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ABSTRACT: Aqueous solubility is one of the most important physicochemical
properties in drug discovery. At present, the prediction of aqueous solubility of
compounds is still a challenging problem. Machine learning has shown great
potential in solubility prediction. Most machine learning models largely rely on
the setting of hyperparameters, and their performance can be improved by
setting the hyperparameters in a better way. In this paper, we used MACCS
fingerprints to represent the structural features and optimized the hyper-
parameters of the light gradient boosting machine (LightGBM) with the cuckoo
search algorithm (CS). Based on the above representation and optimization, the
CS-LightGBM model was established to predict the aqueous solubility of 2446
organic compounds and the obtained prediction results were compared with
those obtained with the other six different machine learning models (RF, GBDT,
XGBoost, LightGBM, SVR, and BO-LightGBM). The comparison results
showed that the CS-LightGBM model had a better prediction performance than the other six different models. RMSE, MAE, and R2

of the CS-LightGBM model were, respectively, 0.7785, 0.5117, and 0.8575. In addition, this model has good scalability and can be
used to solve solubility prediction problems in other fields such as solvent selection and drug screening.

1. INTRODUCTION
Aqueous solubility of compounds is a key physicochemical
property in drug development because it affects drug absorption,
distribution, metabolism, excretion, and toxicity (ADMET
properties).1−3 Therefore, the accurate and efficient prediction
of the aqueous solubility of compounds is significant in reducing
drug development costs and avoiding development failures.

Since the last century, a series of methods based on
mechanistic models have been proposed to predict the aqueous
solubility of compounds,4,5 including general solubility equa-
tions (GSEs), Monte Carlo (MC) simulation, and COSMO-
RS.6−10 However, these methods rely on mathematical
equations or physical constants, so they have certain limitations
and require a great deal of calculation. Due to the high diversity
of compound drugs, the poor variability of fitting equations, and
the high fitting cost in terms of time and manpower, these
methods are not ideal or efficient.

To replace traditional mechanistic models, many researchers
turned to the quantitative structure−property relationship
(QSPR) model.11−13 In QSPR, the quantitative relationship
among the physicochemical properties, biological properties,
and molecular structures of compounds is explored with various
statistical methods and mathematical models.14,15 Usually, the
molecular descriptors were selected as inputs of the models.16 In
previous studies, the main methods used in the QSPR model

include multivariable linear regression (MLR), artificial neural
network (ANN), Gaussian process (GP), and support vector
machine (SVM).17,18 However, the complex correlation
between molecular descriptors and high-dimensional nonlinear
data required for dissolution prediction poses great difficulties in
traditional machine learning methods.19

Advanced machine learning methods expand the application
scope of the QSPR model.20−23 In recent years, ensemble
learning methods, especially random forest (RF)24 and light
gradient boosting machine (LightGBM), have yielded satisfac-
tory results in dissolution prediction.25,26 In 2021, Ye et al.27

predicted the solubility of compounds in organic solvents with
the LightGBM algorithm, which showed better generalization
ability compared to deep learning and other traditional machine
learning algorithms.

In previous studies, a single model was generally used and the
hyperparameters were set through exhaustive search. It is worth
noting that the performance of the model is directly related to
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the setting of hyperparameters. In addition, the exhaustive
search efficiency is low, especially under the conditions of too
many hyperparameters. The swarm intelligence optimization
algorithm has great advantages in search. The Cuckoo search
(CS) algorithm is an excellent swarm intelligence optimization
algorithm with few parameters and a strong search ability.
Combined with advanced ensemble learning methods, it can
solve the problem of hyperparameter setting well.

In this paper, the CS algorithm was used to optimize the
setting of hyperparameters for LightGBM and molecular
fingerprints were used as molecular descriptors to express the
structure of compounds. Then, the CS-LightGBM model was
established to predict the aqueous solubility of different
compounds and the results were compared with those obtained
with other models. In addition, the performance of each model
was analyzed based on prediction results.

The main significance of this paper is as follows. (1) A new
idea based on CS was proposed to optimize the setting of
hyperparameters for LightGBM. (2) The proposed novel
solubility prediction model showed great advantages in
prediction accuracy, stability, correlation, etc. (3) The model
has good scalability and great application potential in the fields
of chemistry, materials, biology, and medicine.

2. MODEL ESTABLISHMENT
2.1. Theory. LightGBM is a Boosting framework based on

decision tree proposed in 201728 and shows greatly optimized
training speed and memory. LightGBM realizes the distributed
and efficient framework mainly through gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB). GOSS
is an algorithm that balances the amount of data and the
calculation accuracy. GOSS can filter out samples with a smaller
gradient and calculate the information gain through the
remaining data so as to reduce the amount of data and improve
the efficiency. EFB is a dimensionality reduction technology
used to bundle mutually exclusive features. Through feature
bundling, EFB can reduce feature dimensions and improve the
computing efficiency. If the features are completely exclusive
(one feature value is 0, the other feature value is not 0), the
features are directly bundled to prevent the loss of key
information. If the features are not completely exclusive, based
on the degree of nonexclusion of features (conflict ratio), the
features with a low conflict ratio are selected and bundled to
reduce the impact on accuracy. Different from most of the
current models based on gradient boosting decision tree
(GBDT), LightGBM adopts the leaf-wise strategy with depth
restrictions other than the level-wise decision tree growth
strategy. Therefore, as shown in Figure 1, on the same leaf node,
compared with the level-wise strategy, the leaf-wise strategy can
reduce information loss and memory consumption.29

The Cuckoo search algorithm proposed by Xin-She Yang and
Suash Deb30 is a swarm intelligence search technology
integrating cuckoo nest parasitism with Levy flight. According
to the long-term observation and research of entomologists,
some cuckoos raise their young ones in a parasitic way. They do
not build nests but lay their eggs in the nests of other birds and
get their young ones hatched and reared by other birds.
However, if the foreign eggs are found by the host, the host may
discard them or build a new nest. For the algorithm, the nest
represents the solution, and the process of the cuckoo looking
for a nest to lay eggs is the process of looking for the solution in
the n-dimensional space. The Levy flight is a non-Gaussian
random process. During the Levy flight, the short-distance walk

with a small step alternates with the long-distance walk with a
large step. The long step is used to expand the search space and
prevent falling into a local optimum, whereas the small step
makes the population converge to the global optimal solution in
a small space. The alternation of long and short steps enhances
the global search ability.

To better study the parasitism of a cuckoo nest, Yang et al.
hypothesized a cuckoo’s oviposition behavior into three ideal
states: (1) each cuckoo lays one egg at a time and dumps its egg
in a randomly chosen nest; (2) the best nests with a high quality
of eggs will carry over to the next generations; and (3) the
number of available host nests is fixed, and the egg laid by a
cuckoo is discovered by the host bird with a probability pa ∈ [0,
1]. Thus, the updating formula of the CS algorithm31 is provided
as follows

= ++x x Levy( )i
t

i
t1 (1)

where α > 0 is used to control the step. In most cases, α = 1. The
operator ⊕ refers to entrywise multiplications.
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where v ∼ N(0, 1), μ ∼ N(0, 1), β is a constant on [1, 2], and
Γ(•) is the γ function.

The performance of LightGBM depends on the setting of
hyperparameters. Generally, three methods are used to set the
hyperparameters of the model: grid search, random search, and
Bayesian optimization (BO). Grid search is an exhaustive search
method and has a low search efficiency because it finds all of the
solutions in the search space for permutations and combina-
tions. Random search improves the search efficiency by
randomly selecting parameter combinations in the hyper-
parameter space, but the improvement effect is not satisfactory
when there are too many hyperparameters. In general, BO is
more efficient than random search and grid search, but BO more
easily falls into the local optimum, indicating that the
improvement effect is not stable. Through the Levy flight, CS

Figure 1. Tree generation strategy of LightGBM.
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can randomly walk and constantly update and iterate to find the
optimal nest (that is, the global optimal solution) for incubating
eggs so as to achieve an efficient search mode with few
parameters, simple operation, and strong optimization capa-
bility, which has good performance in parameter optimization.30

Therefore, through the combination of CS and LightGBM,
the excellent search ability of CS plays a key role in the
hyperparameter setting of LightGBM, so that LightGBM can
improve the search performance on the basis of low memory and
high speed. In this paper, the five main hyperparameters of
learning_rate, num_leaves, max_depth, subsample, and colsam-
ple_bytree were optimized through CS. The fitness function in
this paper is root-mean-square error (RMSE) as the fitness
function value, CS searches for a set of hyperparameters with
minimum RMSE, the hyperparameters required by LightGBM.
The pseudocode of the CS-LightGBM is provided as follows:

2.2. Data Collection. The experimental data were collected
from previous studies and consisted of two datasets: Delaney
and Huuskonen.32,33 These data contained the names, SMILES
(simplified molecular input line entry system) expressions, CAS
(chemical abstracts service) numbers, and aqueous solubility (at
20−25 °C, and the unit of solubility is log mol/L) of 2446
organic compounds. As shown in Figure 2, the solubility data are
unevenly distributed in the interval of (−12.0, 2.0) and mainly
concentrated between −5.5 and 0. Due to the large span of
solubility data, solubility prediction is a great challenge.
2.3. Data Preprocessing. SMILES is a specification that

can guide the definite description of all of the details of a
molecular structure with ASCII strings, including the basic
information contained in a molecular system.34 The SMILES
expressions of compounds can be converted into molecular
fingerprints with the open source toolkit RDKit. The MACCS
molecular fingerprint is a fingerprint derived from the chemical
structure database developed by MDL (Medical Discovery
Leader), known as cheminformatics. It has 167 bits, including
166 bits representing substructures and 1 bit for saving
information in RDKit. According to the experimental results
of Chevillard et al.,21 MACCS had a better prediction
performance than ECFP4 and ECFP6. Therefore, in this
paper, we chose the MACCS molecular fingerprint as the
input of the model. To realize better performance, the whole
dataset was randomly divided into two datasets, the training set
and the test set, and verified by tenfold cross-validation. The
whole prediction process is shown in Figure 3.
2.4. Evaluation Criterion. In the regression models of

machine learning, root-mean-square error (RMSE) and mean
absolute error (MAE) are commonly used to evaluate the degree
of approximation between predicted results and real data. In
addition, the coefficient of determination (R2) is often used to
characterize the fitting degree of the regression line to the
observed value. RMSE, MAE, and R2 are, respectively, defined as
follows

= = y y

n
RMSE

( )i
n

i i1
pre exp 2

(4)

Figure 2. Distribution of the aqueous solubility of 2446 compounds.
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where n is the number of samples, yipre is the predicted value, yiexp
is the real value, and y̅ is the average value.

3. RESULTS AND DISCUSSION
To increase the reliability of experimental results, all models
were trained with the same dataset and division rules. The
experiment was based on a Windows 7 64-bit operating system

Figure 3. Solubility prediction process based on machine learning models.

Table 1. Hyperparameter Settings of the CS-LightGBM Model

parameter learning_rate num_leaves max_depth subsample colsample_bytree
value 0.3 43 20 0.7 0.7

Figure 4. Experimental data and predicted values in the training set and testing set of CS-LightGBM.
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(8.00 GB RAM, Intel(R) Core(TM) i5-9400F CPU) and
implemented by Python.
3.1. Results of the Proposed Model. In this paper, we

established a reliable model with the CS-LightGBM algorithm to
predict the aqueous solubility of different compounds and
analyzed its predictive performance with some evaluation
criteria.

Table 1 lists the hyperparameters of CS-LightGBM obtained
with the CS algorithm. During the search process, with
minimum RMSE as the fitness function, the optimal solution
was obtained through continuous update iterations. However,
the time cost of search also increases due to increasing iterations.
Therefore, through several experiments, the number of
iterations was set as 30 so as to reduce search time.

Figure 4 shows the fitting effect between predicted values and
experimental values in the training set and test set. Less solubility
data were between −12 and −4. However, the amount of data
affected the prediction effect of the model. In the interval of [−9,
−4] in the test set, most of the sample points significantly
deviated from y = x (the predicted value = the experimental
value), indicating that the predicted solubility values in this
interval had a large deviation from experimental values.
However, the prediction effect of the model was better and
the prediction accuracy was higher in the interval of [−4, 0]
because the sample points were closer to the straight line. In
addition, the amount of data between −4 and 0 was relatively
large. Similarly, in the training set, the data points in the interval
of [−12, −6] were in the discrete distribution. In short, the
uneven distribution of data had a certain influence on the
prediction results of the model.

Figure 5 shows the prediction error curve and can be used to
further analyze the prediction performance of the model. In

Figure 5, the horizontal axis is the number of samples, the
vertical axis indicates the means of the predicted values and
experimental values, and the error bar indicates their standard
deviations. Most of the error bars were within a certain width
range of 0 to 1.5, and about 25 data points had abnormal errors,
namely, large errors. Obviously, except for some points that were
affected by the uneven distribution of the original data, the
prediction errors of this model were all within the acceptable
range, indicating that this model had good stability.

Table 2 shows the tenfold cross-validation results of this
model. The purpose of cross-validation is to obtain a reliable and

stable model. Although the uneven distribution of data had a
certain impact on the prediction results of this model, the ten
times cross-validation results showed a relatively stable trend
without abnormal data. In addition, in the test set, the RMSE,
MAE, and R2 of the model were, respectively, 0.7785, 0.5117,
and 0.8575 after averaging the data ten times, indicating that this
model had a small prediction error and high correlation. In
general, the stability and accuracy of this model were further
verified by cross-validation and the model also showed good
generalization ability.
3.2. Comparison and Analysis of Various Models. To

further demonstrate the comprehensive performance of the
proposed model, we compared the proposed model with other
prediction models and discussed their performance differences,
which proved that the proposed model had a significant
advantage in predicting aqueous solubility. We separately
implemented six comparison models of RF, GBDT, XGBoost,
LightGBM, SVR, and BO-LightGBM and collected the
experimental results of each model. LightGBM and XGBoost
models were implemented, respectively, with Microsoft’s
LightGBM package and the XGBoost package, and other
models were implemented with the sklearn package (Table 3).

Figure 6 shows the distributions of absolute errors of six
prediction models. On the whole, RF, XGBoost, and CS-
LightGBM models have similar error intervals between 0 and
1.5, while the other three models have relatively large error
intervals. Under the condition of similar error interval, the data
points exceeding the upper limit (i.e., outliers) in the results of
CS-LightGBM were distributed within 3 and less than those in
the results of RF and XGBoost models. In addition, most of the
error points in the results of the CS-LightGBM model were

Figure 5. Error bar of the CS-LightGBM model in the testing set.

Table 2. Performances of the CS-LightGBM Model in the
Training Set and the Test Set

RMSE MAE R2

train test train test train test

1 0.5291 0.7095 0.3021 0.4719 0.9329 0.8700
2 0.5455 0.7294 0.3049 0.4784 0.9310 0.8637
3 0.5411 0.7527 0.3030 0.4870 0.9314 0.8693
4 0.5413 0.7332 0.2996 0.4727 0.9314 0.8719
5 0.5374 0.8146 0.2980 0.5649 0.9331 0.8448
6 0.5402 0.8460 0.2982 0.5583 0.9321 0.8263
7 0.5282 0.7364 0.2902 0.4832 0.9342 0.8758
8 0.5480 0.7343 0.3060 0.4850 0.9295 0.8732
9 0.5528 0.8746 0.3068 0.5665 0.9292 0.8359
10 0.5517 0.8543 0.3061 0.5492 0.9290 0.8440
average 0.5415 0.7785 0.3015 0.5117 0.9314 0.8575

Table 3. Comparison Models in This Study

model description reference

RF random forest 35
GBDT gradient boosting decision tree 36
XGBoost eXtreme gradient boosting 37
LightGBM light gradient boosting machine 28
BO-

LightGBM
Bayesian optimization−light gradient boosting

machine
38

SVR support vector regression 39
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concentrated below the median and denser than those in the
results of the other five models. In short, among these prediction
models, CS-LightGBM had the smallest absolute error and
better performance.

Figure 7 shows the learning curves of six models trained on the
solubility datasets with the training sizes of 100, 400, 800, 1200,
1600, 2000, and 2446. As the amount of data increased, the
performances of six models were gradually improved and
eventually became stable. With the increase of training set size,
the RMSE of GBDT finally converged to 1.0, SVR to 0.9, and the
other four models finally converged to about 0.8. The CS-
LightGBM model had the fastest convergence speed and the
smallest convergence result. The MAE of CS-LightGBM had a
more obvious decreasing trend and decreasing speed than that of
the other models and finally converged to between 0.5 and 0.6.
When the amount of data increased from 100 to 400, the R2 of
the six models increased significantly and gradually became
stable. The R2 of all models except for GBDT and SVR finally
converged to 0.85.

Among the six models, the CS-LightGBM model showed
significant advantage in accuracy and correlation. RF, XGBoost,
SVR, and LightGBM had similar performances, and GBDT had

the worst performance. The running time of each model is
shown in Table 4. Although RF, XGBoost, SVR, and LightGBM
had comparable performances in terms of accuracy and
correlation, the difference in time cost was significant among
the four models. LightGBM had the fastest training speed.
However, under the same running time, the overall performance
of CS-LightGBM was slightly better than that of LightGBM.

In Table 4, the error difference of each model is not significant
enough. Therefore, a statistical test is used to determine whether
there is a significant difference between models. As the
experimental data presented in this paper showed non-normal
distribution, the Wilcoxon signed rank method was used to test.
The significance level of each model is shown in Figure 8. The
smaller the P value, the greater the inconsistency between the
actually observed data and the full hypothesis, and the more
significant the test results are. As can be seen from Figure 8, the P
value of RF, GBDT, XGBoost, SVR, LightGBM, and CS-
LightGBM is less than 0.05, which proves that there are
significant differences between them. Although there are
differences between the remaining four models (XGBoost,
SVR, LightGBM, CS-LightGBM), they are not significant.
Among them, the P value of SVR and CS-LightGBM is 0.843.

Figure 6. Distribution of absolute errors of RF, GBDT, XGBoost, LightGBM, SVR, and CS-LightGBM.

Figure 7. Prediction performances of RF, GBDT, XGBoost, LightGBM, SVR, and CS-LightGBM.

Table 4. Performance Comparison of the Six Models

RF GBDT XGBoost LightGBM SVR CS-lightGBM

RMSE 0.8132 0.9779 0.7999 0.8328 0.8838 0.7785
MAE 0.5349 0.7291 0.5177 0.5881 0.5908 0.5117
R2 0.8439 0.7745 0.8485 0.8366 0.8159 0.8575
time(s) 16.3930 5.6900 2.7999 0.6919 8.7390 0.6959
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However, it can be seen from Table 4 that CS-LighTGBM is
superior to SVR in both running time and error.

In the comparison process, we found that the BO algorithm
performed better than random search, grid search, and other
search methods in parameter optimization. Therefore, we
recorded the hyperparameter optimization results of LightGBM
by BO and CS 10 times and evaluated the two prediction models
with three performance metrics. Figure 9 shows the performance
comparison of the two models. The fluctuation ranges of BO-
LightGBM in the first, second, and third experiments were
relatively larger. RMSE and MAE of BO-LightGBM basically
showed an upward trend after the third experiment, whereas
RMSE and MAE of CS-LightGBM fluctuated around 0.78 and
0.5, respectively. Similarly, R2 of BO-LightGBM basically
showed a downward trend, whereas R2 of CS-LightGBM
fluctuated around 0.856 in the third experiment. In addition, in
nearly eight experimental results, CS-LightGBM had smaller
errors and larger R2 than BO-LightGBM, indicating that CS was
more stable than BO. The CS-LightGBM model had a higher
prediction accuracy, smaller errors, and more significant
correlation compared to the LightGBM model.

Figure 10 shows the predicted and experimental values of each
model in the test set. For a more direct comparison, two auxiliary
lines y = x + 1 and y = x − 1 are introduced in Figure 10. Most of
the data points of the CS-LightGBM model were well fitted to
the line of y = x and distributed between the two auxiliary lines.
The data points of the CS-LightGBM model were more
concentrated than those of the other models, although less data
points were beyond the two auxiliary lines. The results indicated

that the prediction error of the CS-LightGBM model was
smaller than that of the other models and had a higher accuracy.

The comparison results of the seven models of RF, GBDT,
XGBoost, LightGBM, SVR, BO-LightGBM, and CS-LightGBM
indicated that the CS-LightGBM model had great advantages in
prediction accuracy, correlation, and stability. CS-LightGBM is
an excellent prediction model with high prediction accuracy,
small deviation, high correlation, and strong stability.

4. CONCLUSIONS
In this paper, we optimized the hyperparameters of the
LightGBM algorithm based on CS and established the CS-
LightGBM model for predicting the aqueous solubility of
compounds. The conclusions are drawn as follows.

(1) The CS-LightGBM model performed better in predicting
the aqueous solubility of compounds and is superior to
other comparison models in terms of prediction accuracy,
correlation, and stability.

(2) Through the optimization with CS, the hyperparameter
combination with minimum RMSE could be obtained for
LightGBM within one time, thus providing a theoretical
reference for the hyperparameter settings of various
machine learning models.

(3) The CS-LightGBM model had good application pros-
pects in chemistry, biology, medicine, materials, and other
fields.

In the future, we will further explore the key technical and
scientific issues of compound dissolution prediction and acquire

Figure 8. Significant difference test of each model.

Figure 9. Performance comparison of BO-LightGBM and CS-LightGBM.

Figure 10. Experimental values and predicted values in models.
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more data to establish a larger and more balanced database so as
to reduce the impact of uneven data distribution on the model
and better evaluate its prediction performance. Moreover, we
will continue to investigate the solubility prediction problem
using other state-of-the-art models and we will further study the
relationship between the model and aqueous solubility to make
the model more mechanized.
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