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A neural circuit model for human
sensorimotor timing
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Humans and animals can effortlessly coordinate their movements with external stimuli. This
capacity indicates that sensory inputs can rapidly and flexibly reconfigure the ongoing
dynamics in the neural circuits that control movements. Here, we develop a circuit-level
model that coordinates movement times with expected and unexpected temporal events. The
model consists of two interacting modules, a motor planning module that controls movement
times and a sensory anticipation module that anticipates external events. Both modules
harbor a reservoir of latent dynamics, and their interaction forms a control system whose
output is adjusted adaptively to minimize timing errors. We show that the model's output
matches human behavior in a range of tasks including time interval production, periodic
production, synchronization/continuation, and Bayesian time interval reproduction. These
results demonstrate how recurrent interactions in a simple and modular neural circuit could
create the dynamics needed to control timing behavior.
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ensorimotor coordination in humans is remarkably flexible.

We can anticipate events based on few observations and use

that information to adjust our movements. For example,
musicians can use a metronome to adjust the tempo of their
movements, and children can rapidly coordinate their move-
ments during a clapping game. However, we still lack an
understanding of how networks of neurons generate such coor-
dinated movements.

Recent studies have proposed that the neural basis of sensor-
imotor coordination may be understood using the language of
dynamical systems!~3. The key intuition is that recurrent neural
networks in the motor cortex form dynamical systems®> whose
output can be controlled by sensory inputs>®-2. This idea has been
explored in large-scale distributed recurrent neural network mod-
els!%. However, the complexity of these network models often
makes it difficult to understand their behavior from an algorithmic
perspective.

Timing provides a prime example of sensorimotor coordina-
tion and is crucial in behaviors demanding the generation of
delayed motor responses, generation of rhythmic movements
with a desired tempo, and synchronization of movements to
anticipated events. An early model proposed that the brain
controls action timing by adjusting the speed of an internal clock
whose ticks are integrated toward a fixed threshold!!. Consistent
with this proposal, experiments in animal models have found that
neural activity in anticipation of a delayed response reaches a
fixed threshold!2-14 at a rate that is inversely proportional to the
delay period”1>16, These results suggest that the brain supports
flexible timing by controlling the speed at which neural activity
approaches a movement initiation threshold.

Recently, it was shown that flexible control of speed can be
achieved through nonlinear interactions within a simple model
consisting of a pair of units with reciprocal inhibitory connections’.
In this model, the speed at which the output evolves toward a
movement initiation threshold can be adjusted flexibly via a shared
input (Fig. la). From a dynamical systems perspective, this model
can be viewed as an open-loop controller that converts an
instruction (i.e., shared input) to the desired dynamics (i.e., speed).

However, the larger utility of this model depends on whether it
can be extended to accommodate additional constraints associated
with temporal control of movements. In particular, temporal con-
trol of movements must accommodate noise in the nervous sys-
tem!7, prior expectations!8, and sensorimotor delays imposed by
internal!® and external?® temporal contingencies. These factors
limit the capacity of open-loop systems to achieve robust temporal
control. Efficient control systems often rely on sensory feedback to
combat noise, and when sensory feedback is delayed, they rely on a
mechanism to predict future sensory and motor states!>?1:22. Here,
we augment the original open-loop system with a sensory antici-
pation module (SAM) and a feedback mechanism, and show that
the resulting neural circuit model can accommodates internal noise,
prior expectations, and sensorimotor delays. Finally, we demon-
strate that the model can capture key features of human behavior in
a number of classic timing tasks (Fig. 1b-e).

Results

We will describe the full model in four steps. We start by
introducing a basic circuit module (BCM) that acts as a flexible
open-loop controller for producing desired time intervals. We
extend the BCM to a motor planning module (MPM) capable
of producing isochronous rhythms. We then introduce a SAM
that provides the means for anticipating and predicting
upcoming temporal events. Finally, we introduce the full model
that combines the MPM and SAM to create a system that can

dynamically coordinate motor plans and actions with antici-
pated and unanticipated stimuli in a range of behavioral tasks.

BCM for interval production. The BCM has been described in
detail previously’. Briefly, the BCM includes three units, u, v, and y,
each representing the average activity of a population of neurons
(Fig. 1a, top). u and v inhibit one another and receive input, I, that
is tonic, or constant over time. y receives excitatory input from u
and inhibitory input from v, and leverages the nonlinear dynamics
of mutual inhibition between u and v to generate ramp-like activity.
Finally, the model initiates a “movement” when y crosses a fixed
threshold, y,. The rate dynamics of u, v, and y are as follows:

d
= Ut O(Wl = Wy ), (1)
dv
Ta =-—v+ O(WVII - Wvuu + ’71/)7 (2)
Tﬂ_— +W u—W, v+ (3)
dt_ Y yu w r]y'

W,; and W,; denote the strength with which I drives u and v,
respectively. W, and W,,, denote the strength of inhibitory cou-
pling from v to u, and from u to v, respectively. 7 is the time
constant of each unit. 6(x) is a sigmoidal function that maps the
input to an output between 0 and 1 (see “Methods”). Finally, #,, 7,,
and 7, are stochastic synaptic inputs to each unit and are modeled
as independent white noise with standard deviation o,,.

We assume W,; = W,; = 6 (identical shared excitatory input),
Wy = Wy, = 6 (symmetric mutual inhibition), W,,, = W, = 1,
and 7 = 100ms for all units, a value consistent with previous
models. With these parameters, the model functions in a dynamical
regime with three fixed points: an unstable point at u# = v, and two
stable fixed points with either # dominating or v dominating (Fig. 1a,
middle). In this regime, u and v evolve, or change over time, toward
one of the stable fixed points depending on the initial conditions.
These dynamics lead to a ramp-like activity in y whose rate is
inversely related to I (Fig. 1a, bottom). In other words, the BCM acts
as an open-loop controller that converts an instruction conveyed by I
to a dynamic output, y, that evolves toward the threshold, y,, at an
appropriate speed (Fig. 1a). Therefore, by adjusting I, the BCM can
flexibly adjust the movement initiation time.

MPM for periodic production. We next considered the pro-
duction of multiple movements with a fixed inter-production-
interval (IPI). This is challenging with the BCM which can only
produce a single action. One solution is to use multiple con-
catenated BCMs, but that seems unrealistic as the number of
modules would grow with the number of movements. We tackled
this problem using a modification of the BCM, which we call the
MPM. The MPM is identical to BCM except for an additional
reset mechanism after each movement that allows the model to
generate an arbitrary number of timed outputs (Fig. 2a). From a
neurobiological perspective, the reset signal can be generated by
the corollary discharge associated with the movement
command?>24, or by sensory feedback triggered by the move-
ment. We implemented the reset as a transient 10 ms pulse, I,
activated right after the threshold crossing (Fig. 2a, dashed line).
Mathematically, this can be formalized as follows:

du

P __
Tt —u,+ e(wup,z — W Y Ip), (4)
dv
Pp_ _ 5
TP =+ G(vall W,y 11, + IP). (5)
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Fig. 1 Basic circuit module (BCM) architecture and timing behavior. a BCM architecture (top) consists of two units, u and v, that inhibit each other. u and v
receive common input, | (colored step functions), and drive an output unit, y, with excitatory and inhibitory connections, respectively. Excitatory and inhibitory
connections are shown by triangles and circles, respectively. The speed control mechanism can be understood by analyzing system dynamics in the phase plane
of uand v (middle; after Wang et al.”). Dots represent u and v over time for a large (pink) or small (blue) input for no noise and with initial conditions set so that
that u eventually dominates v. The system's saddle and stable fixed points are indicated by larger circles and squares, respectively. Dashed and solid lines

indicate the nullclines of u and v, respectively. Inputs configure the positions of the nullclines for u and v, and therefore, control the speed. Inset shows the
relationship between speed and input. Because u excites and v inhibits y, operation of the system in this regime increases y (bottom) until it reaches a threshold
for action initiation (dashed line). b-e Classic timing tasks used to study human timing behavior. b Periodic production requires the subject to produce a series
of actions over time (vertical lines), with a constant inter-production-interval (IPI). Top and bottom are examples of two different IPIs. ¢ Synchronization requires
the subject to time a series of actions (vertical black lines) such that they are simultaneous with a series of sensory inputs (e.g. flashes; vertical magenta lines)

with a set inter-stimulus-interval (ISI). d Interval reproduction requires the subject to measure an interval, t;, demarcated by two stimuli (flashes; vertical
magenta lines) and to produce an interval, t,, by initiating an action (dashed red line). t, has to matche t; as accurately as possible. e Synchronization/
continuation requires the subject to synchronize actions to a series of inputs with an ISI selected at random from a prior distribution and then, after the stimulus
is extinguished, continue to produce actions with an IPl matching the ISI selected on a given trial.

In the MPM, u,, v, and y, evolve identically to the BCM
between consecutive threshold crossings (Fig. 2b). In addition to
producing an output at each threshold crossing, however, the
model activates I, which resets u, and v}, and causes a rapid drop
in y,. This allows the circuit to restart the dynamics and generate
another output. As expected, IPIs increase monotonically with I
(Fig. 2¢, d; r2 = 0.84; F(1, 160) = 828.6; p < 0.01) within a
suitable range of inputs (Supplementary Fig. 1).

In humans, IPIs are variable with a standard deviation that
increases linearly with the mean??. To evaluate IPI variability in
the model, we performed simulations in the presence of
Gaussian noise (see “Methods”). When noise levels were not
too high (Supplementary Fig. 2), the model exhibited a
qualitatively similar behavior to that of humans (Fig. 2e): IPI
variability increased monotonically with IPI (one-tailed F test;
I=0.75to I =0.76: p = 0.014, F(80, 70) = 0.60; I = 0.76 to
I =077 p <0.01, F(57, 70) = 2.95; 1 = 0.77 to I = 0.78:
p < 0.01, F(40, 57) = 10.93). However, this relationship was
nonlinear in the model, which is unsurprising given the
simplicity of our assumptions regarding the nature of noise in
the brain and the underlying dynamics.

SAM for predicting future events. In many circumstances, the
IPI is not known in advance and has to be adjusted based on

external timing cues. Here, we considered a case in which the
IPI has to be adjusted by the interval between external tem-
poral events. In general, measuring time between events can be
achieved in two ways. One way is to implement a circuit whose
output is a ramp with a fixed slope. In such a circuit, the output
level provides a moment-by-moment estimate of elapsed time
(Supplementary Fig. 3a). Alternatively, the circuit may func-
tion predictively, and adjust the slope of the ramp such that the
output reaches a certain expected level at the anticipated time
of the next event (Supplementary Fig. 3b).

A recent study in monkeys found evidence in support of the
predictive mechanism?%: neural dynamics in the frontal cortex
were adjusted so that responses reached an expected state at the
expected time of the stimulus. Based on this finding, we
developed a SAM that measures time predictively (Fig. 3a). The
SAM behaves identically to the MPM except that it does not
generate an action when its output, y,, reaches y,. Instead, the
SAM adjusts the input so that y; would reach y, exactly at the
expected time of the sensory feedback. When I is too high, ys
would increase at a slower pace than needed, and its value at the
time of the sensory feedback would be below y,. Conversely,
when I is too low, y; would go beyond y, at the time of the
feedback. Accordingly, the system must decrease I when y; < yo,
and increase I when y; > y,. The SAM implements these
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Fig. 2 Input to the motor planning module (MPM) controls frequency of periodic production. a The architecture of the MPM is identical to the BCM, with
the addition of a reset mechanism that is activated when y,, crosses the threshold (represented by the nonlinear unit at right), and causes the output to be
fed back as an input, /, (dashed line). Excitatory and inhibitory connections are shown by triangles and circles, respectively. b Behavior of the units up, v,
and y, in response to a small (blue) or large (pink) input, I. Vertical dashed lines indicate the timing of threshold crossing and motor output. The time
between successive motor outputs is defined as the inter-production-interval (IP1). ¢ Value of the first 40 IPIs generated by the MPM at each level of input,
| (colors), in representative trials. d Mean of the IPIs (#standard deviation; N = 40) in panel (¢) as a function of input, /. e Standard deviation of IPIs plotted
against the mean IPI for 100 trials of each level of input in the presence of Gaussian noise (6, = 0.01). Each data point represents the results of a trial as in

panels (¢) and (d).

adjustments by updating the value of I dynamically at a rate
proportional to the error signal, y,—yq:

T%ZSK( s — Yo)- (6)

In this update rule, K scales the rate of change of I with the
error signal, and s is a gating parameter that is set to 1 when the
feedback is on and 0 otherwise. This formulation allows the
model to update I only when the feedback is on (s = 1). Fig. 3b
illustrates the response of the SAM to three equidistant sensory
inputs with a short (400 ms) or long (1000 ms) inter-stimulus-
interval (ISI). The first stimulus (S1) triggers a transient input, I.
This input does not alter I since the system has not yet measured
the ISI, but resets u, and v, (Fig. 3a; see “Methods”). Following S1,
the output, y,, increases over time. For a short IS, y; at the time of
the second stimulus (S2) is lower than y, causing I to decrease
(Fig. 3b, left). In contrast, for a long ISI, y, is greater than y,
causing I to increase (Fig. 3b, right). The transient input, I,
triggered by S2 also resets u; and v,, allowing the dynamics to

evolve with the updated speed (Fig. 3b). By iterating this process
after each sensory input, the SAM dynamically adjusts its output
such that y, will eventually match y, at the precise time of each
stimulus input. These results are robust with respect to when the
first stimulus is presented (750 ms in Fig. 3b and subsequent
simulations; see Supplementary Fig. 4e for other delays).

Using simulations of the SAM, we analyzed the effect of K and
I on the root-mean-squared-error (RMSE) between the predicted
time (the time at which y, crosses y,) and the actual time of the
stimuli (Fig. 3¢; see “Methods” for simulation details). When I is
large and K is small, the SAM generates large errors. Intermediate
values of I, and K lead to smaller errors, and a specific
combination of (K*,I;) minimizes the RMSE (see Fig. 3c).
Exploration of the parameter space revealed three key results.
First, I} is largely independent of noise level and the number of
stimuli (Fig. 3d, left). This is consistent with I, serving as an
initial estimate before any feedback is integrated. Second, K"
decreases with increasing o,, (Fig. 3d, right). This is expected
because, when internal noise increases, the error signals generated
by the SAM are less reliable and should be appropriately
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Fig. 3 Dynamic adjustment of input with the sensory anticipation module (SAM). a Architecture of the updating mechanism and SAM. The updating
mechanism, represented by s[ relies on the difference between the output of the SAM, y., and the desired level of activity at the time of each stimulus. This
is implemented by integrating the summed activity of ys and a tonically firing inhibitory unit, yo, into the input unit, |, when the stimulus is on (s = 1). When
the stimulus is off (s = 0), integration is prevented and | remains constant. Dashed line indicates a stimulus input, I, directly to us and vs when s =1,

resetting the SAM after each stimulus. Excitatory connections are indicated by triangles, inhibitory connections are indicated by circles, and non-specific
synapses are indicated by arrows. b Response of the SAM units ug, vs, ys, and | to three equidistant stimuli (S1, S2, S3, vertical dashed lines) with an ISI of
400 ms (blue) and 1000 ms (pink) with K = 5.0, Io = 0.77, 6, = 0.01. The vertical black line indicates the time of the stimulus which is to be predicted. The
four panels show how the activity of the four units ug, vs, ¥, and I, changes with time in different simulation runs. Each panel contains 100 superimposed
lines, each corresponding to the activity of that unit in a different trial. The horizontal dashed lines indicate the threshold yo (bottom middle panel) and /g
(bottom panel). ¢ Example optimization of the value of the weight given to the update, K, and /o, at noise level 6, = 0.005 and N = 3 stimuli. Color scale
represents the RMSE for each pair of K and /o tested, based on 100 simulated trials for each IS and ¢, = 0.005. d The optimized parameter values, K" and 15,
as a function of the level of noise, 6, and number of input stimuli (colors). Centers and error bars indicate the mean and standard deviation across n = 10

optimization runs.

discounted. Third, as N increases, K~ decreases, which reduces the
weight given to each error and allows the model to integrate
across inputs (Fig. 3d, right). Finally, we verified that the SAM
updating process is robust with respect to the units’ initial
conditions (up and vy) (Supplementary Fig. 4a-d), and can be
generalized to different dynamical regimes (Supplementary Fig. 5).
Therefore, the SAM provides a plausible mechanism for
measuring time intervals predictively.

Sensorimotor updating by combining the SAM and MPM. So
far, we found that the MPM can produce different IPIs depending
on the level of input, and the SAM can adjust the input level
based on the anticipated time of sensory events. Accordingly, we
reasoned that the SAM and MPM might together be able to
generate timed outputs that are in register with incoming sensory
events: the SAM would adjust the input based on sensory events
and the MPM would use that input to adjust IPI. We therefore
connected the SAM to the MPM by having them share the input,

I (Fig. 4a), and measured IPI as we changed the ISI randomly in a
blocked fashion (Fig. 4b). The circuit was able to successfully
track ISI throughout the run (Fig. 4c; see “Methods”). After each
block transition, the SAM detects the error between IPI and ISI
and adjusts I so that the MPM can gradually bring IPI closer to
the new ISI (Fig. 4c). This mechanism allows IPIs to increase
lawfully with the ISI (r> = 0.53; p < 0.01; Fig. 4d).

Full circuit model for synchronization. Coupling between the
MPM and SAM allowed the circuit to adaptively match its output
frequency (IPI) to the input frequency (ISI). However, it failed to
match the input and output in terms of phase, as evidenced by the
uniform distribution of phase differences between inputs and
outputs (Fig. 4e; Rayleigh test of uniformity, p = 0.10). The
source of this problem is that the circuit has no mechanism to
determine whether the MPM output leads or lags the stimulus.
Previous models have proposed highly nonlinear systems for
phase adjustment?-2°. We found that our model provides a
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Fig. 4 Online adjustment of inputs allows a combined circuit to match IPI to stimulus ISI. a Wiring diagram of the circuit model that combines the
sensory anticipation module (SAM) with the motor planning module (MPM). Conventions as in Fig. 2 and 3. b Example inter-stimulus-interval (ISI)
sequence for a trial of the ISI tracking task. Colors indicate different ISls. We initiated each trial with a block of twenty consecutive 800 ms ISls. Each
subsequent block of 20 ISIs was randomly selected from a discrete uniform distribution between 600 and 900 ms. Each trial consisted of 5 blocks and 100
total ISls. ¢ Inter-production-intervals (IPls; black circles) associated with each ISI (colors) for two example trials of the ISI tracking task. d Density of IPIs
(grayscale) as a function of the associated ISI. Dashed line indicates perfect tracking. e Distribution of the phase of motor output. A phase of O indicates

output that is synchronous with the stimulus input.

simple solution to this problem. Since the output of the SAM (y;)
and MPM (y,) are synchronized to sensory and motor events,
respectively, the difference between them provides a graded signal
reflecting their relative phase. Specifically, when y, > y,,, the MPM
is lagging and should be sped up, and when y; < y,, the MPM is
leading and should be slowed down. To implement this solution,
we augment the input I with a signal AI of the form

Al = aly, = ), (7)

where « controls the learning rate. This adjustment can be rea-
lized by a unit which receives excitatory and inhibitory input
form y, and y, respectively (Fig. 5a, cyan). Fig. 5b demonstrates
this correction scheme. Initially, y, slightly lags behind y,. This
asynchrony generates a biphasic AI whose value is transiently
positive (between the stimulus onset and motor output) and then
negative until the next stimulus onset. The addition of this error
signal reduces the total tonic drive to the MPM and increases the
output speed relative to the SAM. After this adjustment is applied
over several ISIs/IPIs, the MPM becomes increasingly synchro-
nized with the stimulus. This strategy allows the circuit to gra-
dually reduce asynchrony and narrow the distribution of phase
errors (Rayleigh test of uniformity, p < 0.01; Fig. 5¢).

We examined the behavior of the model for different values of
a and K. Larger values of « make the model more sensitive to
phase errors and allow the model to cancel asynchronies more
effectively (Fig. 5d, left panel). However, larger values of a cause
rapid beat-by-beat adjustments in IPI, which can compromise
rhythmicity (Fig. 5d, middle panel). As such, the optimal value of
a depends on the relative cost of minimizing phase asynchrony
and IPI error. In our simulations, values between 0.1 and 0.15
allow the model to minimize the sum squared error of phase and
IPI (Fig. 5d, right panel). The parameter K, on the other hand, has
little effect on how « influences phase asynchrony and IPI error
(Fig. 5d, different colors).

This mechanism allowed the model to capture two counter-
intuitive observations in human behavior. First, as shown in
Fig. 5¢, the MPM had a persistent phase lead relative to the
stimulus (—27.14° + 71.45°) in a manner similar to humans
performing analogous tasks3?. Second, the interaction of a with
the level of noise caused the model to occasionally skip a beat
(Supplementary Fig. 6), which occurs occasionally in humans
performing similar tasks3!.

Model responses to perturbations are similar to humans. We
compared the behavior of the model to that of humans in
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Fig. 5 Full circuit model for synchronization. a Augmented circuit model. To synchronize the MPM with SAM output, a second circuit pathway was
introduced to measure the difference between these two outputs. The difference, weighted by a, augments the input to the MPM with input Al. b MPM

output, y,, SAM output, y,, and their difference weighted by @ = 0.1 (i.e. Al = a(y,

— ¥s)). Augmenting | with Al adjusts controller output to the MPM such

that the time of production tends to match the time of flashes (vertical dashed lines). ¢ Distribution of the phase of production for the circuit with (black)
and without (red) augmented input. d Optimization of a. Increasing a decreases asynchrony (left; as defined in the Methods). In contrast, increasing a
increases the sum of the squared IPI errors (middle). As a result, a limited range of a values minimize Pythagorean errors, defined as

\/(IPI —ISI)? + (Asynchrony)? (right).

synchronization tasks during which the rhythmic input was
perturbed in one of three different ways: a step change in ISI
(Fig. 6a, top), a phase shift (Fig. 6b, top), and a jitter in the timing
of a single event (Fig. 6¢, top).

When facing a sudden change in ISI (Fig. 6a, top), response
times have to be adjusted in both phase and frequency. For
example, after an uncued increase in ISI, the first motor response
would lead the stimulus. To regain synchrony, one has to delay
the response to cancel the phase lead and additionally increase the
IPI to match the new ISI. Human subjects concurrently reduce
asynchrony and adjust IPI such that after a few samples, actions
are in sync with sensory inputs3%32-34_ A hallmark of this error-
correcting strategy is that IPIs exhibit a transient overshoot
relative to the new ISI (Fig. 6a, middle)3>-37.

To test the behavior of the model in response to a change in
ISI, we used the following protocol: we allowed the model to
reach steady-state for an ISI of 800 ms, stepped the ISI to 1000
ms, and measured subsequent IPIs produced by the model. We

repeated this procedure 1000 times and measured how the average
IPI changed over time after the step change. Qualitatively, the
model exhibits the transient IPI overshoot relative to ISI that is
observed in humans, and gradually adjusts the IPI to match the
new ISI (Fig. 6a, bottom). Quantitatively, the degree of overshoot
depends on the model’s two learning rates, K for frequency
(Fig. 6a, bottom), and « for phase (Supplementary Fig. 7).

Next, we analyzed the behavior of the model in response to a
phase shift, in which a single ISI is increased or decreased, causing
all subsequent stimuli to occur at a different phase without any
change to the subsequent ISIs (Fig. 6b, top). In this case, humans
adjust their response times so that the initial mismatch is
gradually reduced (Fig. 6b, middle)38. This model was able to
capture this response pattern, and the speed of recovery could be
adjusted by « (Fig. 6b, bottom).

Finally, we considered a perturbation in which a single
stimulus is jittered temporally. This perturbation alters two
consecutive ISIs in equal and opposite directions without
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Fig. 6 Circuit response to ISI perturbations. a Model and human responses to a step change in the inter-stimulus-interval (ISI). Top: schematic of the task
design. Vertical bars indicate the timing of a flash sequence with the distance between bars corresponding to the ISI. Asterisks denote ISIs that are

perturbed relative to the initial ISI. Middle: average human step change response. Data reproduced from Bavassi et al.3”. Circles plot the change in inter-
production-interval (A IPI) relative to the change in ISI (4 ISD). Blue and purple lines plot ideal performance before and after the step change, respectively.
AIPI/AISI is defined as O for AISI = O. Bottom: average IPI of the circuit model (circles) to a step change from 800 ms (blue line) to 1000 ms (pink line).
The level of gray indicates model behavior for different values of the parameter, K. b Model and human responses to a phase shift in the stimulus timing.
Top: task schematic, as in panel a. A phase shift was induced by increasing the duration of one interval (asterisk). Middle: average human asynchrony
following a 10 ms phase shift from a 500 ms ISI. Data reproduced from Repp38. Bottom: average model asynchrony (circles) following a 100 ms phase shift
from an ISl of 500 ms. Following the analysis of human behavior, we removed the mean asynchrony adopted by the model before the perturbation. The
horizontal dashed line indicates no asynchrony and the vertical dashed line indicates the time of the first flash following the perturbation. The level of gray
indicates circuit model behavior for different levels of the parameter, a. € Model and human responses to temporal jitter of a single stimulus. Top: task
schematic, as in panel a. The timing of a single stimulus was jittered by increasing one interval by 100 ms, followed by decreasing the subsequent interval
by 100 ms (asterisks) from an ISI of 500 ms. Middle: average human asynchrony following stimulus jitter. Data reproduced from Repp®’ (asynchrony to

the perturbed stimulus not shown). Bottom: average model asynchrony. Conventions as in panel (b).

changing either the phase or the ISI of the subsequent stimuli
(Fig. 6¢, top). In response to the perturbation, human subjects
exhibit a characteristic change in IPI relative to ISI. For example,
when a single stimulus is delayed, subjects detect the error and
delay their next response accordingly. However, since the
perturbation is transient, subjects have to then undo their
corrective response, which is done gradually over the course of
the subsequent stimuli3®40 (Fig. 6¢c, middle). Again, the model
was able to capture this response pattern, and the dynamics of the
error correction was moderately dependent on « (Fig. 6¢, bottom,
circles).

These results demonstrate that the circuit model can capture
key qualitative aspects of human behavior in response to various
perturbations of stimulus timing. Behavioral studies have found
individual differences in how subjects respond to these perturba-
tions®>~40, Accordingly, we verified that our model can capture
this behavioral diversity through adjustments of model para-
meters (K and «) with an accuracy that is comparable to
previously proposed algorithmic models3%343¢ (Supplementary
Fig. 8).

Circuit model implements Bayesian interval reproduction. In
the absence of any prior knowledge about the ISI of the first few
beats, there is no way for the circuit (or a human) to choose an
informed initial speed, and only sensory feedback can guide
motor timing. However, when an observer has some prior
expectation about the possible values of ISIs, the optimal strategy,
as prescribed by Bayesian integration, is to integrate sensory
inputs with that prior knowledge. This integration enables the

system to reduce variability due to internal noise?>*! and to
estimate the ISI with greater precision.

This Bayesian integration strategy is a hallmark of human
behavior in time interval reproduction experiments!®42, In these
experiments, subjects are typically provided with a sample
interval, ¢;, drawn from a fixed prior distribution, and are asked
to produce a matching interval, t,. The behavior of an optimal
Bayesian observer performing this task exhibits two characteristic
features. First, t, values are biased toward the mean of the
distribution. Second, the magnitude of biases becomes smaller
when measurements of f, are more reliable.

Recently, we tested humans in a time interval reproduction
experiment in which #; was sampled from a fixed discrete uniform
distribution ranging between 600 and 1000 ms>!. The experiment
involved two trial types. In one type (Fig. 7a, left), which we refer
to as “1-2-Go,” subjects were presented with the first two beats of
an isochronous rhythm (1-2) and were asked to produce the third
omitted beat (Go). In the second type (Fig. 7a, right), referred to
as “1-2-3-Go,” subjects were presented with the first three beats
(1-2-3) and had to synchronize their response with the fourth
omitted beat. Results provided clear evidence that subjects relied
on their prior knowledge, since ¢, values were biased toward the
mean of the f, distribution (Fig. 7b, purple). Moreover, the
presentation of two ISIs in the 1-2-3-Go compared to one ISI in
the 1-2-Go condition allowed subjects to measure f, more
accurately and reduce the bias (Supplementary Fig. 9).

We simulated the model to test if it can emulate these
characteristics. The SAM received input pulses representing the
beats of an isochronous rhythm (2 pulses for the 1-2-Go task and
3 for the 1-2-3-Go task) with the ISI sampled from the same
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Fig. 7 Bayesian behavior of the synchronization model. a Schematic diagram of the interval reproduction task. In each trial, subjects were asked to
produce an interval (t,) that matched an interval sampled (t5) from a set prior distribution (left). In 1-2-Go trials (middle), subjects observed two flashes
(vertical magenta lines) demarcating t.. In 1-2-3-Go trials, subjects observed three flashes (vertical magenta lines) demarcating t, twice. b Behavior of two
example subjects (black) on the 1-2-Go and 1-2-3-Go tasks, together with the circuit fit to each subject (magenta). Error bars represent standard deviation
across trials, n = 100 simulated trials for each t.. Behavioral data modified from Egger and Jazayeri3'. ¢ Observed BIAS and VAR of nine subjects compared
to the BIAS and VAR of the circuit model fit to each subject. Circles indicate BIAS, crosses VAR, and the color indicates the trial type. Dashed line

represents unity.

distribution that was used in the human experiment. We defined
the production interval ¢, of the model as the interval between the
final input pulse and the next time the SAM’s output exceeded y.

The behavior of the model in this task depends on three key
parameters: the initial input, I, the update constant, K, and the
level of noise in the model, o,. I, determines the speed of
dynamics before the first measurement of #. This reflects the
model’s initial guess about f; based on prior expectations. K
determines the strength with which the SAM updates the input
based on the difference between anticipated and observed f.
Finally, 0,, determines the variability of the model’s behavior due
to internal noise. Here, we assume that the statistics of the
environment are stationary (i.e., the prior distribution is fixed), an
assumption consistent with the experimental design3!. Under
these conditions, a single set of parameters is required to optimize
the performance of the model. Note that we do not explicitly
model the learning process that optimizes model parameters for a
specific prior distribution.

Together, the parameters I, K, and o, allow the model to
capture a range of behaviors observed in human subjects (see
Supplementary Table 1). Results in Fig. 7b show the behavior of
the model that was fit to the data from two human subjects in the
1-2-Go and 1-2-3-Go tasks (for parameter values, see Supple-
mentary Table 1). Evidently, the model captured several key
features of Bayesian integration present in the human behavior
(Fig. 7b, magenta): (1) Average t, increased monotonically with
(Fig. 7b, black circles), (2) noise in the model caused ¢, to vary on
a trial-by-trial basis for the same ¢, (Fig. 7b, black error bars), (3)
average t, was biased toward the mean of the prior distribution
(Fig. 7b, deviation from the dashed unity line), and (4) the
magnitude of bias was smaller in the 1-2-3-Go compared to the 1-
2-Go trials (z = 2.7, p < 0.01, one-sided Wilcoxon signed rank
test; Supplementary Fig. 9). An alternative implementation of this

task using the full circuit architecture yields similar production
times (Supplementary Fig. 10).

To further compare the model’s behavior to that of the human
subjects, we partitioned the root-mean-square error (RMSE)
between t, and ¢, to two terms, a BIAS term that measures the
overall bias, and a VAR term that measures average variability
across all values of t, (see “Methods”). The model was able to
capture the observed BIAS and VAR across subjects in both 1-2-
Go and 1-2-3-Go (Fig. 7c), indicating that it can correctly
implement the bias-variance trade-off exhibited by humans
during interval reproduction. In this model, the update constant,
K, plays a central role in determining the bias-variance trade-off
(compare Fig. 7b, top and bottom). For a Bayesian observer, the
magnitude of bias is determined by noise in the measurements of
t, and by the imposed cost function. Accordingly, the value of K
in the model was adjusted to achieve a level of bias-variance
trade-off that is inversely related with the inherent noise in the
model (o,) and the operative cost function (r = —0.94,
p = 0.0002; see Supplementary Table 1). These results provide
a potential mechanistic account of linear updating algorithms
proposed previously to describe Bayesian timing behaviors*3
(Supplementary Fig. 11).

Bayesian synchronization/continuation. As our final test, we
examined the model in a Bayesian synchronization/continuation
task that demands sensory anticipation, motor timing, and
Bayesian integration. In this task, subjects are asked to tap syn-
chronously with a metronome (synchronization phase) and
continue to tap with the same tempo without the metronome
until instructed to stop (continuation phase). In the classic ver-
sion of this task, subjects have no uncertainty about the ISI of the
metronome as it is kept constant across trials. Recently, humans
were tested on a variant of this task in which ISI for each trial was
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Fig. 8 Circuit model captures systematic biases in human behavior during Bayesian synchronization/continuation. a Overall BIAS in the
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across trials, n = 21 simulation trials for each ISI.

sampled randomly from a prior distribution4. While performing
this task, humans exhibit distinct patterns of biases in their IPIs.
During synchronization, responses were biased toward the mean
of the ISI distribution and the magnitude of the bias decreased
with the number of synchronization stimuli (Fig. 8a, purple lines).
These observations are consistent with the Bayesian integration
scheme that we discussed previously in the context of a time
interval reproduction task (Fig. 7). During the continuation
phase, the bias persisted and its magnitude increased substantially
(Fig. 8a, red lines) for all subjects (Fig. 8b). This increase in bias
was due to a drop in the sensitivity of IPI to ISI (shallower slope
relating IPI to ISI) as well as an overall bias toward shorter IPIs
(Fig. 8c, left).

We fitted the model parameters (Iy, K, and «) to individual
subject’s behavior in this task (see “Methods”; Supplementary
Table 2). Model fits generated IPIs that were biased towards the
mean ISI. Consistent with subjects’ behavior, the magnitude of
the bias decreased during synchronization and increased during
continuation (Fig. 8a, black line). Moreover, like humans, the
increase in bias during continuation was due to a combination of
decreased sensitivity to the ISI (decrease in slope of IPI-ISI
relationship, z = 2.1, p = 0.02, one-sided Wilcoxon signed rank
test) and an overall shift towards shorter IPIs (decrease in IPI of
the middle interval, z = 2.1, p = 0.02, one-sided Wilcoxon signed
rank test; Fig. 8¢, right; Supplementary Fig. 12).

In the model, this pattern of biases is explained by the
augmented input, A, to the MPM, which is necessary for the full
model to synchronize its outputs with sensory inputs. Following
the final stimulus input in the synchronization phase, the SAM no
longer resets and instead proceeds toward the terminal fixed
point. As a result, its output, ys, becomes fixed at a value greater
than y,. However, y,, continues to oscillate between values smaller
than y, because it is reset by the motor output. This mismatch
makes Al negative and decreases the overall input to the MPM.
The decreased input, in turn, speeds up the dynamics of the MPM
and shortens IPIs during the continuation phase across all ISIs.
Further, the impact of this negative AI is integrated over time,
leading to an asymmetric impact on the speed of MPM dynamics
associated with a short ISI compared to a long ISL. Specifically,
longer ISIs lead to a greater increase in speed than shorter ISIs,
accounting for the decreased sensitivity to the ISI during
continuation. It is important to note that these results require
that the SAM does not reset. Therefore, an alternate circuit
configuration in which the output of the MPM resets the SAM

will not be able to capture the increase in bias during
continuation. This finding validates our assumption that resetting
the SAM relies on sensory inputs and not motor outputs. Further,
this feature of the circuit model allowed it to more accurately
capture the observed pattern of bias than simple linear updating
algorithms that have previously been used to model human
synchronization behavior (Supplementary Fig. 13).

Discussion

To coordinate movements with external stimuli, the dynamics of
neural activity must be adjusted based on sensory inputs”1>4°,
However, precise control of dynamics is challenging because
neural signals are subject to internal noise, and timing cues are
often discrete and delayed?!. Here, we proposed a simple neural
circuit model that can address these challenges in a wide range of
timing tasks.

The model is comprised of two modules, an MPM that gen-
erates timed actions, and a SAM that predicts the time of
upcoming external events. Both modules were engineered to
emulate a recently discovered speed control mechanism in the
frontal cortex of monkeys during a flexible motor timing task’.
The MPM uses this speed control mechanism in conjunction with
a reset to produce rhythmic outputs. The SAM uses the same
speed control mechanism in conjunction with an error-correction
scheme that enables it to predict the timing of external events.

Coupling the MPM and SAM creates a closed-loop control
system with versatile timing capacities in the presence of noise
and delayed sensory feedback. For example, the model was able to
capture human behavior in classic beat synchronization
tasks30-32-3437 n this case, the function of the SAM was to detect
and correct discrepancies between the model’s output and
external beats so that the MPM could adjust the outputs
accordingly. The model was also able to emulate the biases
associated with Bayesian time interval reproduction in the pre-
sence of noisy measurements when sample intervals were drawn
from a fixed prior distribution1®31, To do so, the initial input to
the model had to be adjusted based on the prior distribution, and
the model’s updating parameters had to take the magnitude of the
noise into account. Finally, a phase-correction mechanism
between the SAM and MPM enabled the model to capture several
non-trivial features of human behavior during a Bayesian syn-
chronization/continuation task** that previous algorithmic
models could not.
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Previous studies have proposed algorithmic models for how
humans coordinate their motor outputs with sensory inputs.
The basic algorithm is to compare the time of each motor output
to the time of the corresponding sensory input, and use the
error between the two to adjust the timing of the next move-
ment?1-3443, This algorithm is conceptually similar to how our
model functions, and its error-correcting behavior in beat syn-
chronization tasks is comparable to our model3%43 (Supplemen-
tary Fig. 8). However, by virtue of implementing this algorithm
using a neural circuit, our model’s predictions can be readily
compared to neural data. Moreover, our model provides a
mechanistic understanding of hypothesized predictive processes
that algorithmic models have attributed to human behavior
during perceptual timing tasks*3:46:47,

Previous circuit models of timing largely fall into three classes,
each with their own strengths and weaknesses. The first class is
based on the accumulation of ticks of a central clock!!#8-0,
Similar to our circuit model, these clock-accumulator models rely
on ramping activity that is observed in individual neurons!>13.
However, these models do not explain how the recurrent circuit
interactions lead to such ramping activity. The second class uses
large recurrent neural circuits capable of producing rich
dynamics>7>1->3, These models can produce activity patterns
that are strikingly similar to those observed in local populations
of neurons, but it is unclear how they can flexibly integrate
sensory and motor feedback. The third class uses a system of
coupled oscillatory units?0-28:5455 These models can produce
sophisticated timing behaviors and can integrate sensory infor-
mation across a range of time scales2°. However, the activity
profile of neurons in the brain regions causally involved in timing
is typically not oscillatory”. Our model provides an understanding
of the link between these model classes. First, it explains the
ramping activity in terms of recurrent dynamics due to interac-
tions between neurons. Second, the model’s dynamics can be
flexibly adjusted based on incoming sensory input and motor
feedback. Third, the model generates oscillations at its output.
However, unlike abstract models comprised of inherently oscil-
latory units, our model generates oscillations through circuit-level
interactions that are consistent with the speed control mechanism
observed in single neurons in the frontal cortex’.

Finally, the wiring of our circuit model might provide insight
into the individual functional contributions of the cortical and
subcortical systems important to action and perceptual timing>®.
One node, the basal ganglia, has been heavily implicated in action
timing through lesion studies®” and physiological evidence”-4>%8.
An important principle of the basal ganglia function is the
inhibition of downstream neural activity>®. Given their proposed
function as a competitive selection mechanism®, these inhibitory
pathways may be the substrate for implementing the mutual
inhibitory interactions needed for the temporal control of
movements®. Another key node, the cerebellum, has also been
linked to timing through lesion studies®!, physiology®%¢3, and
modeling®4. A hallmark of cerebellar function is the detection and
correction of sensory errors during sensorimotor control®463,
which is the key function of the SAM in our model. Finally, the
output of both the basal ganglia and cerebellum are sent trans-
thalamically to regions of the frontal cortex involved in sensory
and motor timing®®. Accordingly, we speculate that the integra-
tion of the sensory anticipation and motor production modules in
our model may rely on interaction between the basal ganglia,
cerebellum, and frontal cortical areas®.

Methods
Modeling and analyses were performed in Python 3.5.4 and Matlab R2017a.

BCM for interval production. The fundamental circuit architecture consists of
three rate units, u, v, and y, which are governed by the following set of equations:

r%: —u+ (Wl - W,v+n,), 8)
dv
T v+ O(WyI—Wou+tn,), )
Y +Wu— W, v+ (10)
dr =y yu »w }’]}”

where 7, the time constant of each unit, was set to 100 ms and 6(x), the activation
function of each unit, was specified by 6(x) = 1/[1 + exp(—x)], and I is a tonic
input. W, Wy, W,,, and W,; specify the weighting of the interactions between
units and each was set to 6 for all simulations. Similarly, we set W,,, = W,, = 1.
Noise in the system was modeled by 0 mean Gaussian white noise inputs, repre-
sented by the variables #,, #1,, and #,, for unit u, v, and y, respectively. These
variables were independently sampled at every time point from a Gaussian dis-
tribution with mean set to 0 and standard deviation specified by o,,. The units were
initialized at u = 0.7, v = 0.2, y = 0.5, and I = I, where I, is a free parameter. All
simulations were carried out using Euler’s method with a step size of 10 ms.

Motor planning module. The MPM consists of four rate units I, up, v, and yy,
which are simulated based on the following equations:

dup
TﬁzfuerB(WupIIf Wo Ve + 71[,), (11)
dv
rE= v, + e(vall — W,y + IP>, (12)
dy
P _
T + Wy thy = Wy, v, + Ty, - (13)

I, specifies a transient input to u, and v, that serves to reset the system when
Yp > Yo We set I, to 50 and y, to 0.7 for all simulations. The activity level of I
controls the speed of the dynamics of the MPM. The units were initialized at u, =
0.7, v, = 0.2, y, = 0.5. Noise, represented by the variables Mup> My and 1y, » Was

injected into each unit as in the BCM. All other parameters are the same as
the BCM.

Sensory anticipation module. The SAM consists of four rate units I, u, v, and y;.
The system evolves according to the equations

du,
T% = —u+ 0<Wus,1 WiVt — sls), (14)

dv,
T =+ e(wvs,l — Wy, sIs), (15)
b _ W W (16)

T = s T Wouts = Won Ve T,
drI

7, = KOs =), (17)

where K is a free parameter and # indicates noise input to each unit as in the BCM.
The module receives a binary input s, where s represents the visual stimulus

(s = 1 when the stimulus is on and s = 0 when the stimulus is off) and I is set to
50. This input serves to reset the values of u; and v, at the time of each stimulus. All
other parameters are the same as the BCM.

Sequences of stimuli were implemented by setting s = 1 periodically. Each
stimulus presentation lasts 10 ms. The units u, v, and y, were initialized as in the
MPM and I was initialized at I;, a free parameter. The dynamics were allowed to
run forward for 750 ms before the first stimulus was presented. This initialization
period serves to put the circuit closer to steady-state so that the effect of reset
signals is consistent across different ISIs. I does not update during the first
presentation of the stimulus (by setting K = 0 during the first stimulus
presentation).

Optimization of SAM parameters was achieved by simulating the module with
100 different pairs of I, and K for each o,,. K was uniformly sampled from values
between 1 and 8.0, and I, was sampled from values between 0.77 and 0.79. N
stimuli were presented to the model, where N = 2, 3,...,10. ISIs were sampled from
a discrete uniform distribution with five values between 600 and 1000 ms.

For each set (o, Iy, K, N), the model was run as described above and the RMSE
was calculated according to

RMSE =

where N; = 500, the total number of iterations across all ISIs. The pair (Iy, K) that
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results in the smallest RMSE was recorded. The procedure was repeated 10 times
for each o, to obtain a distribution of the optimal (Iy, K).

In Fig. 3¢, I, and K were picked from a 30 x 30 grid spanning the the same
range as the optimization procedure, and Ny = 5000.

Behavioral tasks. We used a suite of behavioral tasks to test circuit model timing
performance. In all tasks, we performed numerical simulations of the dynamical
equations expressed above using Euler’s method and a time step of 10 ms. All
behavioral experiments were performed with the approval of the Committee on the
Use of Humans as Experimental Subjects at MIT after receiving informed consent.

Periodic production task. To achieve periodic production, we simulated the MPM
in isolation at four different levels of input, I, uniformly spaced from 0.75 to 0.78, for
40 s at each level. To measure the performance of the model, we calculated the IPI as

IPL, =t,, , —t (19)

ny

where t,, was the time of the nth action produced by the model. For all levels of
input, we set ¢,, = 0.01. To compare the timing behavior of the model across levels
of input, we calculated the mean and standard deviation of the first 40 IPIs
generated by the circuit.

ISI tracking task. Circuit model synchronization was tested in a randomized ISI
tracking task. The ISI was defined as
(20)

ISIYI =My T My,

where m,, was the time of the nth stimulus. On each trial of the task, we
initialized the ISI at 800 ms and simulated a sensory input with 20 consecutive
800 ms intervals. After the first block of 20 ISIs, the ISI for the next 20 intervals was
selected at random from a discrete uniform distribution between 600 and 900 ms
with four possible values. This process was repeated four times, to generate five
blocks of ISIs, corresponding to a sequence of 100 total intervals.

Circuit parameters were selected as follows: I, was set to 0.771; K was selected to
be 2; a was chosen to be 0 for simulations with no augmented input (e.g. Fig. 4) and
0.1 for simulations with augmented input (e.g. Fig. 5). I, was set such that the
MPM generated an 800 ms IPI on average, matching the initial ISI of every trial.
This ensured that differences in circuit output resulted from updates to the value of
I, rather than the value of I, selected.

The nth IPI was quantified as in Eq. (19) and compared to the nth ISI. The
asynchrony between an action and the stimulus presented at time m,, was defined
as

a, =t, —m,

(21)
where t, was the time of the action which was closest in time to m,. The relative
phase of the nth action, ¢,,, was calculated as
aﬂ
Is1,’

where the phase is in units of degrees. For all simulations, we set g, = 0.01.

¢, =360 (22)

ISI perturbation task. The basis of the mechanisms behind human synchronization
behavior are generally probed using perturbations of the ISI after an experimental
subject has reached steady-state synchronization performance to a given ISI (see
Repp®® for a review). To compare the circuit model synchronization performance to
that of humans, we explored the behavior of the model in response to three common
ISI perturbations: (1) a step change in the ISI, where the circuit synchronized to a
stimulus with an ISI of 800 ms before the ISI was stepped to 1000 ms for all
subsequent IS (2) A phase shift in the stimulus timing, where the circuit synchro-
nized to a stimulus with a 500 ms ISI before the timing of stimuli was shifted by
increasing a single ISI to 600 ms. All subsequent ISIs were 500 ms. (3) Stimulus jitter,
where the circuit synchronized to an ISI of 500 ms before the timing of a single
stimulus is perturbed, while subsequent stimuli remained in phase with the stimulus
before the perturbation. To accomplish this, we perturbed two successive ISIs; the first
was increased to 600 ms and second was decreased to 400 ms.

We simulated 1000 trials of each perturbation type and calculated the
asynchrony associated with each action as in Eq. (21) and the mean IPI between
actions as in Eq. (19). To ensure the circuit model was fully synchronized before a
perturbation, we simulated 30 ISIs of the same duration before applying the
perturbation. The circuit model was simulated with I, = 0.771 and ¢;, = 0.005. The
values of K and « were varied to explore the behavior of the model with different
sensitivities to errors in simulation and synchronization.

1-2-Go and 1-2-3-Go tasks. We compared the circuit model interval reproduction
behavior to that of humans performing a timing task we refer to as 1-2-Go and 1-2-3-
Go. The methods used for testing human interval reproduction are summarized briefly
here. Please see our behavioral paper for a full description of the task and methods®!.
The behavior of nine human subjects was analyzed. Subjects sat in a dark, quiet
room at a distance of approximately 50 cm from a display monitor. The display
monitor had a refresh rate of 60 Hz, a resolution of 1920 by 1200, and was

controlled by a custom software (MWorks; http://mworks-project.org/) on an
Apple Macintosh platform.

The interval reproduction task consisted of two randomly interleaved trial types
“1-2-Go” and “1-2-3-Go”. On 1-2-Go trials, two flashes demarcated a sample
interval (t;). On 1-2-3-Go trials, three flashes demarcated t, twice. For both trial
types, subjects had to reproduce t; immediately after the last flash by pressing a
button on a standard Apple keyboard. On all trials, subjects had to initiate their
response proactively and without any additional cue. Subjects received graded
feedback on their accuracy.

Each trial began with the presentation of a 0.5° circular fixation point at the
center of a monitor display. The color of the fixation cued the trial type. After a
2 second delay, a warning stimulus and a trial cue were presented. The warning
stimulus was a white circle that subtended 1.5° and was presented 10° to the left of
the fixation point. The trial cue consisted of 2 or 3 small rectangles 0.6° above the
fixation point (subtending 0.2° x 0.4°, 0.5° apart) for the 1-2-Go and 1-2-3-Go
trials, respectively. After a random delay with a uniform hazard (250 ms minimum
plus an interval drawn from an exponential distribution with mean of 500 ms),
flashes demarcating f; were presented. Each flash lasted 6 frames (~100 ms) and
was presented as an annulus around the fixation point with an inside and outside
diameter of 2.5° and 3°, respectively. ¢, was sampled from a discrete uniform
distribution ranging between 600 and 1000 ms with a 5 samples. To help subjects
track the progression of events throughout the trial, after each flash, one rectangle
from the trial cue would disappear (starting from the rightmost). The produced
interval (t,) was measured as the interval between the time of the last flash and the
time when the subject pressed the response key. We discarded any trial when the
subject responded before the second (for 1-2-Go) or third (for 1-2-3-Go) flash and
any trial where the response was 1000 ms after the veridical ¢, We further used a
model based approach to identify “lapse trials,” or trials in which ¢, was not related
to 3!, We then calculated the mean t, conditioned on ¢, and trial type.

The SAM was run for 100 simulated trials for each f, (600 ms, 700 ms, 800 ms
900 ms, 1000 ms). To simulate the 1-2-Go task, the SAM was presented with
2 stimuli that were separated by the selected f,. The 1-2-3-Go task was simulated
similarly but with 3 stimuli. The production interval £, of the model was defined as
the interval between the final input pulse and the next time y, exceeded y.

For each subject, we calculated the mean and standard deviation of #, for each ¢ in
both the 1-2-Go and 1-2-3-Go tasks (10 task conditions in total). We call these values
H1,subject> STDl,subject) -+« H10,subject> STDIO,subject (one pair of values for each
condition).

For each set of parameters (o, Iy, K), the model was run as described above. We
calculated the mean and standard deviation of the model’s ¢, for each t,, and for
both the 1-2-Go and 1-2-3-Go tasks. We call these values g moder, STD1,
modeb - -+ - > #10,model> STDIO,modcl-

The fitting was done by alternating between fitting ¢,, and jointly fitting (I, K).
The parameters were uniformly and independently sampled from the following
intervals: [1.0, 8.0] for K, [0.77, 0.79] for I, and [0.005, 0.4] for o,,. For each step,
100 sets of parameters were sampled and the optimal set was used to update the
parameters.

10 2
0y = argminnn Z (STDk,model - STDk,subject) ) (23)
k=1
10 N
I, K, = argmin ¢ Z (n“k.model - !‘k.subjea) . (29)
k=1

To evaluate the anticipated t; associated with I, and g,,, we initialized the model
with Iy, presented a single stimulus to the model 750 ms after initialization, and
determined the interval between this stimulus and the next time y, exceeded yj.

We defined BIAS and VAR for each subject and model simulation as

1SN /. 2
BIAS = =) (zp - tsl> , (25)
N i=1 '
1 N
VAR = NZ a2, (26)
i=1

where N = 5 is the number of target intervals, 7, and o} are the mean and
variance of production intervals that correspond to the target interval ¢ .

Synchronization/continuation task. We compared the circuit model to the
behavior of humans performing a synchronization/continuation task in which the
inter-stimulus-interval (ISI) was selected at random each trial from a set dis-
tribution. The methods used for testing human experiments are summarized briefly
here. Please see Narain et al. % for a full description of the task and methods**.

We analyzed the behavior of six human participants. Stimuli were viewed from
a distance of approximately 67 cm in a dark, quiet room. The display monitor had
a refresh rate of 60 Hz, a resolution of 1920 by 1200, and was controlled by a
custom software (MWorks; http://mworks-project.org/) on an Apple Macintosh
platform.

Each trial began with the presentation of a red circular fixation stimulus
(diameter = 0.75° visual angle) in the center of the screen. After a variable
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delay (200 ms plus an additional amount of time which was exponentially
distributed with mean = 300 ms and a maximum value of 2300 ms), a
synchronization stimulus was flashed four times with an ISI chosen from a
discrete uniform distribution (five intervals, minimum = 550 ms, maximum =
817 ms). The flashing stimulus was a gray annulus centered around fixation
with an inner diameter of 1° and outer diameter of 1.25°. Participants were
instructed to tap a response key synchronously with the third and fourth
synchronization flashes and continue tapping to reflect the ISI until instructed
to stop. The number of continuation taps required was three plus an
exponentially distributed number with a mean of nine and a maximum of 22.
The first IPI was defined as the interval between the middle of the second flash
and the first key press. Subsequent IPIs were defined as the interval between
successive key presses.

Biases in IPIs were calculated according to the following procedure. For each
interval, ISI;, we found the mean IPI for the kth interval in the sequence (IPL ).
The mean squared bias for each k was defined as

N 2
BIAS? = Z% (m,,k - ISI,») : (27)
i=1
where N = 5 is the number of distinct ISI values.

We simulated 21 trials of the full synchronization model for each ISI. In each
trial, the stimuli presented to the model were a series of three flashes separated by
the ISI of that trial. After the three flashes, the stimulus was set to s = 0 and the
model was run and allowed to produce 17 more productions. The IPI of the circuit
was defined as the time difference between successive productions.

We fixed o, at 0.01 and varied three free parameters K, I, and a. For each
subject, we simulated 100 different parameter combinations with K randomly
selected from the interval [0.01, 5], I, from the interval [0.76, 0.78] and « from
the interval [0.01, 0.1]. For each combination of parameters, the model was run
as described above and bias was calculated as in Eq. (27). We then found the
combination of parameters that minimized the mean squared errors between
the BIAS; observed in the subject and the BIAS of the circuit, across k =
1, ..., 20.

Synchronization bias was quantified as the bias for k = 3, and continuation bias
was the bias for k = 7.

Linear behavioral algorithm for sensorimotor timing. For comparison purposes,
we also developed a linear updating model for synchronization based on previous
work3(. In the absence of any error, the model computes the (n + 1)th production
time, t,,;, by adding the expected ISI, T,, to the nth production time, t,. When
there is a discrepancy, the updating rule incorporates two additional error terms.
The first error term measures the asynchrony, which is the difference between f,
and the time of the nth metronomic input, m,. The second error term measures the
difference between T,, and the observed ISI, ISIL,. In the model, these two error
terms are weighted by Basyncn and Bisy, respectively.

tn+1 =t,+ Tn - ﬁAsynch(tn - mn) - :BISI(Tn - ISIrx) (28)

We simulated this timing model for different values of Sasynch and fis; to
compare this standard algorithm to the behavior of the circuit model.

In simulations of the 1-2-Go and 1-2-3-Go tasks, we added a noise term, #, to
tyt1. 17 was sampled independently at every time point from a Gaussian distribution
with mean 0 and standard deviation o,,. For fitting, Basmcn, Was set to 0 and parameters
were uniformly and independently sampled from the following intervals: [0.0, 1.0] for
Bis [700, 900] for To, and [30, 120] for g,,. The fitting procedure is the same as
described for the circuit model.

In simulations of the synchronization/continuation task, the production times
t, during the synchronization phase were simulated like the 1-2-3-Go task. For the
continuation phase, t,,; = t, + Ty + #, where 1 was sampled independently at
every time point from a Gaussian distribution with mean 0 and standard deviation
0,,, and Ty is the value of T at the final stimulus presentation. For fitting, o,, was set
to 50, and parameters were uniformly and independently sampled from the
following intervals: [600, 1200] for Tg, [0, 2] for iss, [0, 1] for Basynch. The fitting
procedure is the same as described for the circuit model.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
No new data were collected. Data for previously published work is available at https://
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