. One of the vitamin D derivatives, namely calcitriol, inhibits
both planktonic cells and preforms S. mutans biofilms. Doxercalcierol, a synthetic vitamin
D2 analog, reduces pre-existing biofilms and shows synergistic effects with bacitracin,
a polypeptide that interferes with cell wall synthesis [20]. Gliptins is a common anti-
human-dipeptidyl peptidase (DPP IV) drug for the treatment of type II diabetes. X-prolyl
dipeptidyl peptidase (Sm-XPDAP) coded by the pepX gene is an analogous enzyme of DPP
IV [21]. Sm-XPDAP plays a nutritional role in S. mutans [22]. The pepX-deficient strain
of S. mutans produces fewer biofilms, suggesting that Sm-XPDAP is a potential target for
the inhibition of S.mutans biofilms [23]. Considering the similarity between Sm-XPDAP
and DDP IV, saxagliptin has been repurposed to inhibit S. mutans, which shows potent
inhibitory effects on the biofilm formation of S. mutans [23].

Reserpine, another FDA-approved blood pressure medicine, has also been repurposed
as an efflux pump inhibitor which suppresses acid tolerance and inhibits the glycosyltrans-
ferase activity of S. mutans and thus represents a promising treatment against cariogenic
biofilms [24]. Screening drugs that target key metabolic processes is also commonly used.
Folate metabolism is important for the syntheses of DNA, RNA, and amino acids in all
organisms. Bedaquiline, an active drug firstly used to inhibit the ATP-synthase of mycobac-
teria [25], also shows a great antimicrobial activity against cariogenic bacteria in the acidic
environment. In addition, bedaquiline can effectively inhibit the biofilm proliferation of
oral pathogens, especially S. mutans [26].

Toremifene, an FDA-approved drug for the treatment of breast cancer, and zafir-
lukast, an antiasthma drug that has been approved in Europe and the USA, have also
been repurposed to inhibit the growth and biofilm formation of S. mutans [27,28]. An-
other anticancer drug napabucasin (NAP), which is in phase III clinical trials for cancer
treatment, shows antibacterial activity against Escherichia coli, Streptococcus faecalis, and
Staphylococcus aureus [29,30]. Our group repurposed NAP against oral streptococci and
found that NAP exhibits good antimicrobial activity against S. mutans biofilms [31]. In
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addition, by using NAP as a lead compound, we designed a novel small molecule, namely
LCG-N25, which exhibits a good antibacterial activity and low cytotoxicity and induces no
drug resistance of cariogenic S. mutans [32]. Repurposing existing antimicrobial drugs or
antimicrobial groups is also a promising approach to the control of S. mutans. Nitrofuran
has been reported to inhibit oral bacteria such as S. mutans and Enterococcus faecalis [33,34].
Based on the antimicrobial activity of nitrofuran against S. mutans, our group synthesized
a novel water-soluble hybrid of indolin-2-one and nitrofuran, ZY354, which shows a good
antimicrobial activity and selectivity against S. mutans [35]. Small molecules identified by
drug repurposing are summarized in Table 1.

Table 1. Small molecules identified by drug repurposing.

Small Molecules Chemical Structure Mechanisms References

Bedaquiline
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Table 1. Cont.

Small Molecules Chemical Structure Mechanisms References
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used in in silico screening. Besides in silico screening, small molecules can be screened by
culture-based approaches.

S. mutans colonizes on the tooth surface and forms biofilms, which not only elevates its
virulence, but also protects it from external influence such as antimicrobial treatment [38].
Key factors such as antigens I/II, glucosyltransferases (Gtfs), sortase A (SrtA), and quorum
sensing (QS) systems are essential for S. mutans biofilms formation [39–41]. Screening
small molecules against these biofilm-related factors is a promising strategy to identify
new drugs that inhibit S. mutans. S. mutans adheres to the oral surface via two mechanisms,
i.e., sucrose-independent and sucrose-dependent [42]. The sucrose-independent adhesion
is mainly mediated by antigens I/II, which is also known as PAc [43–45], while the sucrose-
dependent adhesion is mainly mediated by Gtfs including GtfB, GtfC, and GtfD [46], which
also mediate the interspecies coaggregation and play a critical role in the development
and maturation of oral biofilms [47,48]. Rivera-Quiroga et al. screened 883,551 molecules
from the library “Small” and identified three molecules, namely ZINC19835187 (ZI-187),
ZINC19924939 (ZI-939), and ZINC 19924906 (ZI-906), which inhibit S. mutans adhesion on
polystyrene microplates by targeting antigens I/II [49]. Chen et al. screened a library of
oxazole derivatives and identified a molecule called 5H6[2-(4-chlorophenyl)-4-{[(6-methyl-
2-pyridinyl)amino]methylene}-1],3-oxazole-5(4H)-1, which is able to reduce the production
of EPSs and inhibit S. mutans biofilms by inhibiting GtfC and GtfB [50]. Wu et al. screened
a small-molecule library of 506 compounds and identified an active molecule, namely
2A4, which selectively inhibits S. mutans in multispecies biofilms modestly and inhibits
both S. mutans planktonic cells and single-specie biofilms by downregulating virulence
genes and inhibiting the production of antigens I/II and Gtfs [51]. The same group by
using a structure-based virtual screening of 500,000 compounds against the GtfC cat-
alytic domain identified a lead compound G43, which selectively bonds GtfC and thus
inhibits the biofilm formation and cariogenicity of S. mutans [52]. Ren et al. also screened
15,000 molecules based on the structure of the S. mutans GtfC protein domain and found
a quinoxaline derivative,2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-
1,4-dihydro-2-quinoxalinylidene)ethanamine, which selectively bonds GtfC, reduces the
synthesize of insoluble glucans and biofilms of S. mutans and thus inhibits the development
of caries in vivo [53]. SrtA is a membrane-bound transpeptidase that anchors antigens
I/II to the cell wall and thus contributes to the biofilm formation of S. mutans [41,54].
Samanli et al. screened 178 small molecules from a library and identified a SrtA inhibitor,
namely CHEMBL243796 (kurarinone), which shows better a binding affinity with SrtA
than CHX and exhibits a better pharmacokinetic activity toward S. mutans [55]. Luo et al.
screened the ZINC library and the TONGTIAN library and identified several potential
inhibitors of SrtA including benzofuran, thiadiazole, and pyrrole, which are able to bind
to and inhibit SrtA. These SrtA inhibitors are promising for the control of S. mutans
biofilms [56]. The QS system is a communication system that regulates S. mutans bio-
logical behaviors such as biofilm formation and dispersal [57,58]. Ishii et al. screened
164,514 small molecules against the peptidase domain of ComA, a key component of
S. mutans QS, and identified 6 compounds that inhibit biofilm formation without repress-
ing the cell proliferation of S. mutans [59].

Acid tolerance is another important phenotypic trait associated with the cariogenicity
of S. mutans [60]. The proton pump F1F0-ATPase (H+-ATPase) is an important enzyme
in the acid tolerance of S. mutans [61]. Sekiya et al. screened F1F0-ATPase inhibitors
against S. mutans and found that piceatannol, curcumin, and desmethoxycurcumin (DMC;
a curcumin analog) show marked activity against F1F0-ATPase of S. mutans and thus inhibit
its growth and survival in acidic conditions, suggesting a potential anticaries strategy by
inhibiting F1F0-ATPase [62].

In addition to the aforementioned molecules that have been proven to inhibit spe-
cific factors associated with the cariogenicity of S. mutans, an increasing number of small
molecules have also been screened and identified to inhibit both planktonic cells and
biofilms of S. mutans. Chen et al. screened about 2600 compounds from the MCE library and
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identified an antagonist of a calcium-sensing receptor, namely NPS-2143, which exhibits
antimicrobial activity against methicillin-resistant S. aureus (MRSA) [63]. Further modifica-
tions of NPS-2143 yields a compound, namely II-6s, which shows a potent antimicrobial
activity against both methicillin-resistant and methicillin-sensitive S. aureus [63]. Our group
screened the derivatives of NPS-2143 and identified a small-molecule II-6s that effectively
inhibits the growth and EPS generation of S. mutans. In addition, II-6s shows lower cytotox-
icity relative to CHX, significantly inhibits the demineralization of tooth enamel induced by
S. mutans and induces no drug resistance in S. mutans after 15 passages [64], representing
a promising alternative to the control of oral biofilms. Kim et al. synthesized a series of
pyrimidinone or pyrimidindione-fused 1,4-naphthoquinones with antibacterial effects via
pharmacophore hybridization, and they identified some derivatives with notable bacte-
riostatic and bactericidal effects against S. mutans in both resistant strains and sensitive
strains [65]. Simon et al. [66] screened a library of 75 synthetic cyclic dipeptides (CDPs),
which are a kind of stable metabolites from microorganisms [67], and identified 5 CDPs
that inhibit S. mutans adhesion and biofilm formation. Zhang et al. screened a library
containing 100 trimetrexate (TMQ) analogs and identified 3 compounds with selectively
inhibitory effects against S. mutans [68]. Garcia et al. screened an antibiofilm library of
2-Aminoimidazole (2-AI) derivatives and identified a small molecule 3F1, which specif-
ically disturbs S. mutans biofilms without dispersing biofilms of nonmutans Streptococci
and reduces dental caries in rats [16]. Small molecules screened from molecule libraries are
summarized in Table 2.

Table 2. Small molecules screened from molecule libraries.

Small Molecules Chemical Formula Mechanisms References

Compound 3F1
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Natural products are an ample resource of drugs because of their structural diversity
and biological activity [69]. Natural products and their derivatives accounted for about
32% of small-molecule drugs which are approved being on the market from 1981 to
2019 [70]. Natural products provide a large library for the identification of antimicrobials
with lower cytotoxicity.

Tea (Camellia sinensis) has many health benefits with antimicrobial, anti-inflammatory,
and cancer-preventive activity [71,72]. The tea polyphenols epigallocatechin gallate (EGCG)
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has shown antimicrobial activity against S. mutans for decades. EGCG can inhibit the viru-
lence of S. mutans including acid production, aciduricity, and biofilm formation. EGCG
can reduce acid production of S. mutans by inhibiting the expression and activity of lactate
dehydrogenase, suppress aciduricity by inhibiting F1F0-ATPase, and reduce the biofilm
formation by inhibiting Gtfs activity and downregulating gtf genes [73–75]. A recent
study investigated the effect of EGCG on the phosphoenolpyruvate-dependent phospho-
transferase system (PEP-PTS) of both S. mutans and non-mutans streptococci and found
that EGCG exhibits excellent inhibitory effects against the acid production of oral strep-
tococci [76]. Melok et al. screened and identified a lipid-soluble green tea polyphenols
based on EGCG, namely epigallocatechin-3-gallate-stearate (EGCG-S) with better stabil-
ity and an antibiofilm activity equivalent to chlorhexidine gluconate [77]. In addition,
the EGCG treatment showed lower cytotoxicity and better anti-inflammatory effects on
S. mutans-stimulated odontoblast-like cells compared with CHX [78], indicating a potential
application of EGCG to the management of dental caries.

Propolis is a hard, resinous, nontoxic natural product from plants with a history of
being used as a dietary supplement. Propolis has shown a good antimicrobial activity
against S. mutans for decades [79,80]. Koo et al. identified two small-molecule com-
pounds from propolis extracts, namely apigenin and trans-trans farnesol (tt-farnesol),
which exhibit distinguished biological activities against dental caries [81,82]. Apigenin, a
4β,5,7-trihydroxyflavone, can effectively inhibit Gtfs, specifically GtfB and GtfC. tt-farnesol,
which is the most effective antibacterial compound in propolis, can reduce cell viability by
disrupting membrane integrity and destabilizing oral biofilms rather than affecting Gtfs
activities [81,83]. Moreover, tt-farnesol can reduce the intracellular iodophilic polysaccha-
rides (IPS) accumulation of S. mutans and thus reduces the severity of smooth surface caries
in rats [81,84]. The mechanism of tt-farnesol is likely attributed to the lipophilic moiety
interaction with the bacterial membrane [84]. The combinatory use of apigenin, tt-farnesol,
and fluoride can effectively reduce the biofilms and acidogenicity of S. mutans [84]. Caffeic
acid phenethyl ester (CAPE), which is extracted from propolis, shows a broad-spectrum
antimicrobial activity against Enterococcus faecalis, S. aureus, Bacillus subtilis, Pseudomonas
aeruginosa, and other species [85]. A recent study has shown that CAPE not only affects
the thickness of S. mutans biofilms, but also inhibits its biofilm formation and maturation,
particularly by reducing EPS production [86,87].

In addition to the well-characterized tea catechins and propolis, other small molecules
obtained from natural resources have also been shown to inhibit S. mutans planktonic
cells and biofilms. He et al. showed that trans-cinnamaldehyde (TC) inhibited the acid
production and aciduricity of S. mutans and downregulated virulence genes of S. mutans
including gtfD [88]. Besides, TC showed synergistic effects with CHX on the inhibition of
S. mutans biofilms and virulence by regulating genes related to metabolism, QS, bacteriocin
expression, stress tolerance, and biofilm formation [89]. Ursolic acid has shown inhibitory
effects on the EPS synthesis and the biofilm formation of S. mutans [90,91]. Resveratrol can
inhibit the acid production, acid tolerance, and EPS production of S. mutans [92]. Ficin, a
sulfhydryl protease isolated from the latex of fig trees, can inhibit the total protein and the
biofilm formation of S. mutans and reduce the virulence of S. mutans [93]. Baicalin, another
plant-derived molecule, can reduce the sucrose-dependent biofilm formation of S. mutans
likely by inhibiting Gtfs. Baicalin can also downregulate virulence genes and inhibit the acid
production of S. mutans [94]. Piceatannol, a kind of stilbene, can target the GtfC domain,
inhibit glucans production and thus reduce S. mutans biofilm formation. Piceatannol
can also inhibit S. mutans colonization in a sucrose-dependent drosophila colonization
model [95]. β-sitosterol from Kemangi (Ocimum basilicum L.) can inhibit SrtA and thus
suppresses S. mutans biofilm formation [96]. Astilbin, a flavonoid from Rhizoma Smilacis
Glabtar, can inhibit the activity of SrtA and the biofilm formation of S. mutans without
repressing its growth [97]. Abietic acid, a natural product derived from pine rosin, also
exhibits inhibitory effects on the acid production and the biofilm formation of S. mutans [98].
Rhodiola rosea, a traditional Chinese medicine, can inhibit the biofilm formation likely
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via downregulating gtf genes and genes associated with the QS system of S. mutans [99].
α-mangostin (αMG) extracted from tropical plants shows antimicrobial effects against
planktonic cells of S. mutans [100] and can disrupt S. mutans biofilms by inhibiting the
enzyme activity of GtfB, GtfC, and F1F0-ATPase [101]. N-arachidonoylethanolamine (AEA),
a kind of endocannabinoids (ECs) [102], in combination with poly-L-lysine can inhibit
S.mutans biofilm formation [103]. Small molecules screened from natural products are
summarized in Table 3.

Table 3. Small molecules screened from natural products.

Small Molecules Chemical Formula Mechanisms References

Apigenin and
trans-trans farnesol
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5. Target-Based Designing

Small molecules developed by target-based designing approaches can specifically
inhibit S. mutans, which is expected to reduce the cariogenicity of oral biofilms without
significantly disturbing other commensal bacteria. Key virulence factors of S. mutans, such
as SrtA, antigens I/II, and Gtfs, are usually exploited as the targets for specific drug design.
Small molecules designed by target-based approaches are summarized in Table 4.

5.1. SrtA and Antigens I/II Inhibitor

SrtA can catalyze antigens I/II and thus initiates the subsequent sucrose-independent
adhesion and biofilm formation of S. mutans [42,54,97]. Recently, a series of SrtA inhibitors
have been identified from natural products and synthetic compounds [104,105]. Many
flavonoids have shown inhibitory effects on SrtA in Gram-positive bacteria [105]. A recent
study using molecular docking demonstrated that myricetin is able to target the binding
site of SrtA and thus inhibits SrtA activity and reduces the adhesion and biofilm formation
of S. mutans [106]. Charles et al. synthesized several peptides spanning residues 803–185
of antigens I/II and identified a synthetic peptide p1025 that is able to inhibit antigens
I/II binding to salivary receptors by forming an adhesion epitopes in a dose-dependent
way. The study showed that Q1025 and E1037 of p1025 may be the two vital residues
in the adhesion of p1025 toward antigens I/II. The effect of p1025 against S. mutans was
tested by using a Streptococcal model in vitro, and p1025 shows moderate stability and
selectivity against S. mutans recolonization to the tooth surface [107]. Li et al. also showed
that dentifrice containing p1025 is able to prevent S. mutans recolonization in vitro and
in vivo [108,109].

5.2. Gtfs Inhibitor

In the sucrose-dependent adhesion process, Gtfs synthesize EPS and allow S. mutans
to adhere to oral surfaces and coaggregate with other microbes to form biofilms [110].
Molecules specifically targeting Gtfs can inhibit S. mutans biofilm formation and are promis-
ing for caries control. Flavonols show antibiofilm activities and inhibitory effects against
S. mutans Gtfs [97,111]. Bhavitavya et al. screened a group of synthetic precursors of
flavonols which consist of 14 hydroxychalcones, and several of them exhibit selectively
effects against S. mutans biofilms. Based on compound 9 which is identified from a biofilm
assay, 9b, a Z isomer of compound 9, shows better inhibition on S. mutans. 9b as a lead
compound also exhibits selectivity against S. mutans biofilms by inhibiting Gtfs in a dose-
dependent way [112]. Wu et al. screened and identified a Gtf inhibitor, namely G43, which
showed notable effects on S. mutans biofilm formation [52]. Recently, this group further
developed 90 analogs of G43 based on the structure activity relationship (SAR) of G43 and
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identified several new biofilm inhibitors with enhanced potency and selectivity. Different
modifications based on G43 resulted in derivatives such as IIIA6, IIIA8, IIIF1, IIIF2, and
IIIF8, which show an equally antibiofilm activity with G43 by inhibiting Gtfs. One of
the leads compounds, IIIF1, selected after the comprehensive evaluation of SAR studies
and zymogram results, can also inhibit S.mutans as a Gtf inhibitor, exhibit low toxicity to
bacteria and have less effects on bacterial colonization compared to G43. The in vivo study
showed a marked reduction of dental caries in rats, representing a promising adjuvant to
the control of dental caries [113].

Table 4. Small molecules designed by target-based approaches.

Small Molecules Chemical Formula Mechanisms References

Compound IIIF1
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6. Conclusions

S. mutans is a well-recognized cariogenic species in the oral cavity. The effective
inhibition or removal of this cariogenic bacterium is essential for the caries management.
Small molecules are promising in this field due to their good antimicrobial activity, good
selectivity, and low toxicity. Drug repurposing, drug screening from either small-molecule
libraries or natural resources, and target-based designing are practical approaches to the
development of small molecules that can effectively inhibit S. mutans and consequently
benefit caries control. However, many issues have yet to be solved. First, the cytotoxicity of
the novel molecules needs comprehensive evaluation before clinical translation, particularly
for the synthetic molecules. Although drug repurposing has advantages such as lower cost,
shorter development timelines, and relatively higher safety, how to reduce its known side
effects and adverse reactions still needs further exploration. In addition, the application
of reused drug is limited because of their original effects, and the indication of reused
drugs is narrow compared to antibiotics. Second, although the mode of actions such as
the inhibition of Gtfs and the suppression of acid production have been demonstrated for
many small molecules, the underlying molecular mechanisms of these compounds are still
not clear. Third, since oral biofilms consisted of numerous microorganisms, how to increase
the selectivity of small molecules that specifically target S. mutans without interfering with
other normal flora is one of the future directions for drug development. Specific inhibitors
against S. mutans still need comprehensive validation in complex microbial consortia.
Finally, the development of drug resistance by oral bacteria is still a concern that needs
a long-term evaluation in both in vitro and in vivo models. Nevertheless, antimicrobial
small molecules represent a promising approach to the effective inhibition of S. mutans and
will benefit the management of dental caries.
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