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Introduction

Glaucoma is a progressive optic neuropathy

Purpose: To compare methods to assess visual field (VF) progression in glaucoma.

Methods: 4,950 VFs of 253 primary open angle-glaucoma patients were evaluated for
progression with the following methods: clinical evaluation, guided progression
analysis (GPA), mean deviation (MD), and visual field index (VFI) rates, Advanced
Glaucoma Intervention Study (AGIS) and Collaborative Initial Glaucoma Treatment
Study (CIGTS) scores, pointwise linear regression (PLR), permutation of PLR (PoPLR),
and glaucoma rate index (GRI). A separate simulated series of longitudinal VFs was
assessed with all methods except for GPA and clinical evaluation.

Results: The average (+SD) age of the patients at baseline was 65.4 (=11.5) years. The
average (*=SD) follow-up was 11.8 (£4.6) years, and the mean (*=SD) number of VFs
was 16.8 (£7.0). Proportion of series detected as progressing was 65% for PoPLR, 58%
for GRI, 41% for GPA, 40% for PLR, 36% for CIGTS, 35% for clinicians, 31% for MD rate,
29% for AGIS, and 22% for VFI rate. Median times to detection of progression were 7.3
years for PoPLR, 7.5 years for GRI, 11 years for clinicians, 14 years for GPA, 16 years for
PLR, 17 years for CIGTS, 19 years for AGIS, and more than 20 years for MD and VFI
rates. In simulated VF series, GRI had the highest partial area under the receiver
operator characteristic curve (0.040) to distinguish between glaucoma progression
and aging/cataract decay, followed by VFI rate (0.028), MD rate (0.024), and PoPLR
(0.006).

Conclusions: GRI and PoPLR showed the highest proportion of series detected as
progressing and shortest times to progression detection. GRI exhibited the best ability
to detect progression in the simulated VF series.

Translational Relevance: Knowledge of the properties of every method would allow
tailoring application in both clinical and research settings.

changes allows the timely application of therapeutic
measures to preserve visual function and prevent
visual disability.! Determination of the rates of
progression is important to discriminate fast from

characterized by characteristic alterations of the optic
nerve head, retinal nerve fiber layer, and visual field
(VF). Standard achromatic perimetry is the gold
standard for VF assessment, which remains a
fundamental test for the diagnosis and care of
glaucoma patients. Recognition of longitudinal VF

slow progressors, because the former group of
patients may require more aggressive treatment and
more frequent follow-up. Most clinical trials have
defined perimetric deterioration as their primary
study outcome.”

TVST | 2019 | Vol. 8 | No. 5 | Article 2

This work is licensed under a Creative Commons Attribution 4.0 International License. -.


https://creativecommons.org/licenses/by/4.0/

translational vision science & technology

Rabiolo et al.

Detection of true progression and VF rates of
change are confounded by intertest variability, often
referred to as long-term fluctuation. This fluctuation
is higher in glaucoma patients than in healthy
subjects.® Age, eccentricity, initial sensitivity, presence
of other ocular diseases, and test strategy are other
pertinent variables, which affect long-term fluctua-
tion.” A real VF change must exceed the expected
amount of noise of the test series and be replicable.”®
Numerous approaches have been implemented to
detect and measure VF deterioration. Subjective
judgment is still commonly used in the clinical setting,
although its interobserver reliability is unsatisfacto-
ry.”!” Several statistical models have been proposed
to aid the clinician in evaluating perimetric progres-
sion objectively, including guided progression analysis
(GPA),"" rates of change of global indices (i.e., mean
deviation [MD], visual field index [VFI], or pattern
standard deviation [PSD]),'” multivariable regression
analysis,'” algorithms designed for clinical trials (e.g.,
the Advanced Glaucoma Intervention Study [AGIS]?
and Collaborative Initial Glaucoma Treatment Study
[CIGTS]),” pointwise regression analysis (linear or
exponential),'*'” permutation of pointwise linear
regression (PoPLR),'® and the recently introduced
glaucoma rate index (GRI),'” Several studies have
provided a comparison among some of these meth-
ods, but there has been no consensus on which is the
single best approach.”-”'%!”

We compare here nine published algorithms to
detect VF progression, including expert evaluation,
GPA, MD and VFI rates, AGIS and CIGTS scores,
pointwise linear regression (PLR), PoPLR, and GRI
in a cohort of patients and in computer-simulated VF
sequences with predetermined rates and patterns of
progression.

Study Sample

A total of 4950 VF exams from 253 patients from
the Glaucoma Division of the Stein Eye Institute,
University of California, Los Angeles (UCLA) were
included in this retrospective, longitudinal, observa-
tional study. This study adhered to the tenets of the
Declaration of Helsinki, was approved by the UCLA
Human Research Protection Program, and con-
formed to the Health Insurance Portability and
Accountability Act (HIPAA) policies. Inclusion
criteria were as follows: diagnosis of primary open-
angle glaucoma with six or more VFs and minimum

follow-up of 3 years. All tests were performed with
Humphrey Field Analyzer’s (HFA) Swedish Interac-
tive Thresholding Algorithm (SITA) Standard 24-2
strategy and size III white stimulus. Reliable exams
were defined as those with false-positive rates 15% or
less, and false-negative and fixation loss rates 30% or
less.”” All VF series were assessed for progression with
the following methods: qualitative clinical evaluation,
GPA, MD rates of change, VFI rates of change the
AGIS scoring system, the CIGTS scoring system,
PLR, PoPLR, and GRI.

Simulation Algorithm

Based on models proposed by Spry et al.”' and
Gardiner and Crabb,”” we developed an algorithm in
the software environment R (R Foundation for
Statistical Computing, Vienna, Austria) to simulate
24-2 VF series. Key steps of the process were as
follows:

1. The user specifies the baseline threshold sensi-
tivities, length of follow-up, annual pointwise
rates of progression, and number of VF exam-
inations. Tests are equally spaced over the
follow-up period, and their frequency is derived
as the ratio between the number of VFs and
length of simulation;

2. Linear regression analysis is applied at every test
location. Independently from the determined rate
of progression, an additional decay of 0.1 dB/y is
added to simulate age-related decline®”; and

3. For each location, the noise-free value is
replaced by a Monte-Carlo value randomly
computed from a Gaussian distribution. The
mean of the distribution is equal to the estimated
noise-free threshold sensitivity. The standard
deviation (SD) is calculated with the function
proposed by Gardiner and Crabb”*:

In(SD) : —0.081 X sensitivity (dB) + 3.27
(1)
To account for higher variability in peripheral test

locations, an eccentricity-weighting factor is added to
the SD as described by Spry et al.”' Specifically,

Eccentricity weighting factor

) [\/(4.5 — i)+ \/(4.5 —j)z]

6.5 ’ @)

with 7 and j being the coordinates of a 10 X 10 grid.
According to this model, the variability is propor-
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Figure 1. Models generated by computer simulation. Focal or diffuse patterns of progression were applied to two actual baseline VFs
with preexisting glaucomatous damage (inferior nasal step and superior arcuate scotoma [not shown]) with different patterns and rates

of progressions.

tional to the diminution of threshold sensitivity and
the point eccentricity. Values generated below 0 dB or
above 36 dB are truncated at 0 or 36 dB, respectively.

The “VisualFields R” package was employed to
generate MD, VFI, the total deviation numeric map,
and the total deviation probability map for each
simulated examination.”*

Simulated Settings

A total of 267,840 VFs belonging to 13,392
simulated eyes were generated, with a ratio of 1:1
between progressing and nonprogressing sequences,
in accordance with previous simulation studies.”**
Simulation length was established at 9.5 years with a
biannual testing frequency for a total of 20 VFs.
Baseline age was set at 60 years. Two VF exams from
actual glaucoma patients, one with a focal inferior
nasal defect and another with a superior arcuate
scotoma, were chosen as the two baselines. We then
applied two different models of progression, as
illustrated in Figure 1:

1. Focal decay, wherein four (small scotoma), eight
(medium scotoma), or 16 (large scotoma)

locations significantly deteriorate. Simulated
defects of small dimensions were represented
by a nasal scotoma and a paracentral scotoma.
Medium-sized defects were represented by a
nasal step and an arcuate scotoma extending to
5° from fixation. Large defects consisted of two
broad, inferior and superior, arcuate scotomas.
Pattern of focal deterioration were selected by a
glaucoma specialist author from VFs of actual
glaucoma patients. Three different rates of
progression, —0.5, —1, and —2 dB/y, were applied
to deteriorating locations in addition to normal
age-related decay. The hemifield involved was
randomly assigned. Based on the baseline exams,
rates, and patterns of progression, 18 scenarios
were simulated and each of them was run 372
times, to match the number of eyes in the cohort
of patients. All eyes with deterioration of
simulated scotomata were considered progress-
ing.

. Diffuse decay, wherein every location undergoes

the same rate of progression. In one model, we
applied only age-related decay (0.1 dB/y).”* In
accordance with previously published results, we
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specified a rate of progression of 0.29 dB/y to
simulate an average rate of decline from
worsening cataract.”® These two groups of eyes
were considered nonprogressing. Based on the
two baseline examinations and rate of progres-
sion, four scenarios existed for this group, and
each was run 1674 times so that the number of
progressing and nonprogressing series was
equal. The differences between these iterations
represent the random noise provided by the
model.

Methods to Detect Perimetric Progression

Nine methods were employed to identify perimet-
ric progression as follows: (1) qualitative clinical
evaluation, (2) GPA based on Early Manifest
Glaucoma Trial (EMGT) criteria, (3) MD rates of
change, (4) VFI rates of change, (5) the AGIS scoring
system, (6) the CIGTS scoring system, (7) PLR, (8)
PoPLR, and (9) GRI.

All metrics were computed in a sequential fashion,
starting at the fifth VF of the series and adding the
next examination at every cycle. For the simulated VF
examinations, GPA and expert evaluation were not
applied. The former is proprietary software and
cannot be exactly replicated outside the STATPAC
2 environment (M. Patella, personal communication).
The latter is based on SITA printouts, which were not
available as output for the simulations. For actual
patient data, all modalities were available. Methods
to evaluate VFs are explained below, and Table 1
illustrates criteria for VF progression for each
method. To assess performance of the methods to
identify fast-progressing eyes, we defined eyes with
focal damage experiencing a pointwise decay of —2
dB/y as fast-progressors, whereas all other eyes were
marked as nonfast-progressors.

Expert Evaluation

The grading protocol was previously described and
is summarized here.”’” Three experienced clinicians
(ALC, JC, KNM) independently assessed 4950 VF
examinations from 372 eyes. The evaluation was
carried out on the 24-2 HVF single-examination
printouts, and graders were masked to all clinical
data, results of other scoring systems, and other
graders’ judgments. Each grader determined progres-
sion of each VF series with a semiquantitative scale,
with a score of 1 (definite progression), 2 (probable
progression), 3 (indeterminate), 4 (probably stable),
and 5 (definitely stable). For each eye, an average

Table 1. Criteria for Visual Field Progression
Method Criteria

Expert evaluation Average score <3

GPA Threshold deviation outside

test-rest variability
boundaries from the baseline
threshold deviation in >3
locations sustained in 3
consecutive VFs
Significant regression slope (P
< 0.05) of < —0.5 db/y
Significant regression slope (P
< 0.05) of < —1.8 %/y
Score increased of >4 points
compared to the baseline
test, and sustained in at least
3 consecutive examinations
A worsening of >3 points
compared with the average
of the first 2 tests, and
sustained in at least 3
consecutive examinations
Three test locations having a
significant regression slope
(P < 0.01) of < —1 dB/y
Original VF sequence over the
95th percentile compared
with the distribution of
randomly permutated series
Score < —6

MD rate of change

VFI rate of change

AGIS

CIGTS

PLR

PoPLR

GRI

score from 1 to 5 was calculated. “Progression” and
“no progression” were defined as an average score of
less than 3 and 3 or more, respectively. Experts also
indicated the time when they first judged the VF as
progressing, and the average time to progression was
determined.

Guided Progression Analysis

GPA is proprietary software of the HFA (Carl
Zeiss Meditec, Inc., Dublin, CA). GPA is based on
similar principles as its earlier version, the Glaucoma
Change Probability Analysis.”® Briefly, the pattern
deviation values on each follow-up VF are compared
point-by-point with those of the two baseline exams
chosen by the user. If the difference for a given
location is significantly higher than test-retest vari-
ability at a P < 0.05, it is marked with an open
triangle. If the worsening of that point is confirmed
on two or three consecutive examinations, it is flagged
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as a half-filled or filled triangle, respectively. VF
progression was defined as the deterioration of three
or more locations sustained on three or more
consecutive examinations, in accordance with the
criteria adopted by the EMGT.’

Mean Deviation and VFI Rates of Change

Rates of change for MD and VFI were calculated
with linear regression, and progression was defined as
a significant (P < 0.05) rate of change of —0.5 dB/y or
less and —1.8%/y or less, respectively. The value of
1.8% for VFI was chosen because it corresponds
approximately to the 0.5 dB/y value used for MD.*

The Advanced Glaucoma Interventional Study (AGIS)
Scoring System

The AGIS scoring system has been previously
described.” VF grading is based on number, depth,
and spatial distribution of depressed locations with a
final score that ranges from 0 (normal) to 20 (end-
stage disease). Progression was defined as a score that
increased by four or more points compared with the
baseline test, sustained in at least three consecutive
VF examinations.

The Collaborative Initial Glaucoma Treatment Study
(CIGTS) Scoring System

This system takes into account each significantly
depressed location and the two most significant
neighboring points on the total deviation probability
map.5 Like the AGIS, the CIGTS score ranges from 0
(normal) to 20 (end-stage disease). A worsening of
three or more points compared with the average of the
first two tests and sustained for three consecutive
examinations was defined as progression.

Pointwise Linear Regression

Ordinary least squares of the raw threshold
sensitivities over time was performed for each of the
52 VF pointwise series. The slope of the regression
line, expressed in decibels per year, was defined as the
pointwise linear rate of change. The presence of three
pointwise series having a significant regression slope
(P < 0.01) of —1 dB/y or less was defined as
progression.

Permutation Analyses of Pointwise Linear Regression

The PoPLR algorithm has been published by
O’Leary and colleagues.'® For each patient’s VF
sequence, PLR was performed on the total deviation
data. Data belonging to every location were combined
to generate a global score, called S,., with a
truncated product method, which is a generalization
of the Fisher method and allows to combine P values

derived from each pointwise series.”’ The patient’s
original VF sequence was then randomly reordered
up to 5000 times, and a global score, called S,, was
obtained from each permutated series. Finally, S,p
was compared with the S, distribution, and the
statistical significance was derived from the ranking
of Syps within the S, distribution. A P value of less
than 0.05 was labeled as progression.

Glaucoma Rate Index

The GRI algorithm has been extensively described
elsewhere.'” Briefly, each pointwise sequence was
classified as decaying or improving depending on its a
priori linear trend. Based on this categorization,
pointwise exponential regression (PER) was comput-
ed for each series. For locations with a negative trend,
the following formula was applied: y = ¢“*®, where y
is the threshold sensitivity (dB), a is the constant, b is
the slope (regression coefficient), and x is the time
(years). For locations with a positive trend, the
following formula was used: Y—y = ™% where Y
is the normal age-matched threshold sensitivity +
2SD, y is the threshold sensitivity (dB), a is the
constant, b is the slope, x is the time (years). Outliers
were removed with the sequential application of
Cook’s distance and the Studentized residual tests.
After carrying out PER, two values were obtained,
pointwise rate of change (PRC) and the 90%
confidence interval (CI) of the slopes. The former
indicates the rate of change of each pointwise
sequence, expressed as the percentage of the entire
perimetric range corrected for age and location. A
GRI score is generated by summing the PRC values
from locations with significant negative (decaying)
and positive (improving) rates across the VF series in
an individual eye. The summed value is then
normalized from a maximum rate of decay (—100)
to a maximum rate of improvement (+100). A GRI
value of less than —6 was defined as progression.'’

Statistical Analysis

The proportion of series determined as progressing
was defined as the percentage of progressing eyes
defined by each algorithm. Eyes meeting progression
criteria according to a given method at any follow-up
visit were defined as progressing. Because there is no
gold standard to define perimetric progression in a
cohort of glaucomatous patients, the proportion of
series detected as progressing is used as a surrogate
measure of sensitivity. Summary results were ex-
pressed as a mean = SD, unless specified otherwise.
As an alternative to a very complicated Venn
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diagram, the UpSet technique was used to graphically
demonstrate progression detected by each method
alone and their intersections.”’ Time to the first
detection of progression was assessed with Kaplan-
Meier curves, differences across methods were com-
pared with Cox’s regression shared frailty model in R
software, and multiple comparisons were adjusted
with the Benjamini-Hochberg test.*?

Evaluation of Agreement Among Methods

Pairwise agreements among the methods were
measured with Cohen’s kappa statistic. Values of k
between 0.00 and 0.20 indicate slight agreement, fair
agreement between 0.21 and 0.40, moderate agree-
ment between 0.41 and 0.60, substantial agreement
between 0.61 and 0.80, and almost perfect agreement
0.81 or more.™

Evaluation of Internal Consistency

Internal consistency was evaluated by counting the
number of flips from one state to the other (i.e.,
progressing and not progressing) for each method, as
the VF series proceeded over time. For each method,
the flips analysis was carried out only on those eyes
progressing according to that method, and “stable”
eyes were excluded to prevent the influence of the
detection rate of each technique on the consistency
estimate. The number of flips for the various methods
was compared with the Friedman test, and pairwise
comparisons were performed with Dunn’s multiple
comparisons as a post hoc test.”*”

Prediction Ability

We calculated the agreement with Cohen’s kappa
statistic between status at the last visit with the entire
and the half-time VF sequences for each technique as
a measure of prediction ability. Because data on
progression were available starting at visit five, those
eyes with nine VFs or less (n = 32) were excluded from
this particular analysis.

Simulation Data

Receiver operator characteristic (ROC) curves
were generated for the trend-based methods with the
known simulated model as the reference. ROC curves
were calculated with the continuous values of the
trend-based methods at the last visit of the simulated
series. Two different ROCs curves were made. Both
curves had simulated focal decay as the progressing
reference eyes. One ROC curve defined nonprogress-
ing as the age-related decay group only, while the
second ROC curve defined nonprogressing as the
cataract decay group in addition to the age-related

decay group. Partial areas under the curves
(AUROC:s) were calculated to determine the average
sensitivity between 90% and 100% specificity. The
sensitivity and 1-specificity values for AGIS, CIGTS,
and PLR at the last visit were calculated and plotted
as points on the plot.

The sensitivity and specificity in simulated series
with the progression criteria used in the clinical
cohort of patients were also calculated for trend-
based methods. Computer-simulated series, which
met the clinical criteria for progression at any
simulated time point, were labeled as progressing,
while the remaining ones were considered stable.

For comparison of detection of fast progressing
eyes, ROC curves were generated with simulated eyes
having a focal decay of —2 dB/y as the progressing
group and all the other simulated sequences as
nonprogressing. Partial AUROCs were calculated to
determine the average sensitivity between 90% and
100% specificities. The sensitivity and 1-specificity
values of AGIS, CIGTS, and PLR at the last visit
were calculated and plotted as points on the plot.

The partial AUROCsSs values were reported in the
uncorrected form. Partial AUROCs were compared
in pairs with a stratified bootstrap test,’® and multiple
comparisons were adjusted with the Benjamini-
Hochberg test.*

All statistical analyses were performed with R
software and GraphPad Prism software 6.0 (Graph-
Pad Software, Inc., San Diego, CA). The R package
“pROC” was used to build the ROC curves on the
simulated data and to compare partial AUROCs."®

Patient Cohort

Table 2 reports demographic and clinical baseline
data for the participants. The average (£SD) age of
the patients at baseline was 65.4 (£11.5) years, and
the average (£SD) follow-up time was 11.8 (£4.6)
years. The mean (*SD) number of VFs was 16.8
(=7.0), and the mean (=SD) frequency of testing was
1.5 (%£0.3) VFs/y. As shown in Figure 2 and Table 3,
PoPLR and GRI showed the highest proportion of
series detected as progressing, followed by GPA,
PLR, CIGTS, and expert evaluation, which had
moderate proportion of series detected as progressing.
MD rate, AGIS, and VFI rate had considerably lower
proportions of series detected as progressing.

Figure 3 presents the detection of progression
according to each method and their mutual intersec-
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Table 2. Demographic and Baseline Clinical Data of
the Study Participants

Variable Patients
N of patients/eyes 253/372
Eye, right/left 186/186
Baseline age, years, mean = SD 654 = 115
Initial MD, dB, mean = SD —54 £ 54
Final MD, dB, mean = SD -79 70
N VFs, median (IQR) 15 (11-21)

11.0 (7.5-15.9)

IQR, interquartile range; MD, mean deviation; SD,
standard deviation; VF, visual field.

Follow-up, y, median (IQR)

tions in the patient cohort. Notably, eyes progressing
according to all the methods represented the most
numerous group (31 eyes). In 75 eyes, none of the
methods detected progression.

The cumulative proportion of progressing eyes
according to each technique is illustrated in Figure 4.
In the patient cohort, the median time to detection of
progression was similar for PoPLR (7.3 years) and
GRI (7.5 years), and was considerably longer for the
other methods: 11 years for clinical experts, 14 years
for GPA, 16 years for PLR, 17 years for CIGTS, and
19 years for AGIS. MD rate and VFI rate median
times were more than 20 years. Because less than 50%
of patients showed progression with MD rate and
VFI rate in the study timeframe, the median time
could not be calculated. Time to progression was
significantly shorter for PoOPLR and GRI than for
every other method (P < 0.001), whereas the
difference between these two methods was not
significant (P = 0.97). VFI rate and AGIS scores
required significantly longer times to detect progres-
sion compared with all other methods (P < 0.01), and
did not significantly differ from each other (P =0.12).
In addition, PLR detected progression significantly
faster than MD rate (P =0.04) and CIGTS (p =0.04).
None of the other pairwise comparisons were
statistically significant.

100

<]
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(=]
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g&‘
= o
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»
o g 40
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Figure 2. Proportion of series detected as progressing of each
method calculated from actual patient data.

Pairwise agreement between methods for the
patient cohort is given in Table 4. MD and VFI rates
were the only methods displaying substantial pairwise
agreement. GRI exhibited moderate agreement with
PoPLR (k = 0.575), PLR (k = 0.558), CIGTS (k =
0.424), and MD rate (k = 0.460), while exhibiting a
fair agreement with other methods.

The prediction ability of each method, defined as
the agreement between results based on the half-time
follow-up versus the entire follow-up, is shown in
Table 5. Trend-based methods based on global indices
(VFI rate and MD rate) showed the highest, albeit
moderate, agreement; all other methods exhibited fair
agreement.

Internal consistency (Fig. 5), as evaluated by the
number of flips over the course of follow-up between
progressing and nonprogressing status, was similar
among the methods (P =0.17).

Computer-Simulated VF Sequences

All trend-based methods exhibited high diagnostic
precision to discriminate between eyes with focal
glaucomatous VF loss and with age-related decay
(Fig. 6). GRI showed the best partial AUROC
(0.07006), followed by MD rate (0.0656), PoPLR

Table 3. Measures of Diagnostic Properties of the Different Methods
Experts GPA MD Rate  VFI Rate AGIS CIGTS PLR PoPLR GRI
Patients
Progressing 131 151 114 83 109 135 148 242 217
Nonprogressing 241 221 258 289 263 237 224 130 155
Detection rate % 353 40.6 30.7 223 293 36.3 39.8 65.1 58.3

(95%Cl)

(30.3-40.1) (35.6-45.6) (25.9-35.4) (18.1-26.6) (24.7-34.0) (31.4-41.2) (34.8-44.8) (60.2-69.9) (53.3-63.4)

Eyes meeting progression criteria according to a given method at any follow-up visit were defined as progressing.
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UpSet plots of eyes judged as progressing according to each method in the patient cohort. The horizontal histogram (bottom
left) illustrates the total number of progressing eyes for each method. The matrix (bottom) shows selected methods as black dots. When
an intersection between two or more methods is displayed, those methods are marked as black dots and connected by a solid, black line.
The vertical histogram represents the number of eyes experiencing progression according to a single method, or the intersections
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Table 4. « Values of the Different Methods to Identify Visual Field Progression in the Cohort of Patients®

GPA | MD Rate | VFIRate | AGIS | CIGTS | PLR | PoPLR | GRI
Experts 0.340 0.356 | 0.399 | 0.255 | 0.313
GPA 0.322 0.280 0.364 | 0.364
MD Rate 0.355
VFI Rate 0.303 0.203 | 0.301
AGIS 0.316 | 0.356
CIGTS
PLR
PoPLR

@ Darker shades indicate higher k values.

Table 5. Concordance Between Progression Detected at the Last Visit With the Entire and First Half of the
Visual Field Sequences in the Cohort of Patients

Experts GPA MD Rate  VFI Rate AGIS CIGTS PLR PoPLR GRI
Entire sequence, n (%)
Progressing 126 (37.1) 107 (31.5) 55(16.2) 50(14.7) 84(247) 92(27.1) 98(28.8) 189(55.6) 111(32.7)
Nonprogressing 214 (62.9) 233 (68.5) 285 (83.8) 290 (85.3) 256 (75.3) 248(72.9) 242 (71.2) 151 (44.4) 229 (67.7)
Half sequence, n (%)

Progressing n/a 41(121) 45(132) 32(94) 32(94) 36(106) 39(11.5) 103(30.3) 79(23.2)
Nonprogressing n/a 299 (87.9) 295 (86.8) 308 (90.6) 308 (90.6) 304 (89.4) 301 (885) 237(69.7) 261 (76.8)
Cohen’s n/a 033 0.46 0.50 0.38 0.34 0.36 0.35 0.35

n/a, not applicable. Thirty-two eyes were excluded from this analysis because VF series was shorter than 9 VFs.
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2.5+

No. of flips

Figure 5. Internal consistency evaluated with number of flips (i.e.,
changes from progressing to stable and vice versa during the
follow-up period) for each method in the patient cohort.
Differences among the various methods were nonsignificant (P =
0.17). Bars and error bars indicate the means and standard
deviations, respectively.

(0.0641), and VFI rate (0.0579). Each curve differed
significantly from all the others (P < 0.0001), except
for the pairwise comparison between MD rate and
PoPLR (P = 0.09). The introduction of eyes with
simulated cataract (Fig. 6) considerably hampered the
discriminatory abilities of all the trend-based meth-
ods, with GRI having the highest partial AUROC
(0.0399), followed by VFI rate (0.0279), MD rate
(0.0235), and lowest by PoPLR (0.0062).

Table 6 illustrates sensitivity and specificity for the
various methods with the progression criteria applied
in the cohort of patients. With these criteria, the
sensitivity values in simulated data resembled the
proportion of series detected as progressing in the
cohort of patients, with POPLR having the highest
value, followed by GRI, PLR, CIGTS score, VFI
rate, MD rate, and, far beyond, AGIS score. In terms
of specificity evaluated on simulated series, AGIS,
VFI rate, MD rate, PLR exhibited high values even in
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Figure 6. ROC curves relative to the known simulated model for detection of glaucomatous perimetric progression excluding (A) and
including (B) eyes with simulated cataract, and for the discrimination of fast progressors excluding (C) and including (D) eyes with
simulated cataract. Vertical dotted line indicates a value of 1-specificity of 0.1. Sensitivity/(1-Specificity) values of AGIS, CIGTS, and PLR at

the last simulated examination are shown as points on the plot.
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Table 6. Measures of Diagnostic Properties of the Different Methods for the Computer Simulated VF Series
With the Same Progression Cutoff Used in the Cohort of Patients

Experts GPA MD Rate  VFI Rate AGIS CIGTS PLR PoPLR GRI
Without “cataract”
Sensitivity % (95%Cl) n/a n/a 25 (24-26) 27 (26-28) 18 (17-19) 29 (28-30) 54 (52-55) 92 (91-93) 76 (75-77)
Specificity % (95%Cl)  n/a n/a 96 (95-97) 94 (93-95) 100 (100-100) 97 (96-97) 96 (95-97) 47 (45-49) 58 (56-60)
With “cataract”
Sensitivity % (95%Cl) n/a  n/a 25(24-26) 27 (26-28) 18 (17-19) 29 (28-30) 54 (52-55) 92 (91-93) 76 (75-77)
Specificity % (95%Cl) n/a  n/a 90(90-91) 90 (89-90) 99(99-99) 66 (65-67) 88 (87-89) 23 (22-24) 45 (44-46)

Simulating series meeting progression criteria according to a given method at any point were defined as progressing.

the presence of simulated cataract (>88%). The
inclusion of cataract-related decline in the pool of
simulated eyes caused a marked specificity drop for
the CIGTS score (97% to 66%). PoPLR also had a
considerably lower specificity compared with all other
methods and performed much worse in the presence
of simulated cataract decay. GRI had intermediate
specificity values, and was much less affected by
cataract simulated decay than PoPLR.

The ROC curves to distinguish fast-progressing
from nonfast-progressing eyes showed a similar
pattern both without and with the cataract group
(Fig. 6). Specifically, GRI had the best performance,
followed by VFI rate, MD rate, and, lowest by
PoPLR. Interestingly, the introduction of the cataract
group marginally affected the partial AUROC:S of all
the methods, except for POPLR, which declined more
significantly from 0.012 to 0.008. Each curve differed
significantly from all the others (P < 0.05).

Discussion

We compared nine published methods to detect
glaucomatous perimetric progression: qualitative clin-
ical evaluation, GPA, MD rate, VFI rate, AGIS and
CIGTS scoring systems, PLR, PoPLR, and a recently
introduced index, GRI. We evaluated the proportion
of series detected as progressing, time to progression
detection, pairwise agreement of methods, prediction
ability, and internal consistency in a cohort of
primary open-angle glaucoma patients. Moreover,
computer-simulated VFs with predetermined rates
and patterns of progression were used as an external
reference to test diagnostic performance and to
estimate sensitivities and specificities of the tested
methods. Agreement among the methods ranged from
fair to moderate, except for the MD versus VFI rates,
which expectedly displayed substantial concordance.
GRI and PoPLR had the highest proportion of series

detected as progressing and were the algorithms that
detected perimetric progression the earliest. AGIS
score, MD rate, and VFI rate had the lowest
proportion of series detected as progressing. All
methods showed good and similar internal consisten-
cy. We investigated the performance of the various
trend-based approaches (i.e., GRI, PoPLR, MD, and
VFI rates) to detect perimetric progression. All these
methods discriminated “glaucomatous” focal decay
from the age-related decline well, and the differences
across the partial AUROCs were small. When we
added a cataract-simulated decline in the nonpro-
gressing reference group, the diagnostic properties of
all the methods considerably diminished, with MD
rate and, especially PoPLR, most severely affected.
We also explored the performance of various ap-
proaches for identifying fast progressors in computer-
simulated VFs. GRI had the best partial AUROC,
followed by VFI rate, MD rate, and PoPLR.
Inclusion of the cataract group in this setting had a
negative impact only on PoPLR.

In short, GRI and PoPLR had the highest
proportion of series detected as progressing, and
detected glaucomatous progression the earliest in the
cohort of patients, but the latter performed poorly in
the computer simulations, especially with the intro-
duction of simulated cataract decay. AGIS, MD rate,
and VFI rate showed the lowest proportion of series
detected as progressing and were the slowest to detect
progression.

Although numerous approaches to detection of
glaucoma deterioration have been proposed, timely
determination of perimetric progression remains a
challenging task for practitioners. None of the
available techniques can be considered a gold
standard. Subjective evaluation of VF series by the
clinician is the most widely employed method,
especially in the clinical setting, because it is fast,
inexpensive, and independent of a digital environ-
ment.” However, its intrinsic subjectivity and lack of
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standardization are drawbacks. Several studies re-
vealed a disappointing level of agreement among
experienced observers, despite good intraobserver
reproducibility.'”*’ Also, subjective evaluation is
likely driven by the fast component of VF decay.”’

Event-based analyses identify single events of
statistically significant change relative to baseline
tests. The proprietary GPA of the HFA is a
commonly used event-based analysis and was used
by EMGT for detection of glaucomatous progression.
It is able to identify worsening test locations with as
few as three tests after the two baseline exams. Its
ability to detect progression depends on the magni-
tude of pointwise test—retest variability, which is
known to be high at damaged test locations. GPA
does not provide a robust estimate of pointwise VF
rates of decay.™®

The AGIS and CIGTS scoring methods are two
event-based analyses, which have been employed in
large, randomized, controlled trials.>> Heijl and
colleagues™ compared the properties of EMGT,
AGIS, and CIGTS scoring systems with expert
evaluation as a reference method. They found that
EMGT criteria were more sensitive and identified
progression faster than AGIS and CIGTS, albeit less
specifically. AGIS and CIGTS criteria had similar
diagnostic properties when compared with each other.
Vesti et al.'® came to the same conclusions with
computer-simulated VFs as a reference. Nouri-Mah-
davi et al."” compared the performance of an earlier
version of GPA, called Glaucoma Change Probability
Analysis (GCPA), the AGIS score, and PLR to
predict VF progression, and found that GCPA
detected true clinical progression slightly more often
than the other two methods, with false-positive
prediction rates between 1% and 3%.

Our results, both in the patient cohort and in the
computer-simulated data, corroborate these previous
findings. In our study, AGIS had one of the lowest
proportion of series detected as progressing and
required a long time to detect progression; conversely,
it displayed high specificity and internal consistency.
These results are not surprising, because the AGIS
method applies stringent criteria, and a considerable,
sustained amount of change is required to trigger
progression. Mayama et al.*’ found that an increase
of AGIS score of four or more points maintained in
two rather than three consecutive tests raised the
sensitivity to approximately 50% with negligible
change in the specificity. Among the three event-
based algorithms in this study, GPA had the highest
proportion of series detected as progressing with

similar prediction ability and consistency. Because
GPA runs on proprietary software, it is not available
in the simulated environment, and we were not able to
estimate its specificity in relation to the other
methods. Previous studies reported an overall high
specificity for GPA, although patients with higher
test-retest variability and unreliable examinations can
experience higher percentages of false-positive
alerts.*'"*> The performance of CIGTS was interme-
diate between AGIS and GPA. The specificity of the
CIGTS score was severely affected by the introduc-
tion of the cataract-related decay in the computer
simulation. This finding is not surprising; indeed, the
CIGTS score is based on the total deviation
probability map, which is highly influenced by media
opacity.” Both AGIS and CIGTS scoring systems
were developed for patients with more advanced
glaucoma than the ones included in our study, and
this may explain their low detection rates in this
setting.

Trend-based linear regression models are widely
accepted as valuable tools for serial VF analysis
because they are simple to calculate, can provide a
global rate of change, and have a reasonably good
ability to predict future outcomes.’® MD and VFI are
well-known global VF indices and their linear rates
are easily measured; VFI rates of change are provided
by HFA’s GPA software.*® However, MD is relative-
ly insensitive to progressive glaucomatous VF loss
and has poor specificity in clinical environments.***’
The MD rate of change quantifies overall VF loss, so
localized but potentially clinically important changes
may be missed entirely or confounded by generalized
media effects, such as worsening cataract or cataract
surgery, which are common events in glaucoma
patients.44 Another global index, VFI, fares no better,
and becomes unreliable in advanced stages of
glaucoma.*® Gardiner et al.*> reported that as the
duration of follow-up and number of VFs increase, it
becomes difficult to rely solely on linear models. This
is because progression often occurs in nonlinear
patterns, especially as the disease severity and its
treatment change. Although VFI provides predictive
capability with extrapolation, it assumes a linear rate
of worsening, and is affected by the same drawbacks
as MD.*® Global indices have the potential to provide
an estimate of VF decay at the expense of loss of
spatial information that may be important to clinical
decision-making. In the current study, both MD and
VFI rates were characterized by low proportion of
series detected as progressing and were the slowest to
detect progression, although they had better predic-
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tion ability than any other method. VFI rate exhibited
even lower proportion of series detected as progress-
ing in the cohort of patients, and it performed worse
than MD rate in the simulated environment. Gardiner
and Demirel'” compared the performances of three
global indices (i.e., MD, VFI, PSD), and found
similar results to ours, with MD rate detecting
progression sooner and more frequently than the
VFI rate. When we included the cataract group in our
computer simulations, however, an opposite scenario
occurred with VFI rate performing considerably
better than MD rate. This finding is not unexpected
because VFI would be expected to be less influenced
by cataract and cataract surgery."’

Among the trend-based methods, those perform-
ing a regression of individual pointwise series over
time have potential advantages over those based on
global indices. By treating each test location individ-
ually, they allow the identification of small focal
glaucomatous changes, which may be otherwise
missed; as a consequence, pointwise methods have
higher sensitivity (but lower specificity) than MD or
VFI rates of change.” Another positive aspect of
pointwise trend-based methods is the preservation of
the spatial information, which provide insight in the
patterns, in addition to the rates, of progression.’
PLR is undoubtedly the most commonly used
pointwise trend-based method and the first to be
commercially available in the Progressor software
(OBF Labs UK Ltd, Wiltshire, UK). In our study,
PLR had a performance similar to GPA in the cohort
of patients, and exhibited intermediate sensitivity, but
high specificity, in the simulated series. POPLR is an
evolution of PLR that may outperform simple PLR.'°
PoPLR is independent of data format, and allows for
comparison of different instruments, follow-up pro-
tocols, and test strategies.”*’ Our results indicate
that POPLR has a high proportion of series detected
as progressing and detects progression early. In the
computer simulations, PoPLR was the poorest
performing trend-based method, especially when
simulated cataract was included in the analysis. These
drawbacks are likely related to the assumptions made
by the algorithm. POPLR is generated by comparing a
series of VFs of a patient with a maximum of 5000
randomly permutated sequences, assuming that a
nonprogressing eye should not differ from the null
distribution. However, healthy eyes experience phys-
iological age-related decline and decay from cataract
development, and this could be detected as significant
progression when compared with the randomly
permutated sequences by the algorithm. In an attempt

to limit such phenomenon, PoPLR is calculated from
the total deviation values, which indicate the differ-
ence between the patient’s VF and a normal reference
VF based on the patient’s age. Age-corrected normal
thresholds, however, have high interindividual varia-
tion, especially in the midperipheral and peripheral
locations and follow a non-Gaussian distribution.”
O’Leary et al.'® reported that PoPLR had a low
percentage of false-positives, but these results were
obtained with randomly permutated sequences as true
nonprogressing sequences, not taking into account
the aforementioned factors. In a prospective study by
Redmond and colleagues,”® PoPLR labeled as falsely
progressing almost one-third of healthy subjects
followed over a mean time of 5 years; when PoOPLR
was calculated from the pattern deviation values
(rather than the total deviation ones), the false-
positive rate was null, reinforcing the idea that this
method is severely impaired by the diffuse, para-
physiological VF decay caused by aging and cataract
development. Although calculating PoOPLR on the
pattern deviation values may seem a potential
solution to increase its specificity, it is well known
that pattern deviation values tend to underestimate
VF progression, and may be misleading in the case of
very early glaucoma because of a ceiling effect, as well
as in severe glaucoma where it can underestimate
diffuse generalized damage.”*'

We recently described a novel trend-based model
to assess glaucoma progression, called GRI.'” In
contrast with PLR and its derivatives, GRI is based
on a pointwise exponential regression, in accordance
with previous findings that the exponential model fits
perimetric measurements and predicts future changes
better than linear models.'*" GRI has potential
advantages, including discriminating ability for fast-
progressors, assessment of improvement, and an
intuitively interpretable display. In our cohort of
patients, GRI had high proportion of series detected
as progressing and detected progression faster than
other methods and as frequently as PoOPLR. On the
computer simulation, GRI had the highest partial
AUROC both for detection of perimetric progression
and discrimination of fast progression compared with
the other trend-based methods.

Because GRI and PoPLR exhibited high rates of
progression detection, the cutoffs used in this study
correspond to points of the ROC curve with high
sensitivity and low specificity as shown in Table 6. It
should be noted that considerations regarding spec-
ificity differ in the population setting versus the
clinical setting. The former considers a large group of
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individuals, and the latter a single patient. In the
clinical setting of an individual patient, an astute
examiner will bring to bear all the data collected by a
complete historic and physical examination to in-
crease the specificity of the determination. On the
other hand, more restrictive cutoffs could be em-
ployed in those scenarios that require higher degrees
of specificity, such as in the case of interventional
clinical studies.

Chauhan et al.”' defined fast progression and
catastrophic progression as a MD worsening rate
between 1 and 2 dB/y and more than 2 dBy,
respectively, and they found these conditions in
4.3% and 1.5% in patients under clinical care,
respectively. In their study, they identified fast-
progressors with MD rate rather than VFI rate,
because ceiling effects may potentially hamper the
latter’s loss of sensitivity because it relies on pattern
deviation, and there is discontinuity in case of severe
VF damage.””" In our study, VFI rate performed
better than MD rate to identify fast-progressors.
Neither approach, however, retains spatial informa-
tion and may be quite insensitive to fast, but focal,
deterioration.” In the current study, GRI displayed
the best capability to identify fast progressing eyes.
PoPLR, which also retains spatial discrimination,
performed considerably worse in this regard.

Several studies revealed a fair to moderate level of
agreement among methods, including some of those
employed in the present study.'”>*>* Our data are
consistent with the previous findings. Only 8% of the
eyes were judged unanimously as progressing, where-
as 20% were deemed as stable by all the methods. In a
recent study, Saeedi and colleagues®” evaluated the
agreement among six methods (PLR, PoPLR, MD,
and VFI rates, CIGTS, and AGIS scoring systems) to
detect glaucomatous VF progression on a large
cohort of patients, and found that eyes labeled as
progressing and stable by all the methods were 2.5%
and 41.5% of all series, respectively. These results are
largely different from ours, and may be explained by
various factors, such the shorter follow-up length and
more stringent progression criteria for some of the
trend-based methods used by Saeedi et al.”> Further-
more, the authors have chosen questionable cutoffs
for some of the trend-based methods.’® For MD rate,
Saeedi and colleagues” used a cutoff of —1 dB/y, so
that eyes having a rate of progression faster or slower
than this threshold value were categorized as pro-
gressing or stable, respectively. However, this is quite
a high cutoff value, previously used to distinguish
between fast progressing and slower progressing eyes,

rather than between progressing and stable eyes.”’
Because MD and VFI are highly correlated, a
corresponding cutoff for VFI rate would have been
—5.4%/y, which is considerably higher than the one
used by Saeedi and colleagues (—1%/y).” It is evident
that progression detection strongly depends on the
method employed (and cutoff used for each individual
method). In our study, MD rate and VFI rate were
then only pair to show substantial agreement; this
finding is not surprising because the two indices are
highly correlated, and we chose equivalent decay rates
to define progression.”” GRI and PoPLR, the two
most sensitive methods in the current study, revealed
one of the highest agreement, as exemplified by their
conspicuous intersection in the UpSet graph (Fig. 3).
On the other hand, the two most specific methods
(AGIS and VFI rate) did not exhibit such agreement.
Once again, this is not unexpected because several
studies have shown discrepancies between event- and
trend-based analyses, suggesting that they identify
distinct aspects of perimetric change.''”” Medeiros
and colleagues'' proposed a Bayesian hierarchical
model to combine event- and trend-based approaches,
and they reported that the combined approach
outperformed each method used alone. The combi-
nation of more than one method may represent a
viable option to integrate complementary information
from individual algorithms, possibly mitigating their
drawbacks.

The present study has limitations. Its retrospective
nature dictated that not all eyes had VFs performed at
the same frequency, and this can affect the time to
detect progression.”® Many methods to detect glau-
coma progression have been published, and the
relationship between untested methods remains un-
determined. Nevertheless, we evaluated a consider-
able number of methods with different strategies (i.e.,
subjective evaluation, event-based analysis, trend-
based analyses), established methods (i.e., AGIS,
CIGTS, GPA, MD rate, VFI rate, PLR), as well as
novel and promising ones (i.e., POPLR, GRI). In the
simulations, some indices (i.e., MD, VFI, AGIS,
CIGTYS) were based on calculations carried out with
the normative database of the ‘VisualFields’ package,
and they might differ slightly from the values
generated by HVF’s software.”* Computer simulation
is a strategy to obtain an external gold standard, but
may oversimplify real and more complex disease
progression. Additionally, only a few of all the myriad
of possible baseline examinations, patterns, and rates
of progression are included in these simulations. GPA
and expert evaluation were tested only in the cohort
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of patients, and were not available in the simulated
environment.

In conclusion, we provide a comprehensive com-
parison of different approaches to assess perimetric
glaucoma progression. PoPLR and GRI had the
highest proportion of series detected as progressing,
and detected glaucomatous progression the earliest;
AGIS, MD rate, and VFI rate exhibited the lowest
proportion of series detected as progressing and were
the slowest to detect progression. Of all the methods
tested, GRI had the best ability to detect glaucoma-
tous progression and fast-progression in the simulated
VF sequences. Knowledge of the properties, advan-
tages, and limitations of every method would allow
tailoring application in both clinical and research
settings.
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