
Research Article
Cost-Sensitive Radial Basis Function Neural Network
Classifier for Software Defect Prediction

P. Kumudha1 and R. Venkatesan2

1Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu 641 014, India
2Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, Tamil Nadu 641 004, India

Correspondence should be addressed to P. Kumudha; kumudha.cit.cse@gmail.com

Received 18 October 2015; Accepted 10 November 2015

Academic Editor: Juan Manuel Gorriz Saez

Copyright © 2016 P. Kumudha and R. Venkatesan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient
allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically
includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software
development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects
to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software
product to the customers. In order to improve the software testing process, fault predictionmethods identify the software parts that
are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural
network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO)model.The developed ADBBO
based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results
prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison
with that of the early predictors available in the literature for the same datasets.

1. Introduction

Software fault prediction is always a complex area of research,
and software practitioners and researchers have carried out
numerousmethods to predict where the fault is likely to occur
in the software module and their varying degrees of success.
These prediction studies result in fault prediction models,
which allows software personnel to concentrate on the defect-
free software code, thereby resulting in software quality
improvement and employing better utility of the resources.
The international standard for evaluating the software quality
is ISO/IEC 9126. Based on this ISO/IEC 9126 standard, the
characteristics of software quality are with respect to internal
and external metrics. The key characteristics include effi-
ciency, usability, reliability, maintainability, functionality, and
portability. Internal metrics focus only on the product itself
without considering its behavior, whereas external metrics
focus on the behavior of the product. When software quality
comes into picture, then software defect prediction (SDP)

plays a major role. Software is described to be of high quality
when it is defect-free.This researchworkmainly concentrates
on the internalmetrics of the systemwhich include the source
code of software systems and not their functions or behavior
of the system [1].

It is to be noted that, for the past two decades, several
researchers focused on developing fault-prone software as
well as identifying methodologies to detect the software
affected by various types of defects [2–4]. The prediction
models developed by the researchers perform automatically
for software defect prediction before carrying out the manual
evaluation process. The developed predicted models should
be more effective than the nonpredicted models. Figure 1
shows the fundamental block diagram of the basic software
defect prediction model.

In this research, cost-sensitive neural network model is
developed for carrying out the prediction operation. Gen-
erally, in numerous cases, the misclassification cost of the
majority class is noted to be the least in comparison with
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Figure 1: Basic software defect prediction model.

that of the minority class. In cases, if a defective model is
identified as a nondefective model, then this will lead to
higher fixing costs because that software will be employed
into the field for utilization [5]. Also, if a nondefective model
is identified as a defective model, this will result in unwanted
testing carried out on the software, leading to time cost and an
increase in testing cost. But this case is quite more acceptable
than the previous case, leading to identification of defective
model to be nondefective. Hence, this research focuses on
developing cost-sensitive neural classifiers considering the
two above said cases minimizing the total misclassification
costs. The contribution made in this paper includes the
development of radial basis function neural network tuned
by the proposed adaptive dimension biogeography based
optimization and introducing the cost-sensitive measures
into the proposed classifier by evolving an objective function.
The applicability of radial basis function neural network for
various applications is discussed in the following paragraph.

Yang [6] developed radial basis function neural network
for discriminant analysis. This work focused on the exploita-
tion of the weight structure of radial basis function neural
networks using the Bayesian method. It is expected that the
performance of a radial basis function neural network with
a well-explored weight structure can be improved. Ghosh-
Dastidar et al. [7] developed a novel principal component
analysis- (PCA-) enhanced cosine radial basis function neu-
ral network classifier. In the first stage, PCA is employed
for feature enhancement. The rearrangement of the input
space along the principal components of the data improves
the classification accuracy of the cosine radial basis function
neural network (RBFNN) employed in the second stage
significantly.The classification accuracy and robustness of the
classifier are validated by extensive parametric and sensitivity
analysis.

Lian [8] developed a self-organizing fuzzy radial basis
function neural network controller (SFRBNC) to control
robotic systems. The SFRBNC uses a radial basis function
neural network (RBFN) to regulate the parameters of a self-
organizing fuzzy controller (SOFC) to appropriate values
in real time. Rubio-Solis and Panoutsos [9] developed an

interval type 2 radial basis function neural network (IT2-
RBF-NN) incorporating interval type 2 fuzzy sets within the
radial basis function layer of the neural network in order to
account for linguistic uncertainty in the system’s variables.

Jianping et al. [10] modeled a complex radial basis
function neural network that is proposed for equalization of
quadrature amplitudemodulation (QAM) signals in commu-
nication channels. The network utilizes a sequential learning
algorithm referred to as complexminimal resource allocation
network (CMRAN) and is an extension of the M-RAN algo-
rithm originally developed for online learning in real-valued
radial basis function (RBF) networks. Lei and Lu [11] pro-
posed an online learning adaptive radial basis function neural
network (RBFNN) to deal with measurement errors and
environment disturbances to improve control performance.
Since the weight matrix of the adaptive neural network can
be updated online by the state error information, the adaptive
neural network can be constructed directly without prior
training.

Kumar et al. [15] developed a novel approach for odor
discrimination of alcohols and alcoholic beverages using
published data obtained from the responses of thick film
tin oxide sensor array fabricated at our laboratory and
employing a combination of transformed cluster analysis
and radial basis function neural network. The performance
of the new classifier was compared with others based on
backpropagation (BP) algorithm. Yeung et al. [16] employed
support vector machine (SVM), radial basis function neural
network (RBFNN), and multilayer perceptron neural net-
work (MLPNN) for solving problems and treating unseen
samples near the training samples to be more important.

Karayiannis and Xiong [17] introduced a learning algo-
rithm that can be used for training reformulated radial basis
function neural networks (RBFNNs) capable of identifying
uncertainty in data classification. This learning algorithm
trains a special class of reformulated RBFNNs, known as
cosine RBFNNs, by updating selected adjustable parameters
to minimize the class-conditional variances at the outputs of
their radial basis functions (RBFs). Qiu et al. [18] proposed
a Gaussian radial basis function neural network (RBFNN)
that was used to preprocess raw EP signals before serving as
the reference input. Since the RBFNN has built-in nonlinear
activation functions that enable it to closely fit any function
mapping, the output of RBFNN can effectively track the
signal variations of evoked potentials.

Xie and Leung [19] proposed a novel blind equaliza-
tion approach based on radial basis function (RBF) neural
networks. By exploiting the short-term predictability of the
system input, a RBF neural net is used to predict the inverse
filter output.

Jafarnejadsani et al. [20] developed an adaptive control
based on radial basis function neural network (NN) for
different operation modes of variable-speed variable-pitch
wind turbines including torque control at speeds lower than
rated wind speeds, pitch control at higher wind speeds, and
smooth transition between these two modes.

Leung et al. [21] solved the problem of optimum pre-
diction of noisy chaotic time series using a basis function
neural network, in particular the radial basis function (RBF)
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network. Meng et al. [22] modeled a reliable price predic-
tion model based on an advanced self-adaptive radial basis
function (RBF) neural network. The proposed RBF neural
network model is trained by fuzzy c-means and differential
evolution is used to autoconfigure the structure of networks
and obtain the model parameters.

Gao et al. [23] developed an approach for seam tracking
during high-power fiber laser butt-joint welding. Kalman
filtering (KF) improved by the radial basis function neural
network (RBFNN) of the molten pool images from a high-
speed infrared camera is applied to recursively compute the
solution to the weld position equations, which are formulated
based on an optimal state estimation of the weld parameters
in the presence of colored noises. Chang et al. [24] developed
an effective procedure based on the radial basis function
neural network to detect the harmonic amplitudes of the
measured signal.

Yingwei et al. [25] presented a detailed performance anal-
ysis of the minimal resource allocation network (M-RAN)
learning algorithm; M-RAN is a sequential learning radial
basis function neural network which combines the growth
criterion of the resource allocating network (RAN) of Platt
with a pruning strategy based on the relative contribution of
each hidden unit to the overall network output. Dash et al.
[26] presented a new approach for the protection of power
transmission lines using a minimal radial basis function
neural network (MRBFNN). This type of RBF neural net-
work uses a sequential learning procedure to determine the
optimum number of neurons in the hidden layer without
resorting to trial and error.

Wong et al. [27] applied the radial basis function (RBF)
neural network to low-angle radar tracking. Computer simu-
lations show that the RBF network is capable of tracking both
stationary and moving targets with high accuracy. Khairnar
et al. [28] developed a new approach using a radial basis
function network (RBFN) for pulse compression. In the
study, networks using 13-element Barker code, 35-element
Barker code, and 21-bit optimal sequences have been imple-
mented. In training these networks, the RBFN-based learning
algorithm was used. Jain et al. [29] presented an approach
based on radial basis function neural network (RBFNN)
to rank the contingencies expected to cause steady state
bus voltage violations. Euclidean distance-based clustering
technique has been employed to select the number of hidden
(RBF) units and unit centers for the RBF neural network.

Wong et al. [30] proposed a radial basis function (RBF)
neural network with a new incremental learning method
based on the regularized orthogonal least square (ROLS)
algorithm for face recognition. It is designed to accommodate
new information without retraining the initial network. Platt
and Matic [31–34] discussed a fairly general adaptation
algorithm which augments a standard neural network to
increase its recognition accuracy for a specific user. The basis
for the algorithm is that the output of a neural network is
characteristic of the input, even when the output is incorrect.

The remainder of the paper is organized as follows. The
background of the software prediction models is presented
in Section 2. The datasets employed in this research paper
are given in Section 3. Section 4 details the metrics adopted

for the prediction model. The proposed prediction model
with its algorithm is given in Section 5. The results of the
proposed model with its analysis are detailed in Section 6
and the conclusions for the research study are presented in
Section 7.

2. Background on Software Prediction Models

There exist several statistical and machine learning methods
to identify defects in the newly developed software modules:
a hybrid instance selection using nearest neighbor [35],
distance-based multiobjective particle swarm optimization
[36], cost-sensitive boosting neural networks [37], and fuzzy
linear regression model [38]. A fuzzy logic based phase wise
defect prediction model was validated for twenty pieces of
real software project data [39].

Apart from these above said methods, several other
prediction models were developed and applied for the open
source NASA datasets available at the PROMISE repository
[1, 13, 40–52]. Han and Jing [53] employed a high com-
putational wrapper model with a significant improvement
in recall rate and F-measure. In a similar way, ensemble
decision trees and CART were also employed for performing
cost-sensitive classification for SDP [54, 55]. A Bayesian
regularization (BR) approach is employed to determine the
software faults along with Levenberg-Marquardt algorithm
and backpropagation algorithm [56]. A call graph based
ranking (CGBR) along with the size and complexity met-
rics was employed to measure the quality of the software
[57]. Tabu Search Fault Localization with path branch
and bound procedure on software engineering (TSFL-PBB)
was employed to overcome the defect on fault localization
[58]. Multistage model for software defect density indicator
employing the topmost reliability-relevant metrics and fuzzy
inference system (FIS) was proposed by Bahadur and Yadav
[59]. Also, simple and multiple linear regression statistical
methods have been used for the analysis in detecting defects
in software development process [60]. Amultiobjetcive defect
predictor (MODEP) is developed with a framework on cer-
tainmultiobjective forms ofmachine learning techniques like
logistic regression and decision trees that are trained using
genetic algorithms which lies on cross-project description
and local prediction with clusters belonging to similar classes
[61].

Data mining approach was employed to show the
attributes that predict the defective state of software modules
and is used in large software projects to detect defective
modules that will cause failures during the software execu-
tion process [62]. Meta-analysis of all relevant high quality
primary studies of defect prediction was carried out to
determine what factors influence predictive performance and
as well to predict defect-prone software components [63]. An
iterative feature selection approach which repeatedly applies
data sampling (to overcome class imbalance) followed by fea-
ture selection (to overcome high dimensionality) and finally
combines the ranked feature lists from the separate iterations
of sampling has been applied to several groups of datasets
from two real-world software systems and used two learners
to build classification models [64–66]. The predictive ability
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of the evolutionary computation and hybridized evolutionary
computation techniques for defect prediction was applied
for datasets from the Apache Software Foundation using the
Defect Collection and Reporting System [67]. Zhang et al.
[68] analyzed 44 metrics of application level, file level, class
level, and function level and made correlation analysis with
the number of software defects and defect density; the results
show that software metrics have little correlation with the
number of software defects but are correlative with defect
density.

Software defect prediction model was presented in the
early literature for consecutive software products based on
entropy and the process starts when the defect is found
and ends when the resolution is verified and the defect is
closed [69]. Xia et al. [70] proposed an algorithm which
combines relief feature selection algorithm and correlation
analysis. Support vector machine (SVM) has been devel-
oped for software defect prediction using different kernels.
Software defect prediction helps improve software quality
by building effective predictive classification models using
software metrics to facilitate identification of fault-prone
modules [71]. Neural network parameter optimization based
on genetic algorithm has been developed for software defect
prediction and has been applied for datasets from the repos-
itories [72]. A multistage model for software defect density
indicator using the topmost reliability-relevant metrics and
fuzzy inference system (FIS) has been developed for effective
decision support [73]. The ability of requirement metrics for
software defect prediction has been carried out employing
six machine learning algorithms on the requirement metrics,
design metrics, and combination of both metrics [74]. Li
et al. [75] applied the concept of fuzzy measure and fuzzy
integral to the classification of software defects. A complete
description of the summary of software prediction models
over various periods of study has been proposed by Han et
al. [76]. Random Forest algorithm based software prediction
model developing an ensemble classifier was applied for
large-scale software system [77].

From the above discussed literature reviews, it is inferred
that the early proposed prediction models have not taken
into account themisclassification cost of the nondefective and
defective modules in large for numerous applications except
in few cases [5, 37, 49]. Considering the real-world problems,
the rate of misclassification of defective module is more
important than the rate of misclassification of nondefective
modules. The levels of these misclassifications are defined by
their associated cost factors. Thus, there are few efforts made
in exploring the associated costs employing neural network
architectures employing sampling procedures and threshold
levels [37]. The variation is made in the threshold level of the
neural network which decides the output until an optimal
point is reached with respect to the cost matrix. From [78], it
is well noted that themovement of threshold is an appropriate
factor to build cost-sensitive neural network architecture.

Radial basis function neural network is an architecture
model which employs Gaussian function to enable the net-
work to attain fast convergence. In this work, cost-sensitive
RBFNN is developed along with a proposed variant of

biogeography based optimization (BBO). BBO is an opti-
mization algorithm developed based on the migration of
species fromone island to another island [79]. In this research
paper, the developed adaptive dimensional biogeography
based optimization (ADBBO) is applied to optimize the
weights of the proposed cost-sensitive radial basis function
neural network (CSRBFNN). The developed approach is
validatedwith theNASAPROMISE repository datasets and is
compared with that of the existing traditional and evolution-
ary algorithms. The computed results prove the effectiveness
of the proposed ADBBO based cost-sensitive RBFNN for the
considered datasets from the repositories. The cost-sensitive
RBFNN is derived based on the fitness function introduced
with respect to the software defect prediction problem.

3. Description of Datasets [12]

The datasets considered for implementing the proposed
approach are the NASA PROMISE repository datasets which
are made publicly available for software defect prediction.
Tim Menzies is the donor of these public datasets and these
datasets include the information on spacecraft instrumen-
tation, satellite flight control, and ground data for storage
management. This paper employs the five most widely used
datasets from this repository (CM1, JM1, KC1, KC2, and PC1).
Each of the considered datasets possesses several software
modules with input as the quality metrics. The output of
each of the modules includes a defective or nondefective
case, which identifies the presence of faults in any of the
respective modules. These datasets come from McCabe and
Halstead features extractors of the source code developed.
These features were defined in the 70s with an idea to
objectively characterize code features that are associated with
software quality. Both McCabe and Halstead measures are
“module” based where a “module” is defined as the smallest
unit of functionality. All these five datasets were developed
either in C or in C++ language. Table 1 details the description
of the datasets employed in this study.

From Table 1, it can be noted that, for all the considered
five datasets, 22 attributes exist including one output attribute
which is the goal field (identifies defect or nondefect) and
the remaining 21 attributes are the quality metrics acting as
input attributes: 5 are the different lines of codemeasure, 3 are
McCabe metrics, 4 are base Halstead measures, 8 are derived
Halstead measures, and 1 is a branch count. Table 2 shows
the attribute information of the considered datasets. Instead
of using all the 21 attributes in the proposed cost-sensitive
RBFNN, out of the specified metrics, feature subselection is
carried out and the selected attributes [5] are employed as
input to the proposed predictor model. Table 3 shows the
attribute features selected to be used as input for the proposed
predictor model. For effective comparison of the proposed
approach, the same metrics as in [5] are used as inputs for
the proposed software predictor model. It is further noted
that the proposed model performs better with the selected
attributes as in Table 3, instead of using all the 21 attributes.
This results in reducing the computational complexity of the
predictor model.
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Table 1: Description of datasets used in this study [12].

Name of
the dataset Dataset information Language

employed
Number of
instances

Number of
attributes

Nondefective
module

Defective
module Defect rate

CM1 NASA spacecraft
instrument C 498 22 449 49 9.83%

JM1 Real-time predictive
ground system C 10885 22 8779 2106 19.35%

KC1

Storage management
for receiving and
processing ground

data

C++ 2109 22 1783 326 15.45%

KC2

Storage management
for receiving and
processing ground

data

C++ 522 22 415 107 20.49%

PC1
Flight software

for Earth orbiting
satellite

C 1109 22 1032 77 6.94%

Table 2: Attribute information of the datasets.

Number Attribute type Quality metrics Attribute definition
1

McCabe’s measure

loc Line count of code
2 V(𝑔) Cyclomatic complexity
3 𝑒V(𝑔) Essential complexity
4 𝑖V(𝑔) Design complexity
5

Basic Halstead
measures

loCode Line count
6 loComment Count of lines of comments
7 loBlank Count of blank lines

8 loCodeAndComment Count of code and comment
lines

9 uniqOp Unique operators
10 uniqOpnd Unique operands
11 total Op Total operators
12 total Opnd Total operands
13 branchCount Branch count of the flow graphs
14

Derived Halstead
measures

𝑛 Total operators + operands
15 V Volume
16 𝑙 Program length
17 𝑑 Difficulty
18 𝑖 Intelligence
19 𝑒 Effort
20 𝑏 Estimate of the effort
21 𝑡 Time estimator

22 Output defect
measure Defects

{false, true}: module has/does not
have one or more reported

defects

4. Metrics Employed for the Prediction Model

Metrics play a major role in developing the predictive model
and analyzing the performance of the proposed predictors.
Table 4 represents the confusion matrix based on which the
performance of the predictor model is done. The confusion

matrix substantiates how the predictormodel is classified into
various defect categories in comparison with that of their
actual classification (observed versus predicted).

The values from the confusion matrix can be combined
in order to calculate the various performance measures. The
performance measure “Recall” presents the proportion of
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Table 3: Selected attribute metrics to act as input for the proposed
predictor model.

Sl.
number

Name of the
dataset

Number of
attributes
selected

Name of the selected
attributes

1 CM1 7
loc, 𝑖V(𝑔), 𝑖, loComment,

loBlank, uniqOp,
uniqOpnd

2 JM1 8
loc, V(𝑔), 𝑒V(𝑔), 𝑖V(𝑔), 𝑖,
loComment, loBlank,
loCodeAndComment

3 KC1 8
V, 𝑑, 𝑖, loCode, loComment,

loBlank, uniqOpnd,
branchCount

4 KC2 3 𝑒V(𝑔), 𝑏, uniqOpnd

5 PC1 6
V(𝑔), 𝑖, loComment,

loCodeAndComment,
loBlank, uniqOpnd

Table 4: Confusion matrix.

Predicted as
defective
module

Predicted as
nondefective

module
Observed as defective
module

True positive
(TP)

False negative
(FN)

Observed as
nondefective module

False positive
(FP)

True negative
(TN)

True positive: correctly classified as defective module.
True negative: correctly classified as nondefective module.
False positive: classifies nondefective module as defective module.
False negative: classifies defective module as nondefective module.

the correctly predicted defective code, whereas “Precision”
specifies the rate of defective prediction or the extent of
how far the prediction is originally defective or not. Recall
is also called sensitivity, probability of detection (pd), or
true positive rate (TPR). Apart from these two measures,
there exists an additional measure called probability of false
alarm (pf) or false positive rate (FPR) which proposes the
proportion of the wrongly classified defective predictions.
Based on the above definitions, an optimal predictor should
achieve a TPR (pd) of 1, FPR (pf) of 0, and precision of 1.
When the computed “pd” and “pf” are plotted, they result
in Receiver Operating Characteristics (ROC) curve and from
ROC the area under the curve (AUC) is to be noted. AUC
is noted to be between 0 and 1, with 1 being the optimal
solution point. Certain predictors result in low AUC values
but can be tuned further to produce high balance metrics.
Prediction accuracy as well plays a major role in validating
the efficiency of the proposed model and this describes
the proportion of the correctly predicted modules. Table 5
presents performance measures employed in this research
paper for validating the proposed prediction models.

The accuracy is not appropriate for datasets possessing
uneven class distribution. The measures as proposed in

Table 5 are computed in order to validate the proposed
software predictor model.

5. The Proposed ADBBO Based Cost-Sensitive
RBFNN Predictor Model

Originally, radial basis function neural network is a mul-
tilayer feed forward neural network employing Gaussian
activation function in place of earlier proposed continuous
sigmoidal activation functions [80] in several other neural
network models. The advantage of employing radial basis
function neural network in this paper is its faster conver-
gence. In order to reduce the time taken for the convergence,
the weights of the RBFNN model are optimized employing
the proposed adaptive dimensional biogeography based opti-
mization.The RBFNNmodel along with the optimal weights
performs the prediction of defects in the considered datasets
to achieve better accuracy with faster convergence. This
section details the proposed adaptive dimensional BBObased
radial basis function neural network model.

5.1. Biogeography Based Optimization: An Overview. The
fundamental concepts of how species migrate from one
island to another and how new species arise and how
species become extinct are the underlying foundation of
biogeography [79]. Basically, a habitat is any island or an
area which is geographically isolated from other islands. It
should be noted that the habitats with a high HSI (Habitat
Suitability Index) are noted to have more number of species,
whereas those with a low HSI possess a small number of
species. Habitats that possess high HSI are noted to have
a low species immigration rate as they are nearly saturated
with that of the species. Also, the high HSI habitats are noted
to possess a high emigration rate. Low HSI habitats tend
to have a high species immigration rate due to their sparse
populations. Emigration in biogeography based optimization
does not infer that the emigrating island loses a feature.
The worst solutions in the generated species have the worst
features; hence, it possesses a very low emigration rate and
a low chance for sharing its features. The species (solution)
that have the best features also have the habit of sharing
them with the highest probability. This procedure is known
as biogeography based optimization.

The concept of emigration and immigration rate is repre-
sented by a probabilistic model mathematically. Consider the
probability 𝑃

𝑆
that the habitat contains exactly 𝑆 species at 𝑡.

𝑃
𝑆
is noted to change from time 𝑡 to time 𝑡 + Δ𝑡 as given

below:
𝑃
𝑆 (𝑡 + Δ𝑡) = 𝑃𝑆 (𝑡) (1 − 𝜆𝑆Δ𝑡 − 𝜇𝑆Δ𝑡) + 𝑃𝑆−1𝜆𝑆Δ𝑡

+ 𝑃
𝑆+1
𝜇
𝑆+1
Δ𝑡,

(1)

where 𝜆
𝑆
and 𝜇

𝑆
represent the immigration and emigration

rates of species in the habitat. To have 𝑆 species at time (𝑡+Δ𝑡),
any one of the following conditions is to bemet: 𝑆 specieswere
present at time 𝑡, and there is no occurrence of immigration
or emigration between 𝑡 and (𝑡 + Δ𝑡); (𝑆 − 1) species were
present at time 𝑡; one species immigrated; there were (𝑆 + 1)
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Table 5: Performance measures.

Performance measures Definition of the measure Description
Sensitivity (or)
Recall (or)
True positive rate (or)
Probability of detection (pd)

TP
TP + FN

Proportion of defective modules correctly
predicted

Precision
TP

TP + FP
Proportion of modules predicted as

defective
False positive rate (or)
Probability of false alarm (pf)

FP
FP + TN

Proportion of nondefective modules
predicted as defective

Specificity
TN

TN + FP
Proportion of correctly predicted

nondefective modules

Classification accuracy
TN + TP

TN + FN + FP + TP Proportion of correctly predicted modules

Balance 1 −
√(0 − pf)2 + (1 − pd)2

√2

Balance combines pf and pd into one
measure and is defined as the distance from
the ROC “sweet spot” (where pd = 1 and pf

= 0)
Receiver Operating
Characteristics (ROC) curve A graphical plot of “pd” versus “pf” where the discrimination threshold is varied

species at time 𝑡; one species emigrated. When the time Δ𝑡 is
noted to be small enough, then the probability of more than
one immigration or emigration can be ignored and when
Δ𝑡 → 0 it presents the following equation:

�̇�
𝑆

=

{{{{

{{{{

{

− (𝜆
𝑆
+ 𝜇
𝑆
) 𝑃
𝑆
+ 𝜇
𝑆+1
𝑃
𝑆+1

𝑆 = 0

− (𝜆
𝑆
+ 𝜇
𝑆
) 𝑃
𝑆
+ 𝜆
𝑆−1
𝑃
𝑆−1

+ 𝜇
𝑆+1
𝑃
𝑆+1

1 ≤ 𝑆 ≤ 𝑆max − 1

− (𝜆𝑆 + 𝜇𝑆) 𝑃𝑆 + 𝜆𝑆−1𝑃𝑆−1 𝑆 = 𝑆max.

(2)

The equation for emigration rate 𝑒
𝑚𝑘

and immigration rate
𝑖
𝑚𝑘

for 𝑘 number of species is given by

𝑒
𝑚𝑘
=
𝐸𝑘

𝑛

𝑖
𝑚𝑘
= 𝐼(1 −

𝑘

𝑛
) .

(3)

On the value of 𝐸 = 𝐼 and then combining the above said
equation, it results in

𝑒
𝑚𝑘
+ 𝑖
𝑚𝑘
= 𝐸
𝑘
. (4)

There exist two main operators in biogeography based opti-
mization: the migration and the mutation. It can be inferred
that the mutation rate changes the habitat’s Suitability Index
Variable (SIV) in a random manner based on the mutation
rate. Also, the mutation rate is inversely proportional to
the probability of species count. Employing the migration
operator, the biogeography based optimization process shares
the information among solutions. During the optimal flow,
it can be noted that the worst solutions tend to accept
more useful and meaningful information from the good

solutions. This feature enables the BBO algorithm to be
good at exploiting the information based on the current
population.

5.2. Mathematical Modeling of the Proposed Adaptive Dimen-
sional BBO. The proposed adaptive dimensional biogeog-
raphy based optimization is built so that it enables the
generation of the species based on the earlier species’ best
solution. ADBBO introduces a parameter called habitat
search dimensional rate (ℎdr), which is updated online during
the habitat search process and is proposed to achieve an
acceptable balance between the exploitation (possessing the
habitat) and exploration (search for habitat). The habitat
search dimensional rate (ℎdr) is computed as the ratio of the
number of variables disturbed for computing a new solution
to that of the total number of variables. This modification
is introduced into the traditional biogeography based opti-
mization because evenminimal variations in certain variables
will result in better candidate solutions and this explores the
habitat search space. The habitat search dimensional rate is
given by

ℎdr =
𝑇𝑑

𝑇
, (5)

where “T” is the total number of variables and “Td” is the
number of variables disturbed. The ultimate aim of “ℎdr” is
to tune the exploration search aspects of the traditional BBO
algorithm.

At the initial start-up of the process, “ℎdr” value is taken
to be 0.3 based on several numerical experiments carried
out. During the subsequent generation process, the habitat
search dimension rate is updated based on the condition of
improvement of the solutions in the early generations; that is,
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if “𝑛 + 1” iteration is on process, then the checking will be
carried out for nth generation as given by (6). Therefore,

ℎ
(𝑛+1)

dr

=

{{

{{

{

ℎ
𝑛

dr
𝜌

if improvement exist in best solution

𝜌ℎ𝑛dr if no improvement exists in best solution.

(6)

The value of “𝜌” is fixed at less than 1.0 and this parameter
𝜌 is called adaptive dimension parameter and this intends to
compute the adaption rate of the forthcoming value of habitat
search dimensional rate (ℎdr). Higher values of habitat search
dimensional rate perform the migration of species through a
large number of variables at a time and increase the habitat
exploration search process. Lower values of ℎdr increase the
exploitation search for occupying the habitats.

This process of ADBBO increases the dimension of the
search and the proposed algorithm is aimed at determining

new solutions in the enhanced region of the search space. In
case when early generation does not show any improvement,
the search process will be limited and the algorithm limits
itself to that of the existing habitat search space. Thus, in the
proposed ADBBO algorithm, the habitat search dimension
parameter gets updated at each generation to improve explo-
ration and exploitation search to present a highly efficient
optimization process. The maximum and minimum values
for habitat search dimension rate are set as 0.5 and 1/𝑇,
with T being the total number of variables in the considered
problem.The fixedmaximum value will overcome the higher
disturbances that might exist in the search space; if these
disturbances pertain, they may lead to the slowing down of
the convergence of the search process. Also, the set minimum
value assures that at least one variable will be chosen by
chance and will get updated during the generation of best
habitat solution.

Based on the above discussed habitat search dimension
rate, for the species solutions which are generated for the best
fitness till now in the process, new species will be obtained
employing the following:

𝑆
new
𝑖

=

{{

{{

{

𝑆best
𝑖

if 𝑟
𝑖
> ℎdr

𝑆
best
𝑖

+ round [𝜇 (√(𝑆max
𝑖

− 𝑆min
𝑖
) − (√(𝑆max

𝑖
− 𝑆min
𝑖
) − 1))] if 𝑟

𝑖
≤ ℎdr,

(7)

where 𝑆max
𝑖

and 𝑆min
𝑖

stand for the lower and higher ranges
of the design variable, respectively, and 𝑆best

𝑖
and 𝑆new
𝑖

are the
best values so far carried out during the run and the value
of the corresponding variable, respectively. For the respective
variable in the generation, “𝑟

𝑖
” represents uniform random

number sampled between 0 and 1. “𝜇” is the random number
generated for each of the considered variables based on the
standard normal distribution along with a mean zero and
standard deviation one.

5.3. The Proposed Adaptive Dimensional BBO Algorithm.
The proposed algorithm for adaptive dimensional biogeog-
raphy based optimization is developed by incorporating the
above presented adaptive dimensional modeling into the
traditional biogeography based optimization process. The
adaptive dimensional modeling basically updates the species
with respect to the adaptive search dimensional rate (ℎdr)
and the improvements carried out during the search of best
habitat solutions.TheBBOprocess results in themovement of
species through the process of habitat search and the position
of habitats gets updated during themovement over the search
space. This approach of adaptive dimension is introduced
before the updating of the position of species and based on
the habitat search dimension rate the exploration is carried
out and new species are generated and then further fitness
for each generated species will be computed and the flow
process of BBO is continued. This incorporation of adaptive
variation of the species with respect to the dimensional
parameter “ℎdr” results in faster convergence and improving

the exploration of the search space and achieving the near-
optimal solution point. Considering the proposed modeling
of adaptive dimensional biogeography based optimization in
Section 5.2 and converging the proposed model derived with
that of the regular BBO, the pseudocode for the proposed
ADBBO is as presented in Pseudocode 1.

5.4. Radial Basis Function Neural Network Model. Radial
basis function neural network performs the training and
testing process with a simple gradient descent learning rule
and the error obtained during the training process is back-
propagated to compute good training efficiency along with
the Gaussian distribution function. Radial basis function
neural network [81] is a multilayer feed forward neural
network with single layer of z-hidden units as shown in
Figure 2.TheY output unit hasWok as bias andZ-hiddenunit
has Vok as bias. The Gaussian activation function employed
in RBFNN, which aids the network learning process for faster
convergence, is shown in Figure 3.

5.4.1. Learning Algorithm of RBFNNArchitecturalModel. The
learning process of radial basis function neural network
consists of the following phases:

(i) Weight initialization phase.
(ii) Feed forward phase.
(iii) Error radial basis function phase.
(iv) Updating the weights and bias.

The various steps involved in the RBFNN algorithmic flow
are as given below.
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Start
Initialize the species count and the other required parameters

Module 1
Initialize probability of species count of each Habitat
When the termination criteria is not met do

Save the best habitats in a temporary array (Elitism)
For each habitat, map the Habitat Suitability Index (HSI) to number of species S, 𝜆 and 𝜇
Choose the immigration island based on 𝜇
Migrate randomly selected SIVs based on the selected island in previous step.
Module 2
Invoke: Proposed Adaptive Dimensional Approach

Compute habitat search dimensional rate (ℎdr)
Update ℎdr. Check for the positional movements of the habitats
Update the positions of species

Module 3
Update Population using Adaptive Dimensional approach

Compute the new populations based on design variables and move to Module 1.
Refine the habitats

Update the generation count
End

Check for feasible solution and the presence of a similar habitat.
Output the value of the best species.

Stop

Pseudocode 1: The proposed pseudocode of ADBBO algorithm.
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Figure 2: Architecture of radial basis function neural network model.
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Figure 3: Gaussian activation function in RBFNNmodel.

Phase 1 (weight initialization phase).

Step 1. Initialize the weights between the input layer and
hidden layer and between hidden layers and output layer to
small random values.

Step 2. Initialize the momentum factor and learning rate
parameter.

Step 3. When the stopping condition is false, perform Steps
4–11.

Step 4. For each training dataset vector pair do Steps 5–10.
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Phase 2 (feed forward phase).

Step 5. Each input unit belonging to the input layer receives
the input signals 𝑥

𝑖
and transmits these signals to all units in

the hidden layer above, that is, to the hidden units.

Step 6. Each hidden layer unit (𝑧
𝑗
, 𝑗 = 1, . . . , 𝑝) sums the

received weighted input signals. Therefore,

𝑧
−𝑖𝑛𝑗

= V
𝑜𝑗
+

𝑛

∑
𝑖=1

𝑥
𝑖
V
𝑖𝑗
. (8)

Applying the continuous Gaussian activation function at
this point,

𝑍𝑗 = 𝑓 (𝑧𝑖𝑛𝑗) that is, 𝑓 (𝑍𝑖𝑛𝑗) = 𝑒
−𝑍𝑖𝑛𝑗
2

, (9)

which sends this signal to all units in the layer above, that is,
output units.

Step 7. For each of the output units (𝑦
𝑘
, 𝑘 = 1, . . . , 𝑚),

compute its net input

𝑦
−𝑖𝑛𝑗

= 𝑤
𝑜𝑘
+

𝑝

∑
𝑗=1

𝑧
𝑗
𝑤
𝑗𝑘 (10)

and apply Gaussian activation function to the net input for
calculating the output signals. Therefore,

𝑌
𝑘
= 𝑓 (𝑦

−𝑖𝑛𝑘
) that is, 𝑓 (𝑌

𝑖𝑛𝑗
) = 𝑒
−𝑌𝑖𝑛𝑗
2

. (11)

Phase 3 (error radial basis function phase).

Step 9. Each output unit (𝑦
𝑘
, 𝑘 = 1, . . . , 𝑚) receives a target

pattern corresponding to an input pattern; error information
term is calculated as follows:

𝛿
𝑘
= (𝑡𝑘 − 𝑦𝑘) 𝑓


(𝑦−𝑖𝑛𝑘) . (12)

Step 10. Each hidden unit (𝑧
𝑗
, 𝑗 = 1, . . . , 𝑛) sums its delta

inputs from units in the layer above as follows:

𝛿−𝑖𝑛𝑗 =

𝑚

∑
𝑘=1

𝛿𝑗𝑤𝑗𝑘. (13)

Error information term is calculated as follows:

𝛿𝑗 = 𝛿−𝑖𝑛𝑗𝑓

(𝑧−𝑖𝑛𝑗) . (14)

Phase 4 (updating of weights and bias).

Step 11. Compute the weight correction term between the
output unit and hidden unit; it is given by the following:

Δ𝑤
𝑗𝑘
= 𝛼𝛿
𝑘
𝑧
𝑗
+ 𝜇Δ𝑤

𝑗𝑘 (old) . (15)

And the bias correction term is given by the following:

Δ𝑤
𝑜𝑘
= 𝛼𝛿
𝑘
+ 𝜇Δ𝑤

𝑜𝑘 (old) . (16)

Step 12. Compute the weight correction term between the
hidden unit and input unit; it is given by

ΔV
𝑖𝑗
= 𝛼𝛿
𝑗
𝑥
𝑖
+ 𝜇ΔV

𝑖𝑗 (old) . (17)

And the bias correction term is given by

ΔV
𝑜𝑗
= 𝛼𝛿
𝑗
+ 𝜇ΔV

𝑜𝑘 (old) . (18)

Step 13. Each output unit (𝑦
𝑘
, 𝑘 = 1, . . . , 𝑚) updates its bias

and weights (𝑗 = 0, . . . , 𝑝) and is given by

𝑤𝑗𝑘 (new) = 𝑤𝑗𝑘 (old) + Δ𝑤𝑗𝑘

𝑤𝑜𝑘 (new) = 𝑤𝑜𝑘 (old) + Δ𝑤𝑜𝑘.
(19)

Step 14. Each hidden unit (𝑧
𝑗
, 𝑗 = 1, . . . , 𝑝) updates its bias

and weights (𝑖 = 0, . . . , 𝑛) and is given by

V
𝑖𝑗 (new) = V

𝑖𝑗 (old) + ΔV𝑖𝑗

V𝑜𝑗 (new) = V𝑜𝑗 (old) + ΔV𝑜𝑗.
(20)

Step 15. Terminate the learning process on reaching the
stopping condition. The stopping condition is the number of
iterations reached; minimization of the MSE value and the
learning rate is decreased to a particular value.

5.4.2. Need of RBFNN Model for Software Defect Prediction
Problem. The applicability of Gaussian function enables the
radial basis artificial neural network to model nonlinear rela-
tionships. The relation between the software quality metrics
and their defects is generally complex and is nonlinear in
nature.Thus, for handling this complex nonlinearity, a model
of artificial neural net RBFNN is a suitable choice for software
defect prediction problem. The set goal of the neural net
model is to minimize the mean square error (MSE) during
the learning process by optimizing the weights of the network
(both the input to hidden and hidden to output). The MSE
computed is backpropagated in the network and the weights
are tuned in a manner to minimize the error. In this paper,
error adjustments and tuning for optimal weights are carried
out with the proposed adaptive dimensional biogeography
based optimization presented in Section 5.3 as well as a new
objective function which considers that the cost-sensitivity is
taken into account for effective prediction process.

5.5. The Proposed ADBBO Cost-Sensitive RBFNN Classifier.
This paper proposes a cost-sensitive RBFNN based on the
adaptive dimensional BBO for software defect prediction.
Originally, RBFNN is a learner that learns based on the
weights and bias updating and this basic RBFNN is trans-
formed into a cost-sensitive learner employing a cost error
function [5].The cost parameters considered are the expected
cost of misclassification and its normalized value.These cost-
sensitive factors are taken based on the false positive error
cost and false negative error cost. The objective function of
the cost-sensitive RBFNN to be minimized employing the
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Start
Initialize the necessary variables of RBFNN (inputs, hidden neurons and outputs)
Initialize the variables of adaptive dimensional BBO
(No. of species, initial habitats, immigration and emigration rate)
(Here fitness specifies the fitness values of the species habitats)
Set the initial fitness value to zero.
Load the considered dataset
Divide the datasets into training and testing dataset
Invoke ADBBO
Normalize the input quality metrics
Initialize species (random values of weights between upper and lower bounds)
For each habitat, map the Habitat Suitability Index (HSI) to number of species S, 𝜆 and 𝜇
Choose the immigration island based on 𝜇
Migrate randomly selected SIVs based on the selected island in previous
Compute habitat search dimensional rate (ℎdr)
Update ℎdr.
Check for the positional movements of the habitats
Update the positions of species
Invoke RBFNN Classifier
Input data and the weights computed from ADBBO
Compute the output of the network with Gaussian Activation function
Compute TP, TN, FP and FN
Determine MSE and NECM from (21)
Calculate the performance results (Accuracy, pd, pf, AUC)

Stop

Pseudocode 2: Pseudocode of the proposed ADBBO-RBFNN classifier.

proposed adaptive dimensional BBO is given by the following
equation:

min
NECM

= pf × 𝑃non-defect-prone +
costfalse negative

costfalse positive
× pfnr

× 𝑃defect-prone,

(21)

where “NECM” is the normalized expected cost of misclas-
sification, “pf” is the false positive rate, “pfnr” represents the
false negative rate, “costfalse positive” is the cost pertaining to
false positive error, “costfalse negative” is the cost pertaining
to false negative error, and “𝑃non-defect-prone” and “𝑃defect-prone”
are the percentage of non-defect-prone modules and defect-
prone modules, respectively.

The pseudocode of the proposed ADBBO-RBFNN is
given in Pseudocode 2. During the initial start-up of the
learning process, define the variables of the ADBBO algo-
rithm and RBFNN. As the range of values for the software
metrics widely varies, a normalization process is required. In
this work, min-max (0-1) normalization is employed for the
scaling of the considered datasets.The normalization process
is carried out individually for training and testing datasets.
The training phase is employed to calculate an optimal set
of neural network weights, and the performance of the
proposed algorithm is then calculated by the determined
best optimal weights. RBFNN model initiates its learning
process according to the determined optimal weights and
calculates the mean square error and the normalized cost of
the network. The ratio of Costfalse negative and Costfalse positive
(cost ratio) is made based on the expectation from the

algorithm.When the cost ratio is higher, Costfalse negative takes
a predominant role. On testing process, if the output of the
tested network is noted to be higher than 0.5, then themodule
is fixed to be defect-prone; else, it is categorized as non-
defect-prone.

6. Experimental Results and Discussion

The proposed adaptive dimensional based biogeography
based optimization radial basis function neuronal model
is applied for the considered NASA PROMISE repository
datasets as described in Section 3. All the considered 5
dataset samples are analyzed employing the cross-validation
approach to evaluate the performance of the proposed predic-
tion model. In this paper, a 10-fold cross-validation approach
is employed.This procedure randomly splits the datasets into
10 bins of equal size. Hence, for 10 times, 9 bins are selected
for training process employing the proposed approach and
the remaining 1 bin is used as testing dataset; each time
this bin will be a different bin. KC1, KC2, and JM1 datasets
were adopted with 10-fold cross-validation and 5-fold cross-
validation is used forCM1 andPC1 datasets.The type of cross-
validation is chosen based on the defect rate of the datasets
under consideration. The optimal parameters chosen for the
operation of ADBBO based RBFNN algorithm are tabulated
in Table 6.

Theproposed architecture of theRBFNNpredictormodel
sets the number of input neurons equal to that of the
attributes selected for each of the datasets as given in Table 3.
The main processing in radial basis function neural network
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Table 6: Parameters of the proposed ADBBO-RBFNN algorithm.

Parameters BBO Parameters RBFNN
Habitat size 40 Learning rate 0.2
Habitat modification probability 1 Momentum factor 0.1
Immigration probability bounds per gene [0, 1] Number of hidden neurons 1/2 the number of input neurons
Step size for numerical integration 1 Maximum iteration 500
Maximum immigration 1 Activation function Gaussian activation function
Migration rate for each island 1

Number of output neurons 1 (defect or defect-free)Mutation probability 0.005
Maximum generation 500
Habitat search dimensional rate dr 0.5
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Figure 4: The proposed RBFNNmodel for JM1 dataset.

is based on the hidden layer neurons and the activation
functions between the hidden and output layer neurons.
Fixing the number of neurons in the hidden layer is always
a complex task in artificial neural network (ANN) modeling
and researchers have taken numerous initiatives to fix the
number of neurons in the hidden layer [82]. Based on the
analysis made in the existing literature for fixation of hidden
neurons, in this proposed work, to train the software predic-
tionmodel for the considered datasets, the number of hidden
neurons is set equal to half the number of input neurons so as

to reduce the computational complexity. Gaussian function
being a nonlinear continuous activation function emulates
itself for the faster convergence of the network. Figure 4
shows the proposed radial basis function neural network
model for the JM1 dataset.

In this paper, the proposed adaptive dimensional BBO
based radial basis function neuronal classifier is validated for
the considered benchmark datasets [12] under two categories
to prove its effectiveness: one considering the cost-sensitive
part and the other without considering the cost-sensitive
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Table 7: Performance results of the proposed predictor on the five NASA datasets (non-cost-sensitive case).

NASA
datasets

Sensitivity
(pd) Specificity False positive rate

(FPR or pf) Balance Accuracy Area under ROC (AUC)

CM1 81.92 80.96 29.71 75.41 82.57 0.90
JM1 79.85 82.31 36.22 70.69 77.03 0.87
KC1 85.67 87.95 20.24 82.46 84.96 0.92
KC2 87.96 86.24 17.93 84.73 88.65 0.95
PC1 77.84 89.33 30.23 73.49 86.29 0.93
Mean 82.65 85.36 26.87 77.36 83.90 0.9140

part. In each of these cases, the results are compared with
various studies from the literature for both non-cost-sensitive
prediction and cost-sensitive prediction.

6.1. Simulation Results for the Proposed Non-Cost-Sensitive
Prediction Model. The costs of false positive rate and false
negative rate are not considered in this section during the
training process. As a result, (21) which acts as an objective
function for ADBBO algorithm to tune for the optimal
weights of RBFNN predictor becomes modified as follows:

min
NECM

= pf × 𝑃non-defect-prone + pfnr × 𝑃defect-prone; (22)

that is, the costs of false positive and false negative are
assumed to be of equal weight and, thus, costfalse negative/
costfalse positive = 1. The simulation results are obtained with-
out considering the cost-sensitive component. The method-
ology is implemented for NASA PROMISE datasets given in
Table 1.The performance results of these datasets are given in
Table 7.

From Table 7, it can be noted that the area under curve
value is noted to be greater than 0.5 and above 0.85, conveying
that the proposed predictor model has resulted in acceptable
solutions. With respect to accuracy and area under curve
metrics, KC2 and PC1 datasets are observed to result in
better solutions than the other three considered datasets.
The proposed ADBBO-RBFNN without the cost factor is
simulated for 30 trial runs and the specified solutions in
Table 7 are obtained. The computed solutions in Table 7
prove the effectiveness and robustness of the non-cost-
sensitive predictormodel. ReceiverOperatingCharacteristics
are studied for the proposed classifier and the resulting
plots are presented in Figures 5(a)–5(e). The ROC curve is
generated for each execution of the cross-validation fold.
ROC shows the grouping of good instances with that of the
same class output.

Table 8 presents the comparison of the proposed classifier
with the other algorithms applied for the sameNASAdatasets
in terms of the performance metrics: sensitivity, specificity,
probability of false alarm, balance, accuracy, area under
curve, and error value. Results of Naı̈ve Bayes, Random
Forest, C4.5 Miner, Immunos, and ANN-ABC (Artificial Bee
Colony) algorithm were considered from Arar and Ayan [5];
results of hybrid self-organizing map were taken from Abaei
et al. [13]; and results of SVM,Majority Vote, and AntMiner+
were taken from Vandecruys et al. [14]. From Table 8, it

is inferred that for the respective datasets the proposed
adaptive dimensional BBO based non-cost-sensitive radial
basis function neural network model is noted to produce
better results with the earliermethods from the literature. It is
to be noted that the solutions computed employing the tradi-
tional algorithms and that of the hybrid self-organizing maps
follow semisupervised learning algorithmic procedures.With
respect toAUC, the proposedADBBObasedRBFNN is noted
to possess values nearer to 1, proving the validity of the
results computed. The variation in accuracy of the proposed
algorithm is noted to be high in comparison with the other
classifiers, proving the effectiveness of the approach. The
proposed predictor model seems to play well for KC1, KC2,
and PC1 datasets better than for the CM1 and JM1 datasets.

6.2. Simulation Results for the Proposed Cost-Sensitive Pre-
diction Model. The main focus made in this paper is the
development of cost-sensitive radial basis function classifier
model to classify the software entities that are defect-free or
defect-prone. This subsection presents the computed solu-
tions for the considered NASA datasets with cost-sensitive
factor included as given in (21) for the proposed model.
Table 9 presents the results computed on employing the
proposed classifier with four different cost ratios and their
comparison of results with the existing methodologies from
the literature [5].The values of cost ratio are considered from
the literature [5].

From Table 9, it can be observed that when the cost ratio
decreases the rate of probability of detection also decreases
and this increases the probability of false alarm as well. Lower
cost ratio results in higher accuracy rate. Also, lower cost
ratio means minimal error in negative classes and, thus, this
increases the accuracy rate. In comparison with the existing
work [5], the proposed ADBBO based RBFNN classifier
is noted to achieve better accuracy rate for the different
cost ratios considered. This proves the effectiveness of the
proposed model in detecting the defect-free and defect-
prone developed software models. Further to the metrics
probability of detection (pd), probability of false alarm (pf),
and accuracy, the normalized expected cost of misclassifica-
tion is also computed employing the proposed model. The
convergence of the proposed algorithm is theminimization of
this normalized expected cost of misclassification (NECM).
Figures 6(a)–6(d) show the graphs computed for the NASA
datasets with respect to cost ratio versus NECM.
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Figure 5: Receiver Operating Characteristics curve for five NASA datasets: (a) CM1, (b) JM1, (c) KC1, (d) KC2, and (e) PC1.



The Scientific World Journal 15

Table 8: Comparison results and error analysis on NASA datasets.

NASA datasets Techniques Sensitivity Specificity FPR or pf Balance Accuracy AUC MSE (error)

CM1

Näıve Bayes [5] 71.03 78.65 34.09 68.37 64.57 0.75 0.1456
Random Forest [5] 70.09 71.29 32.17 68.94 60.98 0.74 0.2314
C4.5 Miner [5] 74.91 74.66 27.68 73.58 66.71 0.53 0.3765
Immunos [5] 73.65 75.02 30.99 71.24 66.03 0.63 0.1732
ANN-ABC [5] 75.00 81.00 33.00 71.00 68.00 0.77 0.2435

Hybrid
self-organizing

map [13]
70.12 78.96 30.65 69.73 72.37 0.80 0.0810

Support vector
machine [14] 78.97 79.08 31.27 73.35 78.69 0.79 0.0154

Majority Vote [14] 79.80 80.00 30.46 74.16 77.01 0.81 0.1968
AntMiner+ [14] 80.65 78.88 30.90 74.22 79.43 0.84 0.0345

Proposed
ADBBO-RBFNN

model
81.92 80.96 29.71 75.41 82.57 0.90 0.0067

JM1

Näıve Bayes [5] 68.98 69.77 36.54 66.11 60.78 0.68 0.6547
Random Forest [5] 66.72 72.38 33.47 66.62 63.97 0.75 0.6721
C4.5 Miner [5] 69.08 68.55 40.67 63.87 62.35 0.61 0.5498
Immunos [5] 70.99 70.21 43.00 63.32 64.55 0.63 0.4219
ANN-ABC [5] 71.00 73.05 41.00 64.00 61.00 0.71 0.4057

Hybrid
self-organizing

map [13]
71.02 74.90 40.57 64.75 72.33 0.82 0.5692

Support vector
machine [14] 70.89 79.00 39.87 65.09 70.32 0.81 0.3759

Majority Vote [14] 74.65 73.46 40.36 66.30 75.92 0.83 0.0345
AntMiner+ [14] 75.81 80.96 37.12 68.67 74.51 0.72 0.1786

Proposed
ADBBO-RBFNN

model
79.85 82.31 36.22 70.69 77.03 0.87 0.0156

KC1

Näıve Bayes [5] 74.33 76.85 35.71 68.90 65.87 0.79 0.9854
Random Forest [5] 72.54 75.89 37.91 66.90 67.99 0.80 0.6231
C4.5 Miner [5] 76.42 75.64 34.05 70.71 68.01 0.64 0.7893
Immunos [5] 78.05 72.91 36.92 69.63 63.55 0.71 0.6451
ANN-ABC [5] 79.00 77.00 33.00 72.00 69.00 0.80 0.2257

Hybrid
self-organizing

map [13]
80.92 80.94 35.67 71.40 78.43 0.86 0.1847

Support vector
machine [14] 81.37 81.27 28.96 75.65 79.24 0.83 0.5467

Majority Vote [14] 82.65 85.62 30.98 74.89 79.66 0.85 0.0578
AntMiner+ [14] 84.29 84.99 26.11 80.40 80.51 0.90 0.0346

Proposed
ADBBO-RBFNN

model
85.67 87.95 20.24 82.46 84.96 0.92 0.0239

KC2

Näıve Bayes [5] 77.24 75.98 24.57 76.32 74.00 0.82 0.1453
Random Forest [5] 70.32 70.71 23.90 73.05 77.81 0.82 0.5498
C4.5 Miner [5] 69.87 74.67 29.19 70.34 76.54 0.67 0.6672
Immunos [5] 76.51 75.92 25.06 75.71 72.90 0.73 0.4591
ANN-ABC [5] 79.00 76.00 21.00 79.00 79.00 0.85 0.3195

Hybrid
self-organizing

map [13]
80.98 77.82 23.09 78.85 85.98 0.91 0.1666
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Table 8: Continued.

NASA datasets Techniques Sensitivity Specificity FPR or pf Balance Accuracy AUC MSE (error)
Support vector
machine [14] 84.35 78.96 25.61 78.78 87.12 0.88 0.2789

Majority Vote [14] 86.71 84.77 20.38 82.80 83.47 0.82 0.1087
AntMiner+ [14] 86.07 83.98 21.88 81.66 90.86 0.80 0.0985

Proposed
ADBBO-RBFNN

model
87.96 86.24 17.93 84.73 95.65 0.95 0.0067

PC1

Näıve Bayes [5] 87.98 82.34 42.31 68.90 60.00 0.70 0.7689
Random Forest [5] 82.31 80.99 46.71 64.68 63.98 0.85 0.6792
C4.5 Miner [5] 76.58 81.76 38.24 68.29 62.18 0.68 0.5564
Immunos [5] 81.99 79.66 39.00 69.62 61.73 0.64 0.4987
ANN-ABC [5] 89.00 83.00 37.00 73.00 65.00 0.82 0.3125

Hybrid
self-organizing

map [13]
86.79 85.67 35.60 73.15 95.87 0.87 0.1325

Support vector
machine (SVM)

[14]
80.98 86.59 34.98 71.85 92.45 0.76 0.2037

Majority Vote [14] 84.61 84.37 36.08 72.26 92.50 0.85 0.1078
AntMiner+ [14] 89.34 87.12 37.29 72.58 91.85 0.91 0.0987

Proposed
ADBBO-RBFNN

model
90.89 89.33 30.23 73.49 96.29 0.93 0.0379

Table 9: Performance and comparison results of the proposed predictor on the five NASA datasets (cost-sensitive case, four different cost
ratios).

NASA
datasets

Performance
metrics

CR (cost ratio) = costfalse negative/costfalse positive

CR = 4.00 CR = 1.50 CR = 0.67 CR = 0.25
ANN-
ABC
[5]

Proposed
model

ANN-
ABC
[5]

Proposed
model

ANN-
ABC
[5]

Proposed
model

ANN-
ABC
[5]

Proposed
model

CM1
pd (or) TPR 91 96 75 81 62 74 21 32
pf (or) FPR 60 45 38 32 28 24 5 3
Accuracy 46 61 64 72 71 79 88 93

JM1
pd (or) TPR 99 99 80 87 44 56 8 21
pf (or) FPR 94 87 54 56 17 12 2 2
Accuracy 24 35 53 76 76 88 81 97

KC1
pd (or) TPR 93 98 87 93 59 74 22 45
pf (or) FPR 58 41 44 39 20 18 4 3
Accuracy 50 76 61 84 77 90 85 97

KC2
pd (or) TPR 90 96 80 92 74 87 37 67
pf (or) FPR 39 35 27 24 19 14 5 3
Accuracy 67 78 74 86 80 94 84 97

PC1
pd (or) TPR 94 98 89 96 66 78 23 41
pf (or) FPR 48 32 36 27 23 20 2 2
Accuracy 55 62 66 79 76 87 93 95
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Figure 6: Cost ratio versus NECM comparison of the proposed model with other classifiers for NASA datasets (a) CM1, (b) KC1, (c) KC2,
and (d) PC1.

In the proposed cost-sensitivemodel, NECM is employed
as a key performance metric to analyze the prediction
accuracy for the NASA datasets. The parameters of the
algorithmic models are the same as that given in Table 6 for
this cost-sensitive case also. The computed results employing
the proposedADBBObased cost-sensitive RBFNNmodel are
compared to prove its effectiveness with the other existing

classifiers from the literature: cost-sensitive boosting neural
network [83] and cost-sensitive ANN-ABC model [5]. On
comparing the NECM value computed, it is noted to be
largely decreased with increased cost ratio factor with respect
to other methods considered for comparison, proving its
effectiveness. Cost-sensitive case is compared only for four
datasets, as the literature results are not present for JM1
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dataset. On performing the proposed algorithm for JM1
dataset, it is observed that the solution converges to a min-
imum of 0.44 when the cost ratio is 10. Thus, it is well noted
that the proposed algorithmic predictormodel has resulted in
better solutions for the considered NASA datasets to predict
defectivemodels nearly for all cost ratios. It is well noted from
Figure 6(a) that NECM value is minimal (as shown in pink
color) as cost ratio increases in comparison with the other
methods from the literature showing significant variation.

The novelty in this work includes the applicability of
radial basis function (RBF) neuronal model for software
detection. Earlier literatures reveal that this so-called RBF
model has been applied for various fields like prediction,
control, market analysis, image applications, and so on. This
research paper applied this nonlinear neural network model
for software defect analysis and optimized RBF neural net-
work’s weights which are of high importance using adaptive
biogeography based optimization approach. The validation
of the proposed approach is done with respect to the given
comparison methods.

7. Conclusion

This paper proposed an adaptive dimensional biogeography
based optimization basedRBFNNclassifiermodel to perform
software defect prediction for the considered datasets from
NASA PROMISE repository. Radial basis function neural
network is a neuronal model employing Gaussian function
to enable the network to attain fast convergence. In this
paper, cost-sensitive RBFNN is developed along with a
proposed variant of biogeography based optimization. The
cost-sensitivity factor is added alongwithRBFNN to consider
the effects of false positive and false negative costs.The results
were simulated for both the non-cost-sensitive and the cost-
sensitive case. The cost factors were noted to possess their
influence on the probability of detection, probability of false
alarm, and accuracy. The computed results of the proposed
ADBBO-RBFNN predictor model are compared with the
earlier existing algorithms in the literature on the five NASA
datasets and the results obtained show that the performance
is better for the proposed algorithm significantly.
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