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Molecular therapeutics for treating epidermal growth factor receptor-(EGFR-) expressing cancers are a specific method for
treating cancers compared to general cell loss with standard cytotoxic therapeutics. However, the finding that resistance to such
therapy is common in clinical trials now dampens the initial enthusiasm over this targeted treatment. Yet an improved molecular
understanding of other receptor tyrosine kinases known to be active in cancer has revealed a rich network of cross-talk between
receptor pathways with a key finding of common downstream signaling pathways. Such cross talk may represent a key mechanism
for resistance to EGFR-directed therapy. Here we review the interplay between EGFR and Met and the type 1 insulin-like growth
factor receptor (IGF-1R) tyrosine kinases, as well as their contribution to anti-EGFR therapeutic resistance in the context of
squamous cell cancer of the head and neck, a tumor known to be primarily driven by EGFR-related oncogenic signals.

1. Introduction

Squamous cell carcinoma of the head and neck (HNSCC)
is a heterogeneous disease that includes tumors arising from
the mucosal epithelial surface of the oral cavity, oropharynx,
hypopharynx, and larynx. Although these tumors originate
within different anatomic sites within the upper aerodiges-
tive tract, they are histologically identical (95% of HNSCC
are squamous cell carcinomas), share common etiologic
risk factors and overlapping metastatic target site profiles
(reviewed in [1–3]). Recent genetic analysis of human head
and neck tumors has revealed common molecular alterations
including p53 mutation, p14ARF, and p16 methylation, as
well as Cyclin D and EGFR amplification [3–6]. Despite these
similarities, the distinct anatomic subsites are associated
with differing rates of regional metastasis—for example,
vocal cord lesions tend to metastasize less frequently than
oropharyngeal or hypopharyngeal lesions. This variation
may be attributed to differing densities of lymph draining
vessels within each of the relevant subsites. Patients who
exhibit metastases into the regional nodal basin exhibit a
50% decrease in survival irrespective of treatment [7–15].

The incidence of HNSCC has continued to increase over the
last 3 decades. Currently, it is the 5th leading cause of cancer
by incidence and the 6th leading cause of cancer mortality
in the world [16, 17]. Recurrent and/or metastatic HNSCC
patients have a poor prognosis, with a median survival of less
than 1-2 years [18, 19].

Several lines of evidence indicate that cancer is a disease
resulting from dynamic changes in the genome that promote
the progressive transformation of normal human cells into
highly malignant derivatives [20, 21]. During this process,
cancer cells acquire several unique capabilities including self-
sufficiency in response to growth signals, insensitivity to
antigrowth signals, evasion of programmed death (apopto-
sis), limitless replicative potential, sustained angiogenesis as
well as invasion and metastasis, reprogramming of energy
metabolism, and avoiding immune destruction [21, 22].
Detailed global genomic analyses of several human tumors
has revealed that certain classes of signaling proteins appear
to be targeted more frequently by oncogenic mutations [23].
Receptor tyrosine kinases (RTKs) are a good example. Of the
59 transmembrane RTKs identified to date, dysregulation of
∼30 RTKs are associated with neoplastic transformation and
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cancer progression [23–25]. Interestingly, ninety percent of
primary head and neck squamous cell cancers, irrespective of
subsite, have alterations in members of the epidermal growth
factor (EGF) family of receptor tyrosine kinases (ErbBs),
in particular ErbB1/EGFR [26]. Ten to fifteen percent of
tumors will also have an alteration in another EGFR family
member, the ErbB2/HER2/Neu receptor [27, 28]. These
findings suggest a strong etiologic role for RTK dysregulation
in this type of tumors. Given this association, patients with
head and neck squamous cell cancers are well positioned to
benefit from existing and future molecular targeted agents
directed against oncogenic RTKs such as EGFR (reviewed in
[29]).

RTKs are a family of transmembrane proteins that
mediate many important physiological processes in both
normal and cancerous cells. Ligand binding to the extra-
cellular domain of RTKs induces receptor dimerization and
activation of RTK activity. Subsequent autophosphorylation
of the receptor at specific tyrosine residues within the cyto-
plasmic domain generates binding sites for proteins that relay
downstream biological signals to regulate protein function,
protein-protein interactions, and gene expression. Under
physiological conditions, RTK signaling is temporally and
spatially regulated. However, RTKs that become dysregulated
can contribute to cellular transformation. RTK dysregu-
lation can occur through several mechanisms including
gene amplification or RTK overexpression, chromosomal
translocation to produce constitutively active RTKs, gain
of function mutations or deletions that promote ligand-
independent RTK activity, escape from negative regulatory
mechanisms or local environmental changes, all of which
lead to potent oncogenic signaling and hence neoplastic
growth. These complex signaling networks use multiple
factors to drive the outcome of RTK signaling. Although
often depicted as linear pathways, they actually represent
an integrated network with various modes of cross-talk,
overlapping and distinct functions. Known signaling path-
ways involved in head and neck tumorigenesis include
the phosphatidylinositol-3-kinase (PI3K)-AKT-mammalian
target of rapamycin (mTOR), signal transducer and activator
of transcription (STATS) and Raf kinase-mitogen-activated
protein kinase kinase (MEK)-p42/p44 mitogen activated
protein kinase (MAPK) signaling pathways [1, 30]. This
review highlights three RTK signaling pathways involved
in head and neck squamous cell carcinoma; EGFR, the
type 1 insulin-like growth factor receptor (IGF-1R) and the
hepatocyte growth factor (HGF) receptor (Met). This short
review will explore the relative contribution of each signaling
axis to disease progression, potential modes of cross-talk, and
targeted clinical approaches under investigation for disease
management.

2. EGFR Amplification in
Head and Neck Cancers

The EGFR family of RTKs is comprised of four different
receptors known as ErbB1 (also referred to as EGFR), ErbB2
(HER2/Neu in rodents), ErbB3 (Her3), and ErbB4 (HER4)
(reviewed in [31–33]). Each receptor, with the exception

of ErbB3, contain an intracellular tyrosine kinase domain
that is activated by binding to extracellular EGF-like ligands,
which result in receptor dimerization and hence activation of
downstream signaling cascades including MAPK, PI3K/AKT
and Stat signaling. Eleven EGF-like ligands have been
identified to date that can be categorized into four groups—
those that bind EGFR only (EGF, Transforming Growth
Factor alpha (TGFα), and amphiregulin), those that bind
to EGFR and HER4 (heparin binding-EGF, betacellulin
and epiregulin), those binding directly to either HER3 and
HER4 (neuregulin 1 and neuregulin 2) and HER4 binding
only (neuregulin 3 and neuregulin 4) (reviewed in [34]).
Epigen, the most recently discovered member of the EGF-
like ligand family appears to be a low affinity and broad
specificity ligand that effectively activates EGFR [35]. Epigen
is unable to activate HER3 and HER4 in the absence of ErbB2
expression. ErbB2 is considered a ligand-less coreceptor as
it does not have any known ligands that bind directly with
high affinity, despite its established role as a potent oncogene
in several cancer types including breast, colorectal, nonsmall
cell lung carcinoma (NSCLC) and HNSCC [36, 37].

Aberrant EGFR activity has been strongly linked to
the etiology of 58–90% of HNSCC [26, 38]. These rates
can vary due to the inclusion of cancers from different
subsites within the head and neck, methods used to assess
gene amplification and tumor scoring methods. In con-
trast to lung adenocarcinomas in which activating EGFR
mutations result in ligand-independent signaling [39–43],
such activating EGFR mutations are infrequent in HNSCC
[44, 45]. EGFR gene amplification resulting in upwards of
12 copies per cell has been reported in HNSCC patients
compared to copy numbers detected in normal mucosa from
noncancer patients [46]. This and other pathways of ligand-
independent receptor activation that do not require EGFR
overexpression have been characterized as the likely drivers
of EGFR activity in HNSCC.

EGFR gene amplification remains a strong indicator
for poor patient survival, radioresistance, and locoregional
failure [47–49]. EGFR overexpression is detected in healthy
mucosa in cancer patients (field cancerization) that will
increase in proportion to observed histological abnormal-
ities such as hyperplasia, carcinoma in situ and invasive
carcinoma, indicating that it is an early event in HNSCC.
Accordingly, significant effort has focused on EGFR signaling
as a therapeutic target for treating HNSCC patients. The FDA
has approved several EGFR-targeted reagents for treating
HNSCC. Cetuximab, matuzumab and nimotuzumab rep-
resent humanized antiEGFR antibodies, whereas gefitinib
and erlotinib are small tyrosine kinase inhibitors (TKIs)
(Figure 1). Cetuximab (Erbitux) competitively inhibits
endogenous ligand-binding to EGFR and thereby inhibits
subsequent receptor activation [50–53]. Cetuximab is a
valuable treatment option in head and neck patients as it
synergizes with current treatment modalities. Cetuximab
enhances the effects of many standard cytotoxic agents,
including cisplatin (the conventional platinum-fluorouracil
chemotherapeutic), and in combination with chemotherapy
it can elicit antitumor responses in tumors that previously
failed to respond to that chemotherapy [54]. Cetuximab has
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Figure 1: Targeted RTK and their signal transduction routes in head and neck cancer. The EGFR, Met, and IGF-1R receptors and their
prototypic ligands are shown. Cysteine-rich domains (red box) and fibronectin type III-like domain (grey box) are indicated in the
extracellular domains of the EGFR and IGF-1R, respectively. Cytoplasmic tyrosine kinase domains for each receptor are indicated (green
boxes). The symbols α and β denote distinct RTK subunits. Targeted humanized monoclonal antibodies for extracellular components (white
box) and TKIs (black box) for each receptor signaling axis is shown.

also been reported to enhance radiation-induced apoptosis.
Notably, cetuximab did not dramatically exacerbate the
common toxic effects associated with radiotherapy of the
head and neck, including mucositis, xerostomia, dysphagia,
pain, weight loss, and performance status deterioration
[55]. Cetuximab has been approved for use in combination
with radiation for treating patients with locally advanced
HNSCC [56] and as monotherapy for patients with recurrent
HNSCC [57]. Matuzumab (formerly EMD 72000) binds to
EGFR with high specificity and affinity to block receptor
signaling, and also modulates antibody-dependent cellular
cytotoxicity (ADCC) when combined with cetuximab [58–
60]. Phase I clinical trials report excellent antitumor activity
of matuzumab against several human tumor types including
head and neck cancers [61]. A randomized Phase IIb, four-
arm, open-label study recently assessed the safety and efficacy
of nimotuzumab in combination with radiation therapy
(RT) or chemoradiation therapy (CRT) in patients with
advanced (Stage III or IVa) HNSCC [62]. The addition of
nimotuzumab to both the radiation and chemoradiation
regimens was reported to improve the overall response rate,
survival rate at 30 months, median progression-free survival
and median overall survival. A combined group analysis
of the nimotuzumab arms versus the non-nimotuzumab

arms demonstrated a significant difference in overall survival
favoring nimotuzumab. This study is compelling as patient
response rates compare favorably with studies combining
cetuximab with radiotherapy, but with fewer side effects
[62]. Gefitinib (Iressa) is a small molecule TKI-targeted
to the intracellular active site for phosphorylation that has
been tested in clinical trials involving HNSCC patients, as
a single agent or in combination with radiation treatment.
Unfortunately, gefitinib has shown limited clinical efficacy
with response rates of 10–15% [63, 64]. Erlotinib is a selective
inhibitor of the EGFR that also shows antitumor activity in
HNSCC comparable to standard combination chemotherapy
[65].

3. Targeting IGF-1R Signaling in
Head and Neck Cancers

Another promising RTK under preclinical and clinical
evaluation for head and neck cancers includes the IGF-
1R (reviewed in [66, 67]). Two ligands, insulin-like growth
factor 1 (IGF1) and IGF2 bind to IGF-1R. Ligand binding
to the IGF-1R stimulates its intrinsic tyrosine kinase activity,
activating downstream signaling networks including Ras-
Raf, MAPK and ERK, and PI3K (Figure 1) to drive cellular
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functions such as cell growth, survival and differentiation. It
is widely accepted that the IGF-axis activates antiapoptotic
signaling, which in turn upregulates the PI3K-Akt and
MAPK pathways in cancer cells [68]. Additionally, IGF-IR
also regulates vascular endothelial growth factor (VEGF)
production, suggesting a role in tumor angiogenesis [69].
Several studies indicate that IGF-1R is overexpressed and
functional in 94% of HNSCC patient samples [70, 71].
Consistent with this, IGF-IR signaling significantly enhances
the proliferation, motility and tumorigenicity of human head
and neck cancer cell lines [71]. IGF-1R down regulation in a
HNSCC cell line using antisense oligonucleotides resulted in
a dose-dependent decrease in cellular proliferation, induc-
tion of apoptosis, caspase activation and reduced expression
of proangiogenic cytokines such as VEGF. Interest in target-
ing the IGF-1R in HNSCC was bolstered by the observation
that treatment of head and neck cancer cells with either IGF
or EGF resulted in IGF-IR and EGFR heterodimerization
[71, 72]. However, only IGF resulted in the phosphorylation
of both receptors. Using a mouse xenograft model for
HNSCC, treatment with antibodies against IGF-1R, EGFR or
both receptors resulted in significant differences in median
tumor volume. It remains to be determined whether cellular
cross-talk between IGF-1R and EGFR has an important role
in determining the biological aggressiveness of HNSCC or
resistance to EGFR-targeted therapies.

Several monoclonal antibodies and TKIs for IGF-1R have
been tested in preclinical studies and early phase clinical
studies. However, the efficacy of IGF-1R-targeted therapy for
treating patients with HNSCC, particularly cross-talk with
EGFR, warrants further investigation. To date, the effect of
blocking oncogenic IGF-1R and EGFR signaling have been
studied more extensively in breast cancer cell lines [73–
75]. Treatment with gefitinib and AG1024, a TKI for IGF-
1R reduced cell proliferation when used as single agents
and showed an additive effect when used in combination
[76, 77]. Targeting IGF-1R and EGFR signaling is currently
under evaluation in hormone-sensitive metastatic breast
cancer using the IGF-1R inhibitor OSI-906 and the EGFR
TKI erlotinib, although results are not yet available (http://
www.clinicaltrials.gov/, Identifier NCT01205685). Similarly,
an exploratory study to assess the modulation of biomarkers
in HNSCC patients treated preoperatively with cetuximab
and/or IMC-A12, a humanized antiIGF-1R monoclonal anti-
body is currently underway (http://www.clinicaltrials.gov/,
Identifier NCT00617734). These studies will be critical for
evaluating whether the use of anti-IGF-1R and EGFR-
targeted treatments will be more effective than single-agent
modalities for treating patients with HNSCC.

4. A Role for Met/HGF Signaling in
Head and Neck Cancers

The Met/HGF signaling axis is frequently upregulated
and functional in HNSCC. The Met receptor is a single
pass transmembrane protein that upon binding its ligand
HGF—also known as scatter factor-promotes increased
cell proliferation, survival and motility (reviewed in [78,
79]). HGF is the only physiological ligand for Met and

is secreted as an inactive precursor polypeptide chain by
mesenchymal cells. HGF is proteolytically cleaved to form
an active α/β heterodimer by a number of serine proteases
including urokinase plasminogen activator (uPA), tissue-
type plasminogen activator (tPA), coagulation factors X, XI,
and XII. Met is a disulphide-linked α/β heterodimer derived
from the proteolytic cleavage of a 170 KDa precursor. The
α chain is exclusively extracellular while the β chain spans
the membrane once. The α chain and N-terminal region
of the β-chain form α sema domain, a seven β-propeller
structure in which blades 2 and 3 bind to HGF. The sema
domain is flanked by a cysteine-rich region followed by four
immunoglobulin repeats. It is proposed that the cysteine-
rich region and immunoglobulin repeat domains undergo a
conformational change following HGF binding allowing for
Met dimerization [80, 81].

Binding of HGF to Met results in receptor autophospho-
rylation at key catalytic residues and subsequent recruitment
of several cytosolic signaling molecules that are shared with
the EGFR and IGF-1R signaling pathways, including the
Grb2/Sos complex, the p85 regulatory subunit of PI3K, Gab1
and Jak/Stat3 (Figure 1). Subsequent activation of the MAPK
and Jun-N-terminal Kinase (JNK) pathways is responsible
for the mitogenic and motogenic properties of Met/HGF
signaling resulting in “invasive growth”, depending on the
physiological setting [79].

Increased Met signaling in human cancers can be the
result of enhanced ligand-binding (autocrine and paracrine),
Met overexpression or missense mutations that often induce
constitutive kinase activity, failure of Met down regulation
and interactions with other cell surface receptors such as
EGFR (reviewed in [82–84]). Met is overexpressed in 84%
of HNSCC patient samples [85]. Interestingly, amplification
of the MET gene (>10 copies per cell) is present only
in 3 of 23 (13%) tumor tissues. HGF overexpression is
detected in 45% of HNSCCs, suggesting that HGF functions
predominantly in a paracrine manner to drive Met signaling
in these cancers. Moreover, high levels of HGF are detected
in HNSCC patient plasma samples [86] supporting the
idea that ligand availability is not a limiting factor for Met
activation. Mutations in the Met ligand-binding domain
(T230M/E168D), transmembrane or JM domain (R988C,
T1010I) and the tyrosine kinase domain (T1275I, V14333I)
have also been identified in HNSCC tumor samples [85],
although their relative contribution to HNSCC progression
remains to be determined. Two somatic Met mutations have
been detected in HNSCC that result in constitutively active
receptor signaling that confers an invasive phenotype when
ectopically expressed in cell lines [87]. The Y1230C mutation
confers anchorage-independent growth and an invasive
phenotype in transfected cells, whereas the Y1235D Met
mutation stimulates epithelial cells to invade reconstituted
basement membrane in the absence of HGF. In the case of the
MetY1235D mutation, genomic analyses of HNSCC patient
samples detected the presence of this mutant allele in 50% of
metastatic tumors versus 2–6% in primary tumors, raising
the possibility that this could be a critical genetic lesion
for the acquisition of a metastatic phenotype. Alternatively,
increased Met signaling could afford HNSCC a selective

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/


Journal of Signal Transduction 5

advantage for growth and/or survival in metastatic sites, such
as the lymph node and lung. Indeed several studies indicate
that Met overexpression correlates highly with lymph node
metastasis, pathologic stage, and disease reoccurrence [88–
91]. Moreover, patient survival was significantly reduced
in biopsy samples with positive Met expression relative
to negative Met expression, suggesting the association of
Met with HNSCC disease progression. Consistent with
these findings, treatment with the TKI PF-2341066 caused
a significant reduction in tumor growth, a high level of
apoptosis and cellular debris within the tumor using a
xenograft animal model for HNSCC [91].

Selective inhibitors of Met/HGF signaling include hu-
manized monoclonal antibodies for HGF and Met, and
small-molecule tyrosine kinase inhibitors directed against
Met (Figure 1). Although their efficacy for treating a variety
of solid tumors is increasingly recognized, we await results
of preclinical and clinical trials for head and neck cancer
that are ongoing. The humanized antibody AMG 102 shows
high potency towards the mature and processed form of
HGF with no detected effects on proteolytic activation
of proHGF. AMG 102 interferes with Met signaling, by
competing with HGF for binding to the β chain of the
Met receptor [92]. In phase I clinical studies in patients
with advanced solid tumors, 70% of patients had a best
response in terms of achieving stable disease [93, 94]. Drug-
related toxicities included mild fatigue and gastrointestinal
symptoms. Importantly, no antiAMG 102 antibodies were
detected and circulating HGF levels were dose depen-
dent [93]. Another promising clinical therapeutic is the
one-armed 5D5 humanized antibody (OA5D5/MetMAb)
directed against Met. MetMAb binds Met with high affinity,
preventing HGF binding, Met phosphorylation, receptor
internalization and downstream signaling events and has
been shown to inhibit tumor growth in animal models by
more than 95% [95, 96]. MetMAb is currently in phase
I/II human clinical trials in comparison with erlotinib in
patients with NSCLC (http://www.clinicaltrials.gov/, Iden-
tifier NCT00854308). Future clinical trials will be required
to determine the suitability of AMG102 and MetMAb
as either single agents or combinatorial therapeutics for
treating HNSCC patients. Foretinib (formerly XL880) is
a TKI whose primary targets include Met and VEGF,
and to a lesser extent the platelet-derived growth factor
(PDGF) receptor, Ron, Kit and TIE2 RTKs [97]. Fore-
tinib recently completed phase II clinical trials in head
and neck patients (http://www.clinicaltrials.gov/, Identi-
fier NCT00725764). Interim results suggest that after 12
months, 12 of 18 patients had stable disease [83]. XL184
is another TKI agent entering phase III clinical trials.
XL184 targets Met, VEGFR2, and Ret. A phase I dose-
escalation study of the safety and pharmacokinetics of XL184
administered orally to patients with advanced malignancies
(showed that, on average, patients survived for more than
3 months with several up to 6 months while on treatment)
(reviewed in [84]). Due to encouraging data from this
study, a randomized phase III trial of XL184 in HNSCC
patients was initiated to investigate XL184 as a first-line
treatment (compared with placebo) for survival benefit to

patients with HNSCC (http://www.clinicaltrials.gov/, Iden-
tifier NCT00704730). ARQ197 (ArQule) is a nonATP-
site competitive, selective small molecule inhibitor of the
Met intracellular region [98]. Although the mechanism of
ARQ197 is presently unknown, the results of phase I trials
suggest potential antiinvasive activity for this compound
[99]. Overall, Met, and HGF-targeted therapies have been
well tolerated in clinical trials with negligible toxicities.
However, it remains to be determined whether Met is a
better therapeutic target than HGF. Clearly, in patients where
Met is activated by autocrine HGF secretion, both HGF and
Met targeted therapies may prove to be more efficacious
treatment options.

5. Understanding Resistance to
EGFR-Targeted Therapies in HNSCC

Acquired resistance is likely the result of several mechanisms
including (1) EGFR mutations initially present as well as
those acquired during therapy, (2) receptor independent
activation of downstream signaling cascades, (3) cross-talk
with other RTKs and converging signaling pathways and
(4) environmental factors including inflammatory agents
and viral infection. Resistance to cetuximab has been
associated with the coexpression of the truncated EGFR
mutant, EGFRvIII with wild-type EGFR. EGFRvIII is the
result of an in frame deletion of exons 2–7 spanning the
extracellular ligand-binding domain. The deletion results
in a truncated EGFR receptor that signals in a ligand-
independent manner [100]. EGFRvIII expression has been
detected in 42% of HNSCC patient samples, and closely
correlates with increased HNSCC cell proliferation in vitro
and increased tumor growth using in vivo xenograft models.
EGFRvIII preferentially activates the PI3K pathway instead
of the Ras/Raf/MEK pathway, which is activated by wild-
type EGFR [101]. Of particular interest to the therapeutic
treatment of HNSCC, EGFRvIII expression decreases the
proliferative response of EGFR expressing tumor cells to
cetuximab treatment relative to vector control cells. In a
recent study, EGFRvIII cells were shown to be resistant to
the antiinvasive effects of cetuximab due to an increase
in phosphorylation of STAT3 rather than increased PI3K
signaling. EGF-induced expression of the STAT3 target
gene HIF1α was abolished by cetuximab in HNSCC cells
expressing wild-type EGFR under hypoxic conditions, but
not in EGFRvIII-expressing HNSCC cells [102, 103]. These
data suggest a role for EGFRvIII in mediating HNSCC
resistance to cetuximab.

Despite EGFRs critical role in the development of
HNSCC, clinical data indicate modest clinical benefits for
locoregional control and survival of head and neck cancer
patients treated with EGFR-targeted therapies. HNSCC
patients resistant to cetuximab, often succumb to local tumor
recurrence as well as regional and distant metastasis. The
addition of cetuximab to radiation therapy was reported to
show improved locoregional disease control, progression-
free survival, and overall survival in patients with locally
advanced HNSCC [56]. However the data revealed a dis-
proportionate benefit of cetuximab with radiotherapy to
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oropharyngeal cancer patients when compared to patients
treated with hyperfractionated radiotherapy [57]. Accu-
mulating evidence suggests that human papilloma virus
(hpv) 16 status (Hpv+) is an important prognostic factor
associated with a favorable outcome in a subset of head
and neck cancers, including oropharyngeal and tonsilar
cancers [104]. Hpv+ tumors tend to have unique genetic
aberrations including decreased EGFR expression, whereas
increased IGF-1R levels characteristic of HNSCC appear to
be independent of hpv status. Clinically, hpv+ tumors are
characterized by more favorable patient prognosis regarding
disease-free survival as well as overall survival [104, 105],
possibly as a result of increased genomic stability associated
with global gene hypermethylation in hpv+ tumors [106].
Thus it will be interesting to determine whether hpv+ status
explains some of the benefits derived from the addition of
cetuximab to radiotherapy in this subset of HNSCC patients.
At present, there are few clinical indicators of which HNSCC
patients will most likely respond to EGFR-targeted therapies.
Accordingly, strategies to optimize EGFR-targeted therapy
remain an active area of research.

Additional mechanisms that result in EGFR activa-
tion include activating mutations in downstream signaling
components or cross-talk between different RTK pathways.
Activating mutations in the PI3KA oncogene occurs in 10%
of HNSCC tumors [107] whereas elevated levels of phos-
phorylated STAT3 correlates with lymph node metastasis
and poor patient prognosis [108–110]. Conversely, H-Ras
mutations are infrequent in HNSCC cases (less than 5%),
although a higher incidence has been detected in Asian
populations and correlates with Areca nut chewing [111,
112].

Met signaling has been shown to contribute to resistance
in cell lines derived from multiple tumor types including
breast, gastric and lung. In one key study, NSCLC with
activating mutations in the EGFR acquire resistance to the
TKI gefitinib and erlotinib, by amplification of the Met
gene to maintain Akt and Her3 signaling [113]. These
studies underscore the role of cross-talk between RTKs to
preferentially signal through the PI3K-Akt survival pathway
as a mechanism for acquired drug resistance. The relevance
of Met as a mechanism for escape from EGFR-targeted
therapy in head and neck cancers remains to be determined.
Hypoxia results in the transcriptional upregulation of Met
gene expression via HIF1α in a number of tumors including
head and neck [114], often downstream of EGFR signaling
[115]. In normoxia, hydroxylation of 2 prolines in HIF1α
enables its binding to the von Hippel-Lindau tumor sup-
pressor protein (pVHL) linking HIF1α to a ubiquitin ligase
complex. During hypoxia, minimal or no hydroxylation
occurs enabling HIF1α to avoid proteasomal degradation
and dimerize to other HIF family members such as HIF1 β
and coactivators, to form an active transcriptional HIF
complex on the hypoxia response element (HRE) of target
genes such as MET [116]. The ubiquitin ligase catalyzes
polyubiquitination of HIF1α targeting it for proteasomal
degradation [117]. Under hypoxic conditions, increased Met
signaling directs the invasive growth program, enabling cells
to invade more oxygenated tissues [118]. Since Met has been

reported to promote invasive and angiogenic effects in the
tumor microenvironment, the use of HGF/Met inhibitors
may afford a means of impairing tissue colonization as well
as tumor vascularization in head and neck cancer patients.

Studies on other solid tumor types, most notably
glioblastoma, indicate a role for IGF-1R upregulation in
resistance to EGFR-targeted therapies [73]. IGF-1R mediates
resistance to anti-EGFR therapy in primary glioblastoma
through the continued activation of the PI3K/AKT survival
pathway [119]. The apparent cooperation between IGF-1R
and EGFR in promoting HNSCC pathogenesis as well as
resistance to EGFR-targeted therapy, suggests an advantage
to cotargeting these signaling axes for the treatment of
head and neck cancers. To date, the effect of blocking
oncogenic IGF-1R and EGFR signaling have been studied
more extensively in breast cancer lines. Treatment with
gefitinib and AG1024, a TKI for IGF-1R reduced cell
proliferation when used as single agents and showed an
additive effect when used in combination [76, 77]. Targeting
IGF-1R and EGFR signaling is currently under evaluation in
hormone-sensitive metastatic breast cancer using the IGF-
1R inhibitor OSI-906 and the EGFR TKI erlotinib, although
results are not yet available (http://www.clinicaltrials.gov/,
Identifier NCT01205685). Similarly, an exploratory study to
assess the modulation of biomarkers in HNSCC patients
treated preoperatively with cetuximab and/or IMC-A12,
a humanized antiIGF-1R monoclonal antibody is cur-
rently underway (http://www.clinicaltrials.gov/, Identifier
NCT00617734). These studies will be critical for evaluating
whether the use of antiIGF-1R and EGFR-targeted treat-
ments will be more effective than single-agent modalities for
treating patients with HNSCC.

6. Conclusions

Targeted therapies that block EGFR, Met, and IGF-1R
signaling in head and neck cancers continue to show
promising results in preclinical studies and clinical trials.
However, it is difficult to predict which patients are most
likely to benefit from these therapeutics and potential side
effects during long-term in vivo use. Given the interplay
between these RTK signaling pathways and the mediocre
results obtained with monotherapy regimens thus far, clinical
trials will be required to determine how EGFR-, Met-, and
IGF-1R-targeted therapies can be used in combination in
order to definitively abrogate their common downstream
oncogenic signaling networks. Although gaps in our knowl-
edge concerning the role of Met and IGF-1R in head and neck
tumorigenesis, as well as acquired resistance to antiEGFR
therapies remain to be addressed, efforts to translate current
information towards clinical applications continue to be
impressive.
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MAPK: p42/p44 Mitogen Activated Protein Kinase
Mek: MAPK kinase
Met: HGF receptor
NSCLC: Nonsmall cell lung carcinoma
PI3K: Phosphatidylinositol-3-kinase
PDGF: Platelet-derived growth factor
RTK: Receptor tyrosine kinase
STAT: Signal transducer and activator of

transcription
TKI: Tyrosine kinase inhibitor
VEGF: Vascular endothelial growth factor
VEGFR: VEGF receptor
uPA: Urokinase plasminogen activator
tPA: Tissue-type plasminogen activator.
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