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Abstract: Microtubules (MTs), highly dynamic structures composed of α- and β-tubulin heterodimers,
are involved in cell movement and intracellular traffic and are essential for cell division. Within the cell,
MTs are not uniform as they can be composed of different tubulin isotypes that are post-translationally
modified and interact with different microtubule-associated proteins (MAPs). These diverse intrinsic
factors influence the dynamics of MTs. Extrinsic factors such as microtubule-targeting agents (MTAs)
can also affect MT dynamics. MTAs can be divided into two main categories: microtubule-stabilizing
agents (MSAs) and microtubule-destabilizing agents (MDAs). Thus, the MT skeleton is an important
target for anticancer therapy. This review discusses factors that determine the microtubule dynamics in
normal and cancer cells and describes microtubule–MTA interactions, highlighting the importance of
tubulin isoform diversity and post-translational modifications in MTA responses and the consequences
of such a phenomenon, including drug resistance development.

Keywords: α-tubulin; β-tubulin; microtubule; post-translational modifications; cancer;
microtubule-targeting agents (MTAs); tubulin-binding agents (TBAs); resistance

1. Introduction

Microtubules (MTs), which are dynamic cytoskeletal components, are hollow-tube filaments
usually built up of 13 protofilaments composed of α- and β-tubulin heterodimers connected by
noncovalent bonds (Figure 1). In eukaryotic cells, the initiation of tubulin polymerization, so-called
nucleation, is associated with the presence of templates, including the γ-tubulin ring complex (γ-TuRC)
or newly severed microtubule ends (so-called seeds) [1]. The elongation of polymerizing microtubules
results in the formation of a microtubular network which is involved in many cellular processes, such as
cell movement, cell shape determination, distribution of organelles, intracellular transport, and the
formation of the mitotic spindle, the key structure in chromosome segregation during cell division [2,3].
Moreover, microtubules form skeletons of complex eukaryotic structures such as centrioles, basal
bodies, and cilia [4]. Not surprisingly, defects in microtubule assembly or properties can lead to severe
diseases, including cancer [5].
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Figure 1. Scheme of the structure of microtubules, tubulin heterodimers, and functional surfaces
of tubulin.

Performing such different functions requires both the stability of microtubules and the
ability to quickly respond to cellular cues by shortening or directional growth. Within the cell,
microtubule dynamics depends on three intrinsic factors: (i) the isotype of the incorporated α-
and β-tubulins (as in most organisms, tubulins are encoded by multiple genes) [6–10]; (ii) the type
and level of post-translational tubulin modifications [11,12]; and (iii) interactions with non-tubulin
proteins, so-called microtubule-associated proteins (MAPs) [13,14]. Besides the intrinsic factors that
generate heterogeneous MTs, extrinsic physical factors (e.g., temperature) and chemical factors,
so-called microtubule-targeting agents (MTAs; also known as tubulin-binding agents (TBAs),
microtubule-interfering drugs, anti-microtubule drugs, or microtubule poisons) can influence MT
dynamics. Taking advantage of the possibility to externally modulate MT dynamics, several
microtubule-targeting agents have been employed as chemotherapeutic agents [15–17].

The effect of an individual anti-tubulin/anti-microtubule compound on the polymer mass, stability,
and dynamics of microtubules is very complex. Basically, MTAs can be divided into two main
categories. Compounds of the first category (microtubule-stabilizing agents (MSAs)), after binding
to the tubulin heterodimer, increase the lateral interactions between heterodimers, which at high
compound concentration leads to increased polymerization and stabilization of MTs, resulting in
increased polymer mass within the cell. Compounds from the second group (microtubule-destabilizing
agents (MDAs)) decrease or inhibit mainly longitudinal interactions between heterodimers at high
concentrations, resulting in MT depolymerization and decreased polymer mass. Notably, at lower
concentrations used in clinical applications, both types of MTAs only finely tune MT dynamics, with no
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effect on polymer mass or overall cytoskeleton features [16,18]. To date, six binding sites are recognized
in the tubulin surface and numerous small molecules or macrocyclic compounds that alter intra- and
intertubulin interactions by binding with these pockets [18].

In this review, we focus on the factors that determine microtubule dynamics in normal and cancer
cells. We describe the microtubule–MTA interplay, highlighting the significance of the diversity of
tubulin isoforms and their post-translational modifications in MTA response, and the consequences of
this phenomenon, including the development of drug resistance. Due to the large number of chemical
compounds used in cancer therapies, this paper covers only a narrow range of molecules.

2. Structure of Tubulin: Molecular Basis of MT Dynamics

The 3D structure of microtubule subunits was resolved in 1998 [19]. That study and subsequent
studies showed that α- and β-tubulins share high structural similarity; both are composed of several
large secondary structures, including 10 β-strands (S1–S10) and 12 α-helices (H1–H12) linked by
loops [19]. Additionally, six small helices (H1’, H2’, H2”, H3’, H9’, and H11’) are located on loops near
the larger structures [20]. Helices H1–H12 and strands S1–10 constitute the protein body, which can be
divided into three main domains: an N-terminal, also called a nucleotide-binding domain, a so-called
intermediate domain, and a C-terminal part. The N-terminal domain (amino acids 1 to ~205) comprises
six parallel β-strands (S1–S6) alternating with α-helices (H1–H7) linked by loops. The intermediate
domain (aa ~206–381) is formed by three helices (H8–H10) alternating with four β-strands (S7–S10).
The C-terminal domain (aa ~382 to ~451) is composed of two α-helices (H11–H12), followed by several
unstructured amino acids that extend beyond the globular part as the so-called tubulin tail [19,20].

The nucleotide-binding and intermediate domains form the main part of the globular protein
body with four distinguishable functional surfaces: plus end, minus end, H3 surface, and ML surface
(Figure 1) [19,21].

The plus and minus ends of adjacent tubulins bind to each other, participating in longitudinal
tubulin interactions necessary for the formation of both heterodimers and protofilaments. The minus
end surface includes the amino acids of helix H10 and loops H3–S4, T7, and H10–S9 (Figure 1). The plus
end is composed of residues from helices H1, H6, and H11; strand S3; and loops T3, T5, H6–H7, and
H11–H12 (Figure 1). Therefore, the plus end surface also includes the nucleotide-binding pocket (NBP)
where GTP/GDP is tethered (Figure 1). Importantly, the α-tubulin plus end is tightly associated with
the minus end of the β-tubulin within the heterodimer and, thus, its NBP is permanently associated
with GTP (so-called non-exchangeable or N-site). Its precise function is unknown, although mutations
that alter the GTP-binding site on α can be highly deleterious [22]. By contrast, the β-tubulin plus
end, including NBP, is exposed, allowing exchange of GTP to GDP (so-called exchangeable or E-site).
The GTP-bound dimer acquires a so-called curved conformation, which allows it to be accommodated
at the microtubule tip. In fact, cryo-EM studies show that the microtubule tip has a slightly “open”
morphology (see Figure 1) (reviewed in [18,23]). After being incorporated into a microtubule wall,
a heterodimer acquires a so-called straight conformation, which requires “compression” of theα-tubulin
intermediate domain by moving S8 and S9 closer to H8 [24].

The hydrolysis of α-tubulin–GTP causes compaction of the heterodimer and sub-nanometer
shortening of the protofilament, changing longitudinal but not lateral forces within the microtubule [25].
Although GTP-to-GDP conversion is an important factor that regulates microtubule dynamics by
triggering conformational changes in tubulin dimer, several studies suggest that other tubulin regions,
including intermediate and C-terminal domains, could also be involved in this process [26–28].

The H3 and ML surfaces are involved in lateral interactions between heterodimers of neighboring
protofilaments, leading to the arrangement of the protofilments into a cylindrical structure [19]. The H3
surface consist of helix H3 and strand S3 as well as loops H1–B1, H2–B2, and H4–S4, while the ML
surface contains helices H6, H9, and H10 and loops H6–H7, S7–H9 (M-loop), and H9–S8 (Figure 1) [19].

The secondary structures of the C-terminal domain, helices H11–H12, are organized into the
so-called outside of the tubulin, which in the MT, is exposed to the cytoplasm. The two helices form a



Molecules 2020, 25, 3705 4 of 36

surface on which microtubule-associated and motor proteins can bind [19,20], while the unstructured
C-terminal amino acids (10 in α-tubulin and 18 in β-tubulin) form the tubulin tail. This region is
particularly variable, showing the most amino acid sequence differences between tubulin isotypes
(Table 1). Such sequence divergence may provide the structural basis for the construction of specific
types of microtubules and determination of their particular properties and functions [19,20].

3. Intrinsic Factors Affecting Microtubule Dynamics

3.1. Tubulin Isotypes and Microtubule Dynamics

The human genome encodes seven α- and nine β-tubulin isotypes [29]. As a consequence,
MTs composed of mixed combinations of α- and β-tubulin isotypes show tissue and developmental
stage specificity and different properties in different cell types [30,31].

Human α-tubulins belongs to four classes (out of nine characterized in mammals; see [32,33]):
αI (isotypes αIa and αIb), αIII, αIV (isotypes αIVa and αIVb), and αVIII (Table 1). Interestingly,
two classes show tissue-specific distribution, with αIII restricted mainly to testis and αVIII to heart
and skeletal muscle, while the other two are widely distributed [34–39]. Although the tissue or cell
type-specific functions of α-tubulin isotypes were only recently addressed for several isotypes (αIa in
neuron migration [40], αIVa in platelets [41], and αVIII in brain and testis [42]), the role of α-tubulin
isotypes in MT dynamics remains unknown.

Human β-tubulins belong to seven classes (out of nine in mammals): I–VI and VIII (Table 1).
From published data and the publicly available National Center for Biotechnology Information (NCBI)
database, it seems that the most ubiquitously expressed isotypes are βI, βIVb, βV, and βVIII, while
other β-tubulins have more specific tissue distribution (Table 1) [43]. Interestingly, although they are
widely distributed, βI, βV, and βVIII were shown to have nonredundant roles in specific cellular or
developmental processes. The silencing of βI expression in differentiating human neuroblastoma cells
was lethal, while depletion of βI in undifferentiated cells had no apparent effect on cell survival [44].
On the other hand, βVIII is essential for oocyte maturation and early embryo development [45].

βII,βIII, andβIVa are mainly expressed in the brain (Table 1) [43,46,47]. Accordingly, experimental
data indicate their specific role in processes related to the nervous system. The silencing of βII inhibits
neurite outgrowth in differentiating neuroblastoma cells, while βIII was suggested to protect cells
against oxidative stress [44]. However, more recent data with the use of Tubb3 knockout mice
indicate that the βIII isotype functions in the process of axon growth and nerve regeneration [48].
An interesting observation was made for βIVa: mutations in this tubulin can cause dysfunction of
neurons, oligodendrocytes, or both [49].

Not much is known about the functions of other β-tubulin isotypes, βIVb and βVI. The latter
shows slightly higher expression in bone marrow (Table 1) and is essential for the formation of platelet
cytoskeleton (reviewed in [50]); in many publications, the TUBB1 gene product, following protein
names in the database, is called β1 or β-1 instead of βVI).

How do particular α - and β-tubulin isotypes relate to MT dynamics? The answer to this question
came from studies focusing mainly on the comparison of the properties of three neuronal isotypes, βII,
βIII, and βIV. The molecular surfaces of tubulins are very similar, considering the level of amino acid
similarity, which for α-tubulins reaches approximately 90–95%, and is slightly lower for β-tubulins at
~85–95% (with βVI being the most divergent, with approximately 75% similarity to other isotypes).
Most amino acid substitutions are accumulated within the C-terminal tubulin tail (Table 1), suggesting
that this part could be responsible for the potential variation of properties of tubulin isotypes and,
subsequently, the differences in MT dynamics [29]. However, several β isotypes also have unique
substitutions in other regions important for the formation of functional surfaces and pockets.
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Table 1. Features of human tubulin isotypes.

Tubulin
Isotype Gene Name Expression

Cell
Type-Specific

Functions

Sequence of
C-Terminus * Reference

αIa TUBA1A ubiquitous neuron
migration VEGEGEEEGEEY [40,51]

αIb TUBA1B ubiquitous VEGEGEEEGEEY [52]
αIc TUBA1C ubiquitous ADGEDEGEEY [53]
αIIIc TUBA3C testis VEAEAEEGEEY [54]
αIIIe TUBA3E testis VEAEAEEGEAY [55]

αIVa TUBA4A ubiquitous platelet
biogenesis YEDEDEGEE [41,56]

αVIII TUBA8

high: heart and
skeletal muscle

moderate: brain,
testis, and thyroid
very low: all other

tissues

spermatogenesis FEEENEGEEF [35,42,57]

βI TUBB ubiquitous
survival of

differentiated
neuroblastoma

EEEEDFGEEAEEEA [43,44,58]

βIIa TUBB2A
high: brain

very low: all other
tissues

neurite
outgrowth DEQGEFEEEEGEDEA [43,44,59]

βIIb TUBB2B
high: brain

very low: all other
tissues

neurite
outgrowth DEQGEFEEEEGEDEA [43,44,60]

βIII TUBB3 moderate: brain
low: testis

oxidative stress
axon and nerve

regeneration
EEEGEMYEDDEEEESEAQGPK [43,44,48,61]

βIVa TUBB4A
high: brain

moderate/low: other
tissues

neurons and
oligodendrocyte

function
EEGEFEEEAEEEVA [43,49,62]

βIVb TUBB4B/
TUBB2C

ubiquitously
expressed

high: testis, bone
marrow, and heart

moderate/low: other
tissues

EEEGEFEEEAEEEVA [43,63]

βV TUBB6 ubiquitous at low
levels

related to
skeletal muscle

regeneration
NDGEEAFEDEEEEIDG [43,64,65]

βVI TUBB1

very low level in all
tissues, highest in
bone marrow and

spleen

platelet
cytoskeleton VLEEDEEVTEEAEMEPEDKGH [43,66]

βVIII TUBB8
very low in all

tissues, highest in
testis

oocyte
maturation,

early
development

EEEEDEEYAEEEEVA [67]

Blue: negatively charged amino acids, red: positively charged amino acids, yellow: C-terminal tyrosine residue,
purple: phosphorylatable residue, * sequences were taken from the NCBI database.

Among the investigated β-tubulin isotypes (βII, βIII, and βIV), βIII is the most divergent,
with substitutions in globular protein body including: (i) helix H3 (serine in positions 124 and 126 is
substituted by cysteine and asparagine, respectively), (ii) loops H1–S2 and H2–S3 (structures involved
in the formation of H3 surface), (iii) structures located proximal to the ML surface (H6–H7 loop
threonine 217 and S7–H9 loop serine 275 substituted to alanine) [68], and (iv) T7 loop (minus end
surface) near colchicine-binding site (cysteine 239 substituted by serine). Moreover, the C-terminal
tail of βIII is very divergent. It contains positively charged lysine (Table 1) and a phosphorylatable
serine [69,70]. These variations are potentially important for the overall tubulin structure; in fact,
an atomic model of βIII-containing MTs shows slight but significant displacement of the H1–S2 loop
and part of the ML surface-forming structures with respect to βII-containing MTs [68]. However, how
βIII substitution relates to its specific properties is mainly unknown.

For more than two decades, it has been known that MTs assembled from βIII tubulin are more
dynamic than MTs containingβII orβIV [9]. More recent data indicate that the main difference is caused
by the significantly increased catastrophe rate (depolymerization) of βIII-containing MTs [27,71,72],
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while the growth rate seems to be similar [27,71] or only slightly lower [72]. The dynamic features of
MTs assembled with specific isotypes were retained when the C-terminal tails of βII and βIII were
interchanged, indicating that the dynamic properties of these two tubulins are “encoded” within the
main globular protein body [71]. Remarkably, not only dynamics, but also resistance to depolymerizing
factors and structural features vary between βII- and βIII-containing MTs, with the former showing
lower resistance to depolymerizing agents and more protofilaments in the MT wall (14) than the
latter (βIII contains 13 protofilaments and shows more resistance to depolymerizing factors) [68].
Interestingly, when two populations of tubulin heterodimers are mixed with different stoichiometry,
assembled MTs show intermediate dynamics [68,71,72].

On the other hand, at low tubulin concentration, the MTs nucleate much more slowly if the
tubulin heterodimers contain βIII-tubulin compared to βII or βIV. Interestingly, this difference can be
abolished by the proteolytic removal of C-terminal tail [8]. This result indicates that although it is not
crucial for dynamic tubulin properties, the tubulin C-terminus can influence other features that could
be important for MT cytoskeleton formation within the cell.

To summarize, growing evidence indicates that the intrinsic properties of tubulin isotypes,
the expression of specific isotypes, and their ratio within the cell are significant factors influencing
MT dynamics.

3.2. Post-Translational Modifications of Microtubules

Tubulin modification sites, modifying enzymes, and functions of post-translational modifications
(PTMs), including the impact on MT dynamics, have recently been broadly reviewed [12,33,73,74].
Thus, here, we will only briefly summarize how PTMs affect MT dynamics.

Both α- and β-tubulin undergo a number of post-translational modifications that change the
properties of the free tubulin heterodimers and microtubules. Tubulin PTMs can modulate MT dynamics
directly or indirectly by influencing the interactions between MTs and microtubule-interacting proteins
(which can stabilize, destabilize, or cut microtubules).

While for the vast majority of modifying enzymes, a tubulin heterodimer already incorporated into
the microtubule lattice is a preferred substrate, in some cases, free tubulin heterodimers are effectively
modified. The latter can affect the binding of tubulin heterodimers to the microtubule plus end and,
thus, affect microtubule growth and stability. For instance, acetylation of lysine 252 of β-tubulin by San
acetyltransferase slows down the rate of tubulin incorporation into the microtubule and consequently
reduces the rate of MT assembly [75]. Phosphorylation of serine 172 ofβ-tubulin by minikinase/DYRK1a
(neurons) or cyclin-dependent kinase Cdk1 (mammalian mitotic cells) inhibits the incorporation of
tubulin heterodimers [76,77], while heterodimers containing αIc-tubulin phosphorylated at serine
165 assemble more effectively than unmodified ones [78,79]. Serine and threonine residues of α- and
β-tubulin can also be modified by O-Glc-NAcylation [80,81] and, in vitro, such modified tubulins are
not incorporated into microtubules [81].

The presence of differentially modified MTs within the cell is crucial in the assembly, disassembly,
and rearrangement of the microtubular cytoskeleton [82]. Newly polymerized dynamic microtubules
are highly tyrosinated (besided αIVa, tyrosine is encoded in the C-terminus of α-tubulins, see Table 1).
With time, the tyrosine is removed by the vasohibin family, VASH1 and VASH2 tubulin detyrosinases,
generating so-called detyrosinated tubulin. Detyrosinated tubulin is found in spindle and is essential
for correct chromosome congression [83]. Glutamic acid residue, which is the most frequent penultimate
residue inα-tubulin, can also be removed by cytosolic carboxypeptidases, irreversibly forming so-called
∆2-tubulin [84–87]. After depolymerization, free detyrosinated α-tubulin can be re-tyrosinated by
tubulin tyrosine ligase (TTL) [88,89].

The α-tubulins I, II, III, IV, and VII have a lysine at position 40. Acetylation of lysine 40 residue
by α-tubulin N-acetyltransferase 1 (ATAT1) has been known to mark stable microtubules [90–93].
The modification is reversible, and tubulin deacetylation is carried out by histone deacetylase 6
(HDAC6) [94] and Sirt2 deacetylase [95]. Recent analysis using high-resolution cryo-electron microscopy
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showed that the acetylation of lysine 40 restricts the range of motion of the loop containing K40, likely
weakening the lateral contacts between protofilaments [96] and thus increasing MT flexibility [97,98].

Polyamination of α- and β-tubulin by a transglutaminase causes the formation of hyperstable,
cold-resistant microtubules. This modification is important for neuronal development and axon
maturation [99]. The positions of the main polyamination sites near the GTP pocket (glutamine 15 in
β-tubulin) and α-tubulin minus end suggest that tubulin polyamination could affect GTP binding or
hydrolysis and microtubule lattice stabilization [99].

Glycylation and glutamylation of α- and β-tubulin can occur as mono- or polymodification, and
glycyl or glutamyl residues are ligated to the glutamic acid residues within the C-terminal tail [73,92].
These tubulin modifications are catalyzed by enzymes related to TTL, called tubulin tyrosine ligase-like
(TTLL) [73]. The reverse reaction (deglutamylation) is carried out by cytoplasmic carboxypeptidases
(CCPs). To date, the identity of tubulin deglycylase remains unknown [92].

3.3. Microtubule-Associated Proteins and Microtubule Dynamics

Microtubule-associated proteins (MAPs) are another intrinsic factor affecting microtubule
dynamics (reviewed in [100–102]). Generally, MAPs function as MT stabilizers or destabilizers; however,
stabilization/destabilization of MTs can be achieved by affecting one of several processes, including
MT nucleation [1] and stabilization/destabilization of the MT ends [2] or of the MT lattice [102,103].
For this reason, MAPs are divided into several functional categories: (i) microtubule nucleators,
(ii) MT end-binding proteins, (iii) lattice-binding proteins also known as structural MAPs, (iv) enzymes
severing or depolymerizing microtubules, and (v) motor MAPs (kinesin, dynein) that generate forces
and use microtubules as tracks for intracellular transport [102]. Intriguingly, some MAPs can participate
in several MT dynamics-related processes. For example, XMAP215 can be classified as both an MT
nucleator and a plus end-binding protein [1,2] while kinesin-13 family proteins are motor proteins
that bind to microtubule plus ends and have MT-depolymerizing properties [104,105]. Because MAPs
form a large class of proteins and a number of high-quality reviews on this topic are already available,
we will only provide a short overview of these proteins, highlighting the relationship between MAPs
and MT dynamics.

Microtubule nucleators enhance the initiation of MT formation from both γ-TuRCs and
microtubule seeds and stabilize growing MTs. This category of MAPs includes XMAP215/CKAP5, TPX2
(targeting factor for Xklp2), DCX (doublecortin), CAMSAP (calmodulin-regulated spectrin-associated
protein)/Patronin, CLASP (cytoplasmic linker associated protein), and p150Glued proteins [1,23].
They are believed to act mainly as enhancers of longitudinal and lateral contacts between tubulin
dimers [1]. Interestingly, TPX2, besides its nucleating activity, also suppresses MT depolymerization
and shrinkage, and thus increases MT stability [106].

Proteins that bind to MT ends are specific to either the plus (so-called +TIPs [107]) or minus
end (so-called −TIPs [108]). Plus TIPs belong to approximately 20 different families of proteins [107].
EB (end-binding) proteins form a core of +TIP network and the majority of studies suggest that they
stabilize or protect the MT plus end [107]. EB proteins interact with both the MT plus end and other
+TIP proteins that can be either stabilizers (as CLIP-170 (cytoplasmic linker protein 170)/CLIP1 and
CLASP proteins), destabilizers (as kinesin-13 family proteins), or polymerases (as XMAP215 protein).
Within the cell, the interplay between these proteins results in MT growth or shrinkage (reviewed
in [2,23,107]).

Stathmin-1, also known as Op18 (oncoprotein 18), binds to the MT plus end but is not included in
the +TIP protein class. It was first discovered as an oncoprotein highly expressed in some types of
leukemia, breast, and ovarian cancers [109]. Stathmin-1 causes a decrease of the MT polymer mass
by two mechanisms: (i) by binding two tubulin dimers in a curved conformation and inhibition of
their incorporation into microtubule and (ii) by interfering with the lateral bonding between tubulin
subunits, leading to destabilization of the microtubule tip and MT shrinkage [110,111].
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A recently described class of −TIP, includes CAMSAP proteins and the KANSL complex [108].
In mammals, CAMSAP proteins protect the MT minus end against the depolymerizing activity of
kinesin-13. Additionally, CAMSAP2 and 3 proteins decrease the rate of tubulin incorporation at the
minus end, decreasing its dynamics [112]. The functions of KANSL complex are still unknown [108].

The lattice-binding MAPs include classical MAPs, MAP1, MAP2, MAP4, MAP6, MAP7, and
Tau, which promote polymerization, stabilization, and bundling of microtubules (reviewed in [102]).
They also regulate the association of MTs with other cytoskeletal fibers, organelles, and membranes,
and influence the ratio of transport along MTs and MT severing by physically blocking the access
of motors and severing enzymes. Additionally, structural MAPs can regulate the number of MT
protofilaments [102]. Interestingly, it seems that MAP6 has unique properties and functions as it is a
microtubule luminal protein and protects MTs against drug and cold-dependent destabilization [113].
With the exception of MAP4, which is a ubiquitous protein, and the expression of MAP7 in epithelial
cells, the expression of structural MAPs is mainly restricted to the brain [114].

Microtubule organization is also regulated through the microtubule-severing proteins katanin,
spastin, and fidgetin, whose activity can lead to MT shortening or even depolymerization, but also to
the formation of numerous microtubule seeds that serve as MT nucleation templates and free tubulin
dimers that can be incorporated into new microtubules. Therefore, severing activity can have both a
negative and positive effect on MT dynamics and microtubule polymer mass (reviewed in [103]).

It should be noted that, within a cell, the organization and dynamics of MTs is a result of the interplay
between tubulin isotypes, their posttranslational modifications, and microtubule-associated proteins.
For example, tyrosination increases the affinity of MT to the stabilizing protein, CLIP-170/CLIP-1
but, also to depolymerizing proteins from the kinesin-13 family [115–117]. Similarly, tubulin
polyglutamylation affects the interactions of MT with several MAPs, including Tau, MAP1, and MAP2,
but also with MT-severing proteins [118–120].

4. Extrinsic Factors Affecting Microtubule Dynamics

4.1. Microtubule-Targeting Agents

The surface of the globular part of tubulins contains several pockets that can be intercalation sites
for MTAs. These compounds, while embedded in the tubulin structure, can alter the microtubule
dynamics. This feature of MTAs is used in cancer therapy, as it was shown that treatment of cancer
cells with MTAs led to the mitotic arrest and consequent cell death [18,121]. Many MTA compounds
are produced by plants, fungi, and invertebrates as a natural defense against antagonists, competitors,
or parasites (for a review, see [122]).

Currently, six MTA-binding sites, named after the main compounds with affinity to them, have
beem described (Figure 2). Four pockets are located on β-tubulin: taxane, laulimalide/peloruside,
vinca, and maytansine sites. The colchicine site is islocated near the intradimer interface between
the α- and β-tubulin subunits, while the pironetin site is a binding pocket located on the α-tubulin
surface (for a review, see [18]). Taxane and laulimalide/peloruside sites bind compounds that stabilize
microtubules (MSAs), while the other four pockets accommodate factors that destabilize MTs (MDAs).
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Figure 2. Location of the microtubule-targeting agent (MTA)-binding site on tubulin and the MTA
mechanism of action. Microtubule-stabilizing agents (MSAs) (taxane and laulimalide/peloruside-site
ligands) promote microtubule (MT) growth (red arrow) by stabilizing lateral contacts between
neighboring heterodimers (see text). MDAs inhibit MT growth and destabilize MTs (crossed out black
arrow) by inhibiting addition of new heterodimers at the MT plus end (maytansine- and pironetin-site
ligands) or by inhibiting transition of heterodimer structure to straight conformation (colchicine- and
vinca-site ligands) (see text).

4.2. Tubulin Pockets

4.2.1. Taxane Site

Paclitaxel, a tetracyclic diterpenoid originally isolated from Taxus brevifolia in the 1960s [123],
was approved for the treatment of ovarian cancer in 1992 by the US Food and Drug Administration (FDA)
as Taxol®. Now, paclitaxel is produced by a semi-synthetic route by modifying 10-deacetylbaccatins
III derived from the European yew Taxus baccata [124].

Paclitaxel and its derivates are used in diverse cancer therapies and are characterized by high
neurotoxicity, myelosuppression, poor water solubility, and the occurrence of multidrug resistance
(MDR) in treated tumors (see below). This led to the search for and discovery of other compounds that
enhance microtubule stabilization, including epothilones A, B, and D; discodermolide (DDM) and the
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DDM–paclitaxel hybrid KS-1-199-32; dictyostatin; taccalonolide A and J; and zampanolide (Figure 3)
(for reviews, see [18,125,126]).
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Epothilones A and B are macrolide drugs (natural products that consist of a large macrocyclic
lactone ring) produced by the myxobacterium Sorangium cellulosum [127]. Unlike paclitaxel, they are
highly soluble in water and are not a substrate for P-glycoprotein, which actively transports drugs
out of the cell. A semi-synthetic derivate of epothilone B, ixabepilone, was approved for cancer
treatment [128,129].

Zampanolide, a sponge-derived macrolide, and taccalonolide A and J, polycyclic steroids isolated
from plants of the genus Tacca, were more recently discovered and are still under investigation, but are
promising antitumor drug candidates [130]. They both have the unique ability to bind covalently to
taxane-site residues asparagine 228/histidine 229 and aspartic acid 226 [130,131].

Taxane-site targets are used in the treatment of various cancers, including ovarian (paclitaxel),
breast (paclitaxel, docetaxel, larotaxel, ixabepilone), lung (docetaxel, epothilone B, larotaxel), bladder
(larotaxel), hormone-resistant prostate cancer (cabazitaxel), and others [128,129,132–137].

The taxane (Figure 2) site is located near the ML surface, on the “inside” side of the tubulin (which
in MT, faces the lumen), and is formed by hydrophobic residues of H7, S7, and loops H6–H7, S7–H9
(M loop), and S9–S10 (Figure 2) [19,20,138]. All compounds (Figure 3) that bind to the taxane site form
hydrophobic and polar contacts with pocket amino acids and strengthen the lateral contacts between
heterodimers of adjacent protofilaments, leading to MT stabilization (Figure 2). The mechanism of
microtubule stabilization is compound-specific [25,131,138,139]. Several compounds that contain
side chains, such as epothilone A and zampanolide, engage with the M loop, stabilizing it into a
short helix [138]. Significantly, a similar helical conformation of the M loop was observed in native
polymerized MTs [25,138], indicating its importance in the formation of stable MT. Other compounds
(e.g., taccalonolide A and J) cause displacement of the M-loop into a more open conformation,
facilitating lateral interactions between adjacent protofilaments [131]. By contrast, paclitaxel was
suggested to stabilize MTs via an allosteric mechanism by preventing dimer compaction after GTP
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hydrolysis [25,138]. A similar indirect effect was also proposed as an additional mechanism of MT
stabilization for taccalonolide AJ and zampanolide [130,131].

4.2.2. Laulimalide/Peloruside Site

Laulimalide and peloruside A (Figure 4), macrolides originally isolated from marine
sponges (Cacospongia mycofijiensis and Mycale hentscheli, respectively) [140–142], are promising
non-taxane-site MSAs. Although high-resolution X-ray crystallography and cryo-EM have resolved
the tubulin–compound interactions in detail [138,143], biological investigation of these MTAs is still
ongoing [144–146].
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Figure 4. Structure of laulimalide and peloruside A.

The laulimalide/peloruside site is positioned at the opposite side of the ML surface with respect to
the taxane site, i.e., the “outside” surface of the MT wall (Figure 2), and is formed by hydrophobic and
polar residues of H9 (including a short loop that divides H9 into H9 and H9’), H10, and loop H10–S9
of β-tubulin (Figure 2) [138,143].

After binding laulimalide or peloruside to the β-tubulin pocket, MTs are stabilized by two
main mechanisms which strengthen the lateral contacts between neighboring protofilaments. First,
the β-tubulin M loop shifts to an “open” conformation (without forming the regular secondary
structure). Second, the position of both agents within the pocket allows their interaction with the
H3 surface of the adjacent heterodimer, which leads to bridging of neighboring protofilaments
(Figure 2) [143]. In the case of peloruside A, an especially strong effect is observed in the seam, where
the lateral contacts are weaker. It was also proposed that both compounds fix structures located near
the M loop and, thus, have an additional allosteric effect on MT stabilization [143].

4.2.3. Vinca Site

The naturally occurring vinca alkaloids (vincristine and vinblastine) were discovered in periwinkle
(Catharantus roseus G. Don.) in the late 1950s (Figure 5). These are first-generation vinca alkaloids
that have achieved significant clinical progress [147,148]. The therapeutic success of vinca alkaloids
in the treatment of hematological cancers (mainly childhood leukemia) [149] led to the development
of diverse semi-synthetic analogs (Figure 5) [150], including vindesine, vinorelbine, and vinflunine,
the latter used for the treatment of solid tumors, particularly metastatic breast cancer [151]. However,
similar to taxanes, vinca alkaloids have severe side effects (peripheral neuropathies and reversible
myelosuppression) [152,153].
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Figure 5. Structure of vincristine, vinblastine, vindesine, vinorelbine, vinflunine, dolastatin-10,
dolastatin-15, TZT-1027, cryptophycin 1, FK228, halichondrin B, and E-7389.

Besides vinca alkaloids, several other groups of compounds were also shown to target the vinca site,
including peptides, depsipeptides, and macrolides, and some have been used in clinical trials (reviewed
in [18,125,154,155]). Currently, vincristine and vinblastine are used for the treatment of breast cancer,
lymphomas, and sarcomas [150], vinorelbine for breast and lung cancer, sarcomas, and glioma [150,156],
vindesine for lung cancer [150], vinflunine for urothelial cancer [157,158], vintafolide (vinflunine and
folate) for lung, ovarian, and endometrial cancer [159], eribulin for liposarcomas, bladder cancer, and
metastatic breast cancer [160,161], and dolastatin 10 for solid tumors [162].

The vinca site is located at the plus end surface of β-tubulin and is formed by residues of H6
and loops T5 and H6–H7; however, several agents also bind to H7 and β-tubulin-bound nucleotide
sites [163–165]. The vinca-site ligands also form connections with α-tubulin of the subsequent dimer,
interacting with its minus end surface structures, including H10, S9, and T7 loop [163].

The binding of ligands to the vinca site alter the surface of the β-tubulin plus end, forming a
so-called wedge (Figure 2) [163], thus interfering with the incorporation of new heterodimers at the
MT plus end. As a result, the plus end heterodimers remain in curved conformation, which inhibits
formation of the MT wall and leads to destabilization [163]. It was also shown that vinca-site ligands
can cause the formation of ring-like tubulin oligomers, decreasing the level of free tubulin available for
polymerization (Figure 2) [163,166]. Additionally, several vinca-site compounds were shown to have
an allosteric effect on the inhibition of lateral contacts between dimers by stabilizing the M loop in the
interaction-incompetent conformation [165].

4.2.4. Maytansine Site

Maytansine and its derivatives were first isolated from an African shrub, Maytenus ovatus [167].
They belong to the natural product group of maytansinoids, macrolides of the ansamycin type
(Figure 6). Later, other groups of compounds, including macrocyclic polyketides (disorazole Z,
Figure 6), macrocyclic lactones (rhizoxin, Figure 6), lactones (plocabulin, PM060184, Figure 6),
and macrocyclic lactone polyethers (spongistatin 1, Figure 6) were isolated.
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It is worth noting that PM060184 is currently under clinical evaluation [168], while ado-trastuzumab
emtansine was recently approved for adjuvant treatment of patients with HER2-positive early breast
cancer [169] and was shown to prolong patient survival with a manageable safety profile [170].

The maytansine site is located in close vicinity to NBP and the vinca site, but is formed by other
structures, including H3’, H11, H11’, and loops H11–H11’, T3, and T5 (Figure 2) [171].
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The experimental evidence indicates that the inhibitory effect of maytansine-site ligands
is a direct consequence of the occupation of the β-tubulin pocket. In growing microtubules,
the maytansine-binding pocket of the MT plus end β-tubulin accommodates the minus end structures
of the α-tubulin of a newly added heterodimer, including S8, H8, and loop H10–S9 [171]. Incorporation
of maytansine-site ligands prevent this interaction, impeding MT elongation (Figure 2).

4.2.5. Colchicine Site

Colchicine (Figure 7) was isolated from autumn crocus Colchicum autumnale. This alkaloid contains
three rings, of which rings A and C bind to β-tubulin, while aromatic ring B binds to α-tubulin [172].
Colchicine–tubulin binding is a slow, strongly temperature-dependent, and practically irreversible
process [173]. Although colchicine has been used clinically in the treatment of nonneoplastic diseases
(gout, familial Mediterranean fever), neither colchicine nor other related compounds were successful
as chemotherapeutic agents owing to their severe toxicity to normal tissues at doses required for
antitumor effects [174,175].
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Figure 7. Structure of colchicine, combretastatin A-1, combretastatin A-4, OXi 4503,
fosbretabulin, ombrabulin, 2-methoxyestradiol, chalcone: trans-1-(2,5-dimethoxy)-3-[4 (dimethylamino)
phenyl]-2-methyl-2-propen-1-one (MDL 27048), podophyllotoxin, indibulin, and TH588.

Over the last few decades, compounds of low toxicity which target the colchicine site have
been reported (Figure 7), including derivatives of stilbenoid–combretastatins (combretastatin A-1
phosphate/OXi4503, combretastatin A-1, combretastatin A-4, fosbretabulin, ombrabulin), chalcones
(MDL 27048), compounds with furonaphthodioxole skeleton (podophyllotoxin), derivatives of indole
(indibulin), and natural metabolite of estradiol (2-methoxyestradiol). While no colchicine-site MTAs
are currently approved for cancer treatment, several are in phase I/III clinical trials [174] (for a review,
see [175]).

Recently, a compound initially designed as MTH1 (Mut T homolog 1) inhibitor, TH588, was shown
to dock into the colchicine-binding pocket [176]. By reducing microtubule plus end dynamics,
this cyclopropyl analog affects tubulin polymerization, resulting in disruption of mitotic spindles,
prolongation of mitosis and, eventually, apoptosis [176–178]. Preclinical studies show promising
results for the use of TH588 as an anticancer drug [179,180].

The colchicine-binding site is located near the plus end surface of β-tubulin in the center of
the tubulin heterodimer at the interface between α- and β-tubulin. It is a big pocket formed by the
hydrophobic and polar residues of H7, H8, S7, S8, and loop H7–H8 (T7 loop) that can be divided into
three zones: central zone 2 and two accessory zones, zone 1 facing α-tubulin and zone 3 buried deeper
within the β-tubulin pocket [181,182].

Binding of colchicine-site ligands to heterodimer causes its stabilization in the curved conformation
(Figure 2) [181]. As mentioned, during MT polymerization, tubulin dimers at the MT tip undergo a
transition from curved to straight conformation, which requires a shift of several β-tubulin structures
(S8–S9 and H8) closer to each other. As a result, the colchicine pocket is contracted [24,181]. While
the colchicine pocket is occupied by a ligand, such conformational changes cannot occur, making
colchicine ligand-bound heterodimer incompetent for polymerization [24,181].

4.2.6. Pironetin Site

Pironetin (Figure 8), a polyketide, is a natural product that was first extracted from fermentation
broths of Streptomyces sp. [183,184]. It is worth noting that pironetin is, to date, the only known
compound that exclusively targets the α-tubulin subunit and covalently binds to Cys316 of
α-tubulin [185,186]. The molecule and its derivates are currently under investigation and display
promising anticancer properties (reviewed in [187]).
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The pironetin-binding site is the only known pocket on α-tubulin targeted by MTAs. Its main
part is formed by residues of S8, S10, and H7, but residues of S4, S5, and S6 also participate in the
ligand accommodation [185]. The binding of pironetin leads to conformational changes of α-tubulin
within the minus end, including disordering of loop H7–H8 (T7 loop) and part of H8 [185]. Since
these structures are required for the formation of longitudinal interactions within protofilaments, it
was proposed that pironetin prevents MT polymerization by the formation of assembly-incompetent
pironetin-bound tubulin dimers (Figure 2) [185].

5. Factors Affecting Microtubule Dynamics in Cancer Cells

Carcinogenesis is a multistep process involving, among other actions, a remodeling of the
cytoskeleton. The transformation from highly polarized epithelial cells to multipolar spindle-like
metastatic cells that are able to detach from the extracellular matrix and migrate requires
extensive reorganization of the cytoskeleton, including microtubules, during a process called
epithelial–mesenchymal transition (EMT) (for a review, see [188]). The abnormalities of mitotic
spindle and consequent aberrant cell cycle progression and division lead to genomic instability (for a
review, see [189]). Thus, it is not surprising that numerous alterations in tubulins, including mutations
and variations in isotype expression level, post-translational modifications, and MAP composition,
were identified in cancer cells.

5.1. Tubulin Isotypes in Cancer and Anticancer Drug Resistance

Altered expression of tubulin isotypes is considered to be a hallmark in a range of cancers.
Analysis of clinical specimens has shown that in many cancers, a high expression of several β-tubulin
isotypes correlates with aggressive clinical behavior, chemotherapy drug resistance, and poor
patient outcome [121]. Strikingly, little is known about the level of tubulin isoforms in primary
nontreated cancers, while numerous studies indicate their variations after chemotherapy, especially
after taxane-based treatment [121]. In fact, some data show that in cancer cell lines, paclitaxel can itself
induce the expression of specific tubulin isoforms [190].

An increase in βI expression was observed in several cancers, including breast, colon, and
kidney cancer, while its level was decreased in prostate cancer (Table 2) [43,191–193]. In the case of
ovarian cancer, the data are inconsistent as both increased and invariant levels of βI expression were
reported [43,191,194,195]. High βI expression is associated with the acquisition of chemoresistance
to MTAs and poor prognosis in ovarian serous carcinoma and lung adenocarcinoma, but not in
lung squamous cell carcinoma [191,193,196]. Interestingly, recent data show that experimentally
lowering βI level by siRNA or mir-195 microRNA sensitizes adenocarcinoma cell lines to paclitaxel
and eribuline [193], indicating a direct correlation between βI level and MTA resistance, at least in
non-small-cell lung adenocarcinomas.

βIIa and b differ by only two amino acids and, thus, the expression of these two isotypes can
be distinguished at the RNA level but not at the protein level. Using PCR, it was shown that βIIa
is increased in NSCLC, prostate, and ovarian cancers, and decreased in kidney, colon, and breast
cancers [43], while βIIb is increased in ovarian cancer and decreased in kidney, colon, and breast
cancers [43]. Increased βIIb isoform was also recently associated with the metastatic stage of melanoma,
indicating its role in EMT transition [197]. βII was also examined at the protein level in several cancer
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types, including head and neck carcinomas (LASCCHN), ovarian carcinoma, colorectal cancer, and
breast cancer cell lines [194,196,198].

Table 2. Tubulin isotypes as survival and MTA-resistance prognostic markers in cancer.

High Level of Tubulin
Expression Cancer Prognosis Resistance to Reference

αIa renal poor n/a [38]
αIb hepatocellular carcinoma poor paclitaxel [199]

renal, breast n/a [38]

αIc liver, renal, pancreatic, colon,
breast, lung poor n/a [38]

αIVa liver poor n/a [38]
βI ovarian not determined paclitaxel [191]

breast not determined docetaxel [200]

NSCLC adenocarcinomas poor paclitaxel and
eribulin [193]

βII breast not determined docetaxel [196,201]
lung adenocarcinoma cell

line not determined paclitaxel [191]

βIIa urothelial poor n/a [38]
renal good n/a [38]

βIIb endometrial poor n/a [38]
βIII prostate poor docetaxel [202,203]

colon poor paclitaxel [204]

bladder, cisplatin resistant poor after paclitaxel
chemotherapy n/a [205]

gastric poor n/a [206]

gastric metastatic poor after taxane
chemotherapy n/a [207]

uterine serous carcinoma poor
paclitaxel,

sensitivity to
epothilone

[208]

lung carcinoma cell line n/a epothilone [209]
NSCLC poor vinorelbine [210]

NSCLC stage III/IV poor vinorelbine [211]

NSCLC stage I/II

good after
cisplatin/vinorelbine

adjuvant
chemotherapy

n/a [212]

ovarian poor n/a [213]

ovarian clear cell carcinoma good after taxane
based chemotherapy [214]

breast poor n/a [215]

breast not determined sensitivity to
taxanes [216] *

metastatic breast invariant sensitivity to
docetaxel treatment [217]

melanoma difference not
statistically significant paclitaxel [218]

βIVa endometrial poor n/a [38]
βIVb liver poor n/a [38]

thyroid, endometrial good n/a [38]

βV renal,
urothelial poor n/a [38]

NSCLC good
good response to

paclitaxel and
vinorelbine

[219]

breast not determined sensitivity to
taxanes [216] *

* only mRNA level was determined.

Similar to βI, in lung adenocarcinoma, breast cancer, and breast cancer cell lines, an increased
level of βII was associated with resistance to MTA [191,196,201], while in LASCCHN, it was associated
with poor survival after chemotherapy [198]. By contrast, in taxane-treated ovarian carcinomas, poor
outcome is associated with a low level of βII [194]. Interestingly, silencing of βII by siRNA in NSCLC
adenocarcinoma and large-cell carcinoma cell lines increases cell sensitivity to vinca alkaloids but not
to paclitaxel treatment [220].
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In a number of cancers (mainly of epithelial origin) βII was observed within the nucleus of both
cancer cells and nontransformed cells in tissues adjacent to the cancer [221]. Nuclear localization of βII
was recently associated with poor outcomes in colorectal cancer patients [222].

It was surprising when the neural tubulin isoform βIII, which increases MT dynamics (see above),
was discovered to be expressed in tumors with different origins. An analysis of the significant number
of different types of tumors revealed that the contribution of βIII to the total tubulin pool depended
on the cancer type [223]. For example, in nearly 70–80% of the examined cases of small-cell lung
cancer, mesothelioma, NSCLC, adenocarcinoma and large-cell cancer, neuroendocrine pancreatic
cancer, malignant melanoma, and gallbladder carcinoma, βIII was expressed at high levels [223].
By contrast, 70–95% of cases of breast cancer, colon adenoma, stomach cancer, basalioma, Warthin’s
tumor, and hepatocellular carcinoma were βIII-negative [223].

In a wide range of tumors and cancer cell lines, including small-cell lung carcinoma, NSCLC,
ovarian, prostate, bladder, uterine, upper gastrointestinal, colon, pancreatic, LASCCHN, and gastric
cancer,βIII upregulation is associated with the development of resistance to taxane-based chemotherapy
and poor clinical outcome [121,200,202–208,210–213,215,223–233]. Moreover, an increased βIII level
was also shown to be associated with EMT and cell motility of colon cancer cell lines [234].

The role of the βIII isoform in tumorigenesis was confirmed in a pancreatic cell line model.
Silencing of βIII expression by shRNA or mir-200c microRNA reduced cancer cell growth and
tumorigenic potential both in vitro and in vivo in orthotopic and xenographic pancreatic cancer mouse
models [190,230].

A high level of βIII is generally believed to be a bad prognostic marker for MTA resistance
and survival. However, it was recently shown that a paclitaxel-resistant NSCLC adenocarcinoma
cell line with increased βIII expression was sensitive to vinblastine and its analogs to the same
extent as “parental” cells with low taxane resistance and lower βIII expression [235]. This indicates
that βIII-induced taxane resistance may not influence resistance to other MTAs. In contrast to these
observations, overexpression ofβIII-tubulin in ovarian clear cell adenocarcinoma is a predictor of a good
response to taxane-based chemotherapy, and cases with higher βIII-tubulin expression are associated
with a significantly more favorable prognosis than those with lower βIII-tubulin expression [214].
A similar observation was made for early stages (I/II) of breast cancer [212].

Altered expression of the βIV isotype was also reported in numerous cancers, including ovarian,
lung, prostate, breast, and kidney cancers and breast and lung cancer cell lines [43,191,194,196,220];
the data, however, are frequently inconsistent. For example, some data indicate decreased βIV in lung
and breast cancer [43], while studies on cancer cell lines indicate increased βIV expression, especially
in taxane-resistant cell lines [191,196].

Similar to βII, βIVb overexpression is associated with resistance to vinca alkaloids rather than
taxanes. In fact, siRNA knockdown of IVb β-tubulin expression in NSCLC and pancreatic ductal
carcinoma cell lines increases the response to vinca alkaloids [220,236]. Interestingly, downregulation
of βIVb was recently observed in an EMT-induced colon cancer cell line and transformation of
epithelium-like to spindle-like cell morphology in these cells was reversed byβIVb overexpression [237].

The level of βV expression was tested on RNA and protein levels. The level of βV RNA was
shown to be reduced in most tumors (colon, ovary, prostate, breast, lung) except for kidney [43], while
βV protein level was shown to be elevated in lung, breast, and ovarian cancers and decreased in
prostate cancer [238,239]. In NSCLC, a low level of βV-tubulin was associated with poor prognosis
after paclitaxel-based chemotherapy [219].

Based on the available data, it appears that different β-tubulin isotypes play specific roles in
the cancer cell response to extrinsic factors influencing MT dynamics. For example, in breast cancer
patients with both βI and βIII upregulation, response to taxane-based therapy was poor; in the group
with a low level of both, the majority of patients responded well to the therapy, while in groups where
one β-tubulin isotype high and another low, the response was intermediate [200]. Similar, in NSCLC
patients with a low level of βV and high level of βIII expression, the outcome was much worse than in
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patients with high βV and low βIII, while patients with either a high or low level of both isotypes had
an intermediate outcome [219].

Thus, the outcome of levels and ratios of particular β tubulin isotypes in terms of the progression
of carcinogenesis appears to be specific to tumor type.

MTA resistance in cancer could also be related to mutations of β-tubulin. However, analyses of
the clinical samples revealed that mutations in β-tubulin are either not present or very rare. Thus,
it seems unlikely that mutations in β-tubulin could play an important role in drug resistance (reviewed
in [240]).

Studies conducted on cell lines showed that mutations of predominating β-tubulin isotypes within
the taxane-, colchicine-, and vinca-binding sites can be associated with altered MT dynamics and/or
resistance to MTA (reviewed in [240–242]). Most β-tubulin mutations located within close proximity
to the taxane-binding site did not change the affinity of tubulin to taxanes or epothilones, but probably
destabilized MTs in the absence of any drugs [242]. Only mutation at F270V, T274I, and R282N residues
were reported to have a direct effect on drug-binding affinity [242]. A similar effect was observed
when point mutations were located in the M-loop (T274I, R282Q) or in helix H9, which is essential for
interdimer interactions (Q292E) [242].

A recent study on a large number of samples of breast cancer tumors identified several mutations
in βI, βIIa, and βIVb tubulins in which a gene-encoded residue was replaced by the amino acid present
in the corresponding position in βIII [243]. It was proposed that such mutations could influence the
clinical outcome in a similar manner as overexpression of βIII-tubulin [243].

5.2. Microtubule PTMs and Cancer

Changes in the level of tubulin modifications were linked to tumorigenesis (Table 3) [29,244].
Downregulation of TTL and increased α-tubulin detyrosination were reported during the
epithelial–mesenchymal transition (EMT) that occurs during tumor invasion [245] in prostate cancer
cells [246], in aggressive subtypes of breast cancer cells [247], and in primary neuroblastomas with poor
prognosis [248]. The recent discovery of the vasohibin (VASH)/small vasohibin-binding protein (SVBP)
complex, reported as a detyrosinating enzyme, tubulin carboxypeptidase (TCP) [249,250], provides
new links between this tubulin modification and already known associations between vasohibin
dysfunction and cancer [251,252].

A high ∆2 α-tubulin level in non-small-cell lung cancer (NSCLC) cells was associated with
shorter overall patient survival and resistance to vinorelbine [211]. On the contrary, ∆2 α-tubulin was
undetectable in prostate cancer cell lines (LNCaP and PC3), but was present in control cells [246].

Tubulin acetylation is associated with several types of cancer. An increased level of acetylation
was reported in head and neck squamous cell carcinoma, for which it can be used as a prognostic
marker [253]. An elevated level of tubulin acetylation in breast cancer cell line (MCF-7) is associated
with the development of colchicine-resistance [254]. Additionally, a higher level of acethylated
tubulin in primary breast tumors is linked to the basal-like subtype of breast cancer, in which it
promotes adhesion and invasion of breast cancer cells, increasing the risk of disease progression and
death [255]. Overexpression of ATAT1 in cultured nonmetastatic lines of breast cancer cells promoted
the formation of microtubule-based membrane protrusions, structures characteristic of metastasis [255].
The level of microtubule acetylation was also shown to affect epithelial–mesenchymal transition and
cell polarity [256].

Recent studies provide evidence that phosphorylation of serine 21 of HDAC6 by G protein-coupled
receptor kinase 5 (GRK5) promotes deacetylase activity in ovarian (HeLa) and breast (MDA MB 231)
cancer cell lines. An increased level of acetylated α-tubulin sensitizes these cells to the anti-apoptotic
activity of paclitaxel [257]. The high expression of HDAC6 was also linked to poor prognosis of oral
squamous cell carcinoma (OSCC) [258], oncogenic transformation [259], and EMT [260].
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Table 3. Alterations in tubulin post-translational modifications (PTMs) in cancer.

PMT Changes Cancer Outcome Reference

α-, βIII-, βIV-tubulin
tyrosination elevated level breast cancer cell lines paclitaxel resistance [261]

α-tubulin
detyrosination

TTL down
regulation breast cancer lines, increasing metastasis and

tumor aggressiveness [245]

non-epithelial tumor of
different origin

tumor growth correlates
with loss of TTL activity [262]

primary neuroblastomas
impaired neuronal

differentiation and poor
prognosis

[248]

∆2 α-tubulin elevated level prostate cancer cell lines n/a [246]
non-small-cell lung

cancer
poor outcome,

vinorelbine resistance [211]

breast cancers high aggressiveness and
poor prognosis [247]

∆2 β IVb-tubulin hepatic carcinoma (rat) increased in cancer with
respect to healthy liver [263]

α-tubulin acetylation HDAC6
knockdown

ovarian, breast
epidermoid carcinoma

cell lines
mitotic arrest, and cell death [259]

HDAC6 inhibition nsclc cell lines marker of better prognosis [264]
HDAC6

overexpression breast cancer good prognosis [265]

oral squamous cell
carcinoma correlates with tumor stage [258]

MEC-17
overexpression

lung cancer animal
model

cancer cells migration and
facilitated invasiveness [256]

MEC-17
downregulation higher tumor grade [256]

elevated level of
tubulin acetylation head and neck cancer correlates with tumor grade [253]

primary breast tumors correlates with metastatic
phenotype [255]

breast cancer cell lines colchicine-resistance [254]
ovarian and breast

cancer cell lines paclitaxel sensitivity [257]

Glutamylation elevated levels prostate cancer cells n/a [246]
breast cancer cell lines colchicine-resistance [254]

Glycylation TTLL3
downregulation colorectal cancer risk factor for carcinoma

development [266]

Phosphorylation of
α-tubulin (Ser 165)

dephosphorylated
(S165D) α-tubulin breast cancer cell lines

hyperproliferation and
increased metastatic

potential
[267]

Phosphorylation ofα-tubulin at Ser 165 residue by protein kinase C, in turn, stimulates microtubule
dynamics in human breast cancer cells [78,79,267]. It seems that phosphorylation of α-tubulin at Ser
165 can act as a switch that controls the expression of EMT markers in nontransformed human breast
cells and the rate of proliferation of breast tumors [79,267].

A few studies suggested that changes in the levels of tubulin glutamylation [246] and
glycylation [266] are observed during tumorigenesis. Some unusual post-translational modifications
have been detected in lung and hepatic cancers. The removal of the final two residues of the β
IVb-tubulin C-terminal tail was identified in more advanced stages of liver cancer and metastasis to
lung in a rat model of hepatic carcinoma [263].

5.3. Microtubule-Associated Proteins and Cancer

The data concerning MAPs in cancer are limited. Up to now, only a few MAPs, including
Stathmin-1, EB1, CLIP-170/CLIP1, and some structural MAPs, have been associated with cancerogenesis,
outcome prognosis, and chemotherapy sensitivity [268–271].

As already mentioned, Stathmin-1 was originally identified as an oncoprotein. Elevated levels
of Stathmin-1 is a poor prognostic factor in many cancers, including leukemia, prostate, breast,
lung, ovarian, cervical, endometrial, oral nasopharyngeal gastric, and colorectal cancers [272–280].
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Some studies suggested that the silencing of the Stathmin-1-encoding gene can inhibit cancer cell
migration and metastatic potential [281]. The data concerning correlation of the level of Stathmin-1
expression and resistance of cancer to chemotherapy are contradictory. Several studies show that
Stathmin-1 overexpression increases the sensitivity of breast and lung cancer cells to taxanes and/or
vinca alkaloids [282,283]. However, in epithelial carcinomas, nasopharyngeal carcinomas, breast cancer,
and esophageal squamous cell cancer, the increased taxane sensitivity was correlated with Stathmin-1
silencing [284–288]. Interestingly, not only the protein level but also its phosphorylation state was
correlated with cancerogenesis and drug resistance [289].

Increased levels of EB1 and CLIP-170/CLIP1, two +TIP proteins, enhances paclitaxel sensitivity in
breast cancer cell lines and the response to taxane-containing therapy in patients [290,291]. On the
other hand, a decrease of CLIP-170/CLIP1 expression correlates with patients survival in the case of
glioma [292].

Structural MAPs have also been related with carcinogenesis. The expression of neuronal MAPs,
Tau, MAP2, and MAP4 was detected in non-neuronal cancer tissues. For example, Tau overexpression
observed in breast and ovarian cancer cells was correlated with a poor outcome [293–295], while
downregulation of Tau in breast and ovarian cancer cell lines increased sensitivity to paclitaxel [293,295].
Because Tau and taxanes bind to the same tubulin surface, it was proposed that Tau may compete
with paclitaxel for binding to β-tubulin, causing taxane ineffectiveness [293,295]. On the other hand,
in mice, docetaxel-sensitive pancreatic neoplasms show a higher level of Tau and MAP2 with respect
to those that are docetaxel-resistant [296,297].

MAP2 was proposed as a diagnostic marker in pulmonary neuroendocrine carcinomas,
some non-small-cell lung carcinomas [298], Merkel cell carcinomas [299], and oral squamous cell
carcinoma [300], but not in metastatic melanomas (while abundant in primary melanomas) [301].
Overexpression of MAP2 in melanoma cell lines leads to microtubule stabilization, associated with
G2–M phase cell cycle arrest, growth inhibition, and cancer cell apoptosis, both in vitro and in a nude
mouse model [301,302]. Decrease of MAP2c accompanied with a decrease in βIII-tubulin expression
was also observed in vinca-resistant neuroblastoma cell lines [303].

Recently, also, MAP1B was shown to be expressed and a marker of a poor outcome in urothelial
cancer [270]. Silencing of MAP1B in urothelial cancer cell lines decreased the cell migration and
invasiveness [270].

An elevated level of MAP4 and resistance to vinca alkaloids have been observed in childhood
acute lymphoblastic leukemia (ALL) cells [304], while leukemia cell lines resistant to the epothilone
and hypersensitive to microtubule-destabilizing agents increased the levels of both MAP4 and βIII
tubulin [305]. In esophageal squamous cell carcinoma, an increased level of MAP4 was shown to
be a poor outcome marker, and its intratumor silencing inhibited cell growth in nude mice [306].
Very similar observations were also made in lung adenocarcinoma [307].

An increased level of MAP7 is a marker of poor prognosis in leukemia and cervical
cancers [269,308,309]. Moreover, it was shown that MAP7 promotes migration and invasiveness
of cervical cancer cell lines by inducing EMT transition [309].

6. Conclusions and Perspectives

Microtubule dynamics play a key role in the proper execution of cell division. Thus, it is not
surprising that a large number of MTAs have found application as clinical drugs against different
types of cancers. Unfortunately, MTAs are also toxic to healthy tissues. Therefore, reducing the
toxicity of anticancer MTAs and understanding the causes of cancer cell resistance are extremely
important. The main direction of research worldwide includes: (i) a comprehensive understanding
of the tubulin code in cancer cells and the selective manipulation of tubulin isotype expression [121],
(ii) an improvement of the potency of drugs and increased tumor specificity [18], (iii) combination
therapy, with nanoparticles and anticancer drugs working synergistically to delay the onset of drug
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resistance [310], and (iv) the use of antibody–drug conjugates (ADCs) as a potent class of anticancer
therapeutics that confer selective and sustained cytotoxic drug delivery to tumor cells.
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