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Abstract 

Objective:  The study investigated the feasibility and potential outcome measures during acute hyperoxia in type 2 
diabetes patients (DM2).

Methods:  Eleven DM2 patients (7 men and 4 women) were included in the study. The patients cycled (30 min at 
20 % Wmax) whilst breathing three different supplemental oxygen flows (SOF, 5, 10, 15 L min−1). During hyperoxic 
exercise, arterial blood gases and intra-arterial blood pressure measurements were obtained.

Results:  Arterial pO2 levels increased significantly (ANOVA, p < 0.05) with SOF: 13.9 ± 1.2 (0 L min−1); 18.5 ± 1.5 
(5 L min−1); 21.7 ± 1.7 (10 L min−1); 24.0 ± 2.3 (15 L min−1). Heart rate (HR) and pH increased significantly after termi-
nating administration of hyperoxic air.

Conclusions:  An SOF of 15 L min−1 appears to be more effective than 5 or 10 L min−1. Moreover, HR, blood pressure, 
blood lactate and pH are not recommended as primary outcome measures.
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Background
Breathing a hyperoxic gas mixture has been shown to 
acutely enhance power output (W) by 8–13  % [1–6], 
increase oxygen uptake (V̇O2) by 10–14  % [2, 3, 6–10], 
decrease blood lactate level [11] and lower perceived 
exertion [7] during aerobic type of exercise. Both healthy 
subjects and COPD patients show improved exer-
cise performance with hyperoxia [12–14]. These find-
ings suggest that certain other clinical populations with 
impaired cardiovascular and/or pulmonary fitness levels 
might benefit from exercise under hyperoxic conditions 
as well. Patients with type 2 diabetes (DM2) might be 
good candidates for hyperoxic exercise training as pre-
vious research indicated that DM2 patients frequently 
have a reduced diffusion capacity of the lungs (8–25 %), 

inversely related to blood glucose levels as well as dura-
tion and severity of DM2 [15–17]. Pathophysiological 
mechanisms explaining the impaired pulmonary func-
tion may be micro-angiopathy, chronic inflammation and 
autonomic neuropathy [16, 18] resulting in a diminished 
alveolar micro-vascular reserve [15, 17, 19–21]. Impaired 
alveolar gas exchange in DM2 patients has been shown to 
correlate with a lower V̇O2 and workload capacity during 
aerobic type of exercise [22].

Although beneficial effects of exercise under hyper-
oxic conditions have been reported for different types 
of chronic disease populations [1, 4, 8, 23–26], experi-
mental data on an effective dose of hyperoxic air dur-
ing exercise in DM2 patients are still lacking. Despite 
the ongoing debate on oxygen transport and consump-
tion [50], increased oxygen availability in arterial blood 
may improve intracellular transport and uptake of active 
muscle tissue, and subsequently improve exercise perfor-
mance. In accordance, the aim of the present feasibility 
study was to establish an effective dose of supplemental 
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oxygen in DM2 population as a basis to guide and opti-
mise future hyperoxic exercise training protocols.

Methods
Subjects
Eleven patients diagnosed with DM2 for at least 2 years 
and not taking anti-hypertensive medication were 
screened and included at the outpatient clinic at Erasmus 
University Medical Center in Rotterdam, the Nether-
lands. The characteristics of the eligible patients are pre-
sented in Table 1. Out of 22 screened patients, a total of 
six patients were not willing to participate in the hyper-
oxic exercise intervention following the maximal exer-
cise test. Four patients were excluded from the hyperoxic 
experiment because it was not possible to introduce an 
intra-arterial catheter in the radial artery. One patient 
was excluded from our study because of abnormally high 
lactate levels during exercise and was diagnosed with 
mitochondrial encephalomyopathy, lactic acidosis, and 
stroke-like episodes (MELAS) syndrome afterwards. 
Baseline characteristics of excluded patients were not dif-
ferent from the experimental group. Included subjects 
gave their informed consent to participate in the study, 
approved by the medical ethical committee of the Eras-
mus University Medical Center in Rotterdam (ISRCTN 
number: NTR2299).

Procedures
Prior to the hyperoxic exercise session all subjects per-
formed a maximal exercise test on a cycle ergometer (Jae-
ger ER800) using an incremental workload (1.85 W/6  s 
for men, 1.2 W/6 s for women). The oxygen uptake (V̇O2 ) 
(Oxycon Pro, Viasys, Houten, Netherlands) and heart 
rate (HR) (Polar wear-link, Finland) were measured con-
tinuously. A second visit was scheduled within 1–3 weeks 
following a maximal exercise test. During the second visit 

subjects performed a hyperoxic exercise session. The 
bout consisted of 25 min of submaximal cycling at 20 % 
of the maximal workload capacity (Wmax). The workload 
was chosen to ensure that the subjects reach steady state, 
based on the assumption that the anaerobic threshold 
is at least 40 % Wmax in DM2 patients. After calibration 
patients underwent the Allen’s test, and subsequently 
beat-to-beat blood pressure was obtained through a per-
cutaneous intra-articular catheter in the radial artery of 
the non-dominant hand [51]. Data were registered in a 
computer and analysed using specialised software (Beat 
scope, Finapres Medical Systems, Amsterdam, the Neth-
erlands). It was performed to minimise the risk of ischae-
mia of the hand. The exercise protocol consisted of 6 
phases: 5 min of rest without supplemental oxygen flow 
(SOF), 10 min without SOF, 5 min with 5 L min−1 SOF, 
5 min with 10 L min−1 SOF, 5 min with 15 L min−1 SOF, 
5  min without SOF (Fig.  1). A stage duration of 5  min 
was chosen to reach steady state during, at least, the last 
2 min of each stage [27, 28]. The last stage was added to 
assess the effect of cessation of SOF.

The SOF was administered directly into a face mask 
(without a reservoir bag, Teleflex Inc. Hudson RCI 
adult Multi-Vent air entrainment mask), allowing the 
inhalation of room air to meet the subjects’ ventilatory 
demands. In our study, we chose to dose oxygen as a 
fixed flow quantity, instead of a fixed inspirational frac-
tion with a maximum of 15  L  min−1. This design was 
chosen to match the possibilities of the standard facili-
ties for supplemental oxygen available in most primary 
and secondary healthcare settings. During the last min 
of each phase arterial blood gas and the rate of perceived 
exertion (Borg score) [29] were obtained.

Statistical analysis
An independent sample T test was used to analyse the 
baseline characteristics and maximal exercise test. We 
used a single-factor ANOVA with repeated measures to 
compare the means of the given variables during differ-
ent hyperoxic exercise phases. Differences with a p value 
<0.05 were considered significant. The Bonferroni adjust-
ment was applied. Data were presented as mean ± SD.

Results
Participants
The characteristics of the included participants are pre-
sented in Table 1.

Maximal exercise test
The average maximal oxygen uptake (VO2max) of the sub-
jects was 1.83 ±  0.59  L  min−1. The mean VO2max was on 
average ~24  % (p  <  0.05) below the average of a healthy 
population of the same age, weight, length and sex based 

Table 1  Subject characteristics

No significant differences (p < 0.05)
a  Based on skinfold measurements (Durnin and Womersley 1969)

(n = 11) Mean ± SD

Sex (M:F) 7:4

Age (years) 56.3 ± 6.3

T2D duration (years) 10.5 ± 6.6

Weight (kg) 87.7 ± 16.5

Length (cm) 171.1 ± 11.0

BMI (kg/m2) 30.1 ± 6.1

Abdominal circumference (cm) 100 ± 13

Fat percentagea (%) 33.9 ± 9.1

Fasting glucose (mmol/L) 11.3 ± 3.0

HbA1c (%) 8.3 ± 1.3



Page 3 of 8Rozenberg et al. Eur J Med Res  (2016) 21:1 

on the regression equations by Fairbarn et al. [30]. Maximal 
HR was not significantly different form the predicted val-
ues according to the Tanaka regression equation [31]. The 
results of the maximal exercise test are presented in Table 2.

Hyperoxic exercise: blood gas analysis
All included subjects were able to complete 25  min of 
submaximal hyperoxic exercise. Arterial pO2 levels 
(Fig.  2a) did not change immediately after starting the 
exercise (T1–2). The arterial pO2 increased significantly 
with increased SOF (T2–T5) in a dose-dependent man-
ner and returned to baseline after cessation of the SOF 
administration (T5–T6). The arterial pCO2 (Fig. 2b) did 
not change significantly in response to exercise under dif-
ferent SOF.

There was a decreasing trend of the pH (Fig. 2c) at the 
onset of the exercise bout (T1–T2), while pH increased 
significantly (p value) during the last step when the sup-
plemental oxygen flow administration was stopped 
(T5–T6).

Hyperoxic exercise: HR, blood pressure and rate 
of perceived exertion
The HR (Fig.  3a) increased significantly after the onset 
of the exercise bout (T1–T2), and remained unchanged 
during the SOF phases (T2–T5) and increased after stop-
ping the SOF (T5–T6). After an initial increase of systolic 
and diastolic blood pressure after starting the exercise 
(T1–2), systolic, diastolic and mean arterial blood pres-
sure (Fig.  3b–d) did not change during the SOF. Fur-
thermore, the rate pressure product (Fig.  3e) showed a 
significant increase after stopping the SOF (T5–T6). The 
rate of perceived exertion (Fig.  3f ) increased with the 
start of exercise (T1–2) and did not increase significantly 
during exercise (T2–T6).

Discussion
We tested the feasibility of hyperoxic exercise and dose–
response in type 2 diabetes patients. The main find-
ing of this feasibility study was that exercise under SOF 
15  L  min−1 increased pO2 more effectively than lower 
doses (5 and 10 L min−1) in DM2 patients (Table 3).

Technical feasibility
From a technical perspective, our results demonstrate that 
supplemental oxygen, applied with a standard open face-
mask (5–15  L  min−1), results in significant increases in 
arterial pO2 levels during exercise. Higher pO2 at increased 
SOF (i.e. 5, 10 and 15 L min−1) suggests a dose-dependent 
effect. The pO2 levels obtained from the radial artery dur-
ing hyperoxic exercise in the present study (24.0 ± 2.3 kPa) 
were comparable with the arterial pO2 levels measured by 
Plet et al. in healthy subjects. Administration of 55 % of oxy-
gen improved maximal oxygen uptake by 12 % during cycle-
ergometry in comparison with normoxic exercise [9]. Other 
studies investigating the influence of hyperoxia during exer-
cise found slightly higher pO2 levels of approximately 40 kPa 
obtained from the femoral artery with an inspired oxygen 
fraction of 60  % [32–34]. Taken together, our data show 
that supplemental oxygen applied during submaximal exer-
cise via a standard open face mask increases arterial pO2 
levels. Additional oxygen availability could compensate for 
the diminished diffusion capacity, endothelial function and 
low aerobic capacity seen in most DM2 patients [15, 17, 
19–21]. The latter suggests that a hyperoxic training study 
in DM2 patients could be a potential solution in a medical 
fitness centre, since no special equipment is needed other 
than an open facemask and standard gas cylinders with O2. 
However, before investigating training effects under hyper-
oxic conditions, this warrants further controlled trials on 
cardiovascular and pulmonary function in DM2 patients. 

Continuous intra-arterial blood pressure & heart rate measurement 
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Fig. 1  Hyperoxic exercise protocol. ABG arterial blood gas, RPE rate of perceived exertion (Borg score)
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The results will improve our understanding on whether 
additional oxygen during exercise may improve oxidative 
metabolism in populations such as DM2 with deficient car-
diovascular and respiratory function.

Patient recruitment and study population
Despite the invasive nature of our study and the 
fact that use of antihypertensive medication was an 

exclusion criterion for the present study, the major-
ity (=76  %) of the eligible DM2 patients that were 
approached in our outpatient clinic were willing to 
participate in our feasibility study. Although, a train-
ing study requires a more long-term commitment, the 
willingness to participate in our feasibility study indi-
cates that it might be possible to recruit a sufficient and 
representative proportion of subjects for a randomized 

Table 2  Maximal exercise test

AT anaerobic threshold using V-slope method
a  Using the Fairbarn and Wasserman equations (Fairbarn et al. [30])
b  Using the Tanaka equation (Tanaka et al. [31])

* Significant difference (p < 0.05)

Maximal Predicted % Predicted AT Ratio AT/max

Load (W) 145.5 ± 61.9 182.1 ± 74.3a 84 ± 24* 85.1 ± 38.5 0.58 ± 0.12*

Load/weight (W/kg) 1.70 ± 0.71 2.52 ± 0.82 69 ± 23* 0.99 ± 0.41 0.58 ± 0.12*

V̇O2 (ml/min) 1830 ± 593 2499 ± 773a 76 ± 21* 1334 ± 354 0.75 ± 0.13*

V̇O2 (ml/min kg) 21.4 ± 7.0 28.9 ± 8.8 76 ± 24* 15.5 ± 4.0 0.75 ± 0.13*

HR (bpm) 155 ± 18 169 ± 5b 92 ± 10 128 ± 17 0.83 ± 0.08*

RER 1.09 ± 0.09 0.92 ± 0.07 0.85 ± 0.07*

Systolic blood pressure (mmHg) 180 ± 30

Diastolic blood pressure (mmHg) 79 ± 12

RPE (Borg 15.8 ± 2.8
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Fig. 2  Blood gas analysis a pO2 levels during hyperoxic exercise. *T3–5 are significantly different from T1, T2 and T6, and each other (p < 0.05). b 
pCO2 levels during hyperoxic exercise. No significant changes (p < 0.05). c pH levels during hyperoxic exercise. *T6 is significantly higher than T2 
and T3 (p < 0.05). d Lactate levels during hyperoxic exercise. No significant changes (p < 0.05)
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clinical trial on the medium-term effects of hyperoxic 
exercise training.

In accordance with previous studies [35–38], the mean 
VO2max of the investigated patient sample is well below 
the average of the healthy population, even when cor-
rected for a high BMI. High HbA1c and fasting glu-
cose levels showed that our overweight subjects had 
poorly regulated DM2. As such, the present study pop-
ulation may not be representative for the general well-
controlled DM2 population. Long-term adherence has 
been reported to vary substantially (10–80  %) in con-
ventional exercise programs for DM2 patients [39–44]. 
However, effects of hyperoxic exercise training in other 
patient populations, with a reduced alveolar and capillary 

diffusion capacity [12–14], showed the anticipated 
increase in exercise capacity. Less perceived exercise 
intensity and improvement of exercise performance will 
also motivate overweight and with poorly regulated DM2 
patients to adhere to hyperoxic exercise training.

Potential outcome measures
In contrast with previous hyperoxic exercise studies [8, 
9, 33, 45–47], we observed no change in HR, blood pres-
sure or rate of perceived exertion during exercise while 
increasing the supplemental oxygen flow during exer-
cise. However, after stopping administration of SOF 
we observed a significant increase in HR and rate pres-
sure product [HR * systolic blood pressure (SBP)]. The 
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cardiovascular response during phase 6 indicates that 
hyperoxia lowers the cardiovascular burden during sub-
maximal steady-state exercise in patients with DM2. A 
number of physiological mechanisms might explain why, 
in comparison with previous hyperoxic exercise studies, 
SOF did not lower HR and systemic blood pressure dur-
ing phases 3–5 in our experimental setup. First, it is pos-
sible that even at an exercise intensity of 20  % V̇O2max 
max, our patients were not completely in a steady-state 
condition during phases 3–5. Second, in comparison with 
previous hyperoxic exercise studies, the absolute exer-
cise intensity may have been too low to cause a signifi-
cant drop in HR, blood pressure or the rate of perceived 
exertion (Borg score). Third, the arterial wall stiffening in 
combination with the diabetes-related endothelial dys-
function may have impaired a normal vascular response 
to hyperoxia [48, 49].

Limitations of the study
Unfortunately, for medical ethical reasons (invasive 
study) it was difficult to add a healthy control group or 
different oxygen conditions. Because of this limitation, 
we can only speculate about the physiological reason 
for this abnormal response to hyperoxic exercise. Arte-
rial blood gas collection (arterial blood withdrawal) was 
vastly limited because of impaired structure of arterial 
walls in the DM2 patients. These invasive methods may 
be replaced by non-invasive study measures in the future 
studies such as bio-impedance cardiography and near-
infrared spectroscopy. Nevertheless, the present feasi-
bility study suggests that HR, blood pressure and rate of 

perceived exertion may not be suitable primary outcome 
measures for a hyperoxic training study in unfit DM2 
patients. Instead, direct assessment of the VO2max should 
be considered in a hyperoxic training study to monitor 
and document change in exercise performance.

Conclusions
Based on arterial pO2 measurements, a supplemental 
oxygen flow of 15 L min−1 appears sufficient to compen-
sate for impaired alveolar and capillary oxygen transport 
and/or consumption in DM2 patients. Based on this fea-
sibility study, we propose to first investigate acute effects 
of various inspiratory oxygen fractions on the cardio-res-
piratory system and speed of oxygen uptake kinetics. This 
will improve our understanding on potential exercise 
performance enhancement benefits of supplementary 
oxygen. This would warrant future studies to investigate 
the medium- and long-term benefits of hyperoxic exer-
cise training in patients with DM2.
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