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Abstract

Agriculture is undergoing important changes in order to meet sustainable soil management

with respect to biodiversity (namely agroecology). Within this context, alternative solutions

to mineral fertilizers such as agricultural biostimulants are thus promoted and being devel-

oped. The mechanisms by which some soil biostimulants sustain soil biological functioning

and indirectly increase crop yields are still unknown. Our goal in the present study was to

demonstrate if and to what extent the application of a soil biostimulant affects the soil hetero-

trophic microbial communities that are involved in organic matter decomposition and carbon

mineralization. We hypothesized that the addition of a biostimulant results in changes in the

composition and in the biomass of soil microbial communities. This in turn increases the

mineralization of the organic matter derived from crop residues. We performed soil micro-

cosm experiments with the addition of crop residues and a biostimulant, and we monitored

the organic carbon (orgC) mineralization and the microbial biomass, along with the microbial

community composition by sequencing 16S rRNA gene and ITS amplicons. The addition of

a soil biostimulant caused a pH neutralizing effect and simultaneous enhancement of the

orgC mineralization of crop residues (+ 400 μg orgC g-1 dry soil) and microbial biomass

(+ 60 μg orgC g-1 dry soil) that were linked to changes in the soil microbial communities. Our

findings suggest that the soil carbon mineralization enhancement in the presence of the

biostimulant was supported by the specific recruitment of soil bacteria and fungi. Whereas

archaea remained stable, several operational taxonomic units (OTUs) of indigenous soil

bacteria and fungi were enriched and affiliated with known microbial decomposers such as

Cytophagaceae, Phaselicystis sp., Verrucomicrobia, Pseudomonas sp., Ramicandelaber

sp., and Mortierella sp., resulting in lower soil microbial richness and diversity.
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1. Introduction

Concurrently with the ecological transition, agricultural practices attempt to reduce their

dependence on chemicals and to sustain natural resources while producing healthy food. The

field of agroecology is developing and is looking for integrative crop management systems that

take the ecological processes sustained by the high biodiversity found in soils into account [1].

Soil plays an essential role in the functioning of terrestrial ecosystems and soil microorganisms

are involved in up to 90% of the ongoing processes [2]. Microorganisms are involved in vari-

ous biogeochemical cycles and therefore contribute to soil fertility [3,4], providing mineral

nutrients to crops through the mineralization of soil organic matter (SOM) [5]. Because this

ecosystem service of SOM mineralization relies mainly on bacteria, fungi and archaea [6],

changes in either their diversity, abundance or activity may significantly impact the subsequent

supply of nutrients to plants. The manipulation of soil microbiota has thus emerged as a new

practice in agriculture with respect to the ecological transition that promote sustainable soils.

The use of agricultural biostimulants (BS) that are intended to stimulate and regulate soil

microorganisms could be promoted as an alternative solution to the use of mineral fertilizers,

which are more expensive [7–9].

According to the European Biostimulant Industry Council, BS can either be applied directly

on the plants to favor their growth and development or on the soil in order to induce changes

in its physico-chemical and microbial properties, and indirectly enhance plant functioning

[10]. While most of the available studies focused on the direct beneficial effects of BS applied

on plants [11,12], knowledge about the impact of BS on soil is limited and the mechanisms

improving soil biological functioning and crop yields are still misunderstood. Among the vari-

ous biostimulant products applied on the soil, different effects can be observed, such as

changes in the soil physico-chemical properties that may either stimulate the growth of benefi-

cial fungi [13], reduce the development of pathogen organisms [14], or increase the microbial

activity by providing compounds directly used by soil microorganisms and/or plants such as

peptides, amino acids, polysaccharides, humic acids and phytohormones [15,16]. However,

there is still a clear need to identify their way of action to optimize their formulations and uses.

To improve our understanding about the effects of soil BS input on the soil biota, we

focused our research on a soil inoculant formulation (namely, soil biostimulant (BS) through-

out the text), intended to be applied directly on crop residues in agricultural soils to improve

their decay and mineralization, thereby preserving the fertility of the soil. Several studies on

crop residue management have indicated that the decomposition process was strongly influ-

enced by the quality (e.g. type of residue, biochemical composition), or placement of residues

in the soil depending on tillage practices (e.g. surface/incorporated) [17–19]. Thereby, in the

current context of reducing the input of mineral fertilizers, crop residue management is

important in order to ensure sustainable crop production and to provide a constant pool of

nutrients for the crops.

In the present study, our aim was to determine the responses of soil bacteria, fungi and

archaea to the addition of the BS in the soil. Our objectives were to (i) quantify the effect of BS

addition on the soil microbial biomass and OM mineralization, (ii) determine changes in the

composition of the soil microbial communities (iii) identify whether microbial changes con-

cern indigenous soil microorganisms or specific microorganisms that are naturally present in

the BS. We hypothesized that changes in both the composition and biomass of the microbial

communities induced by the BS will increase the mineralization of the OM derived from crop

residues. Using soil microcosm incubations, we monitored the microbial biomass carbon as

well as the organic carbon (orgC) mineralization and we analyzed the changes in microbial

diversity following the addition of a BS by using a 16S rRNA gene and ITS amplicon
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de Recherche 6553 ECOBIO Ecosystèmes,
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sequencing approach. We demonstrated in this study that an agricultural soil BS increased the

orgC mineralization and induced subtle changes in the composition of the microbial commu-

nities, in particular by sustaining certain microbial decomposers.

2. Materials and methods

2.1 Soil and biostimulant characteristics

Topsoil (0–20 cm depth) that was used as starting material for conducting the lab incubation

experiment was collected on a private agricultural site dedicated to experimental studies (the

site of La Jaillière, France, 47˚27’06.3"N/0˚57’58.4"W) for which no specific permission was

required. Also, this study did not involve endangered or protected species. The soil was ana-

lyzed for its physico-chemical characteristics according to Carter and Gregorich [20] and had

a pHwater of 6.7, a texture composed of 57% silt, 26.3% sand and 15% clay and it contained

1.7% of OM (i.e. 0.99% orgC) and 0.09% of total nitrogen (Ntot). The biostimulant developed

and provided for free by the company BIO3G is in solid form, composed of natural raw mate-

rials without any additives, and is intended for application on crop residues before they are

buried in the soil. It had a pHwater of 6.25 ± 0.0845 and it contained 35% of OM (i.e. 20.4%

orgC) and 2.15% of total N as well as several labile organic compounds (low-weight molecules)

such as amino acids. More information on the composition of the BS is given in Table 1.

2.2 Experimental design and soil microcosm incubation

The air dried soil was adjusted to 60% of the water hold capacity (i.e. 18%) and sieved (mesh

size 4 mm) prior to soil microcosm incubations, according to the AFNOR standard (AFNOR

XP U 44–163). Each soil microcosm contained the equivalent of 25 g of dry soil placed in her-

metically closed 1 L glass jars to allow the CO2 produced to accumulate in the headspace; the

air of the headspace was entirely renewed each time a measurement was taken (once a week).

The soil microcosms were subjected to three different treatments each in three replicates: i)

soil alone as a control (CS), ii) soil mixed with 120 mg of straw (SS) simulating 4.8 kg of wheat

residues per m2 and corresponding to an input of 50 mg of orgC and 0.94 mg of total N, and

iii) soil mixed with 120 mg of straw and the BS (SBS). This last treatment was prepared by

applying 100 mg of the BS to 25 g of straw, and 120 mg of this mixture was then incorporated

in the soil. In the SBS treatment, the additional orgC and total N amounts due to the BS input

were negligible (100 μg and 10 μg, respectively) compared to both the orgC and total N

amounts due to the straw input and the initial contents of the soil (245 mg orgC and 22.5 mg

total N per microcosm, respectively). The initial raw materials (soil, straw and BS at t = 0) and

the three soil microcosm treatments (CS, SS and SBS), each performed in three replicates,

were characterized for their soil OM, orgC and total N contents, as well as for their microbial

biomass and pHwater (Table 2). Soil microcosms were equipped with a NaOH trap to collect

the evolved CO2 and incubated in the dark for 49 days at 28˚C. Soil incubations were per-

formed for seven weeks (49 days). After 3, 7, 14, 21, 28, 42 and 49 days of incubation, the CO2

trapped in 10 ml of 0.5 N NaOH was quantified by titration with 0.1 N HCl according to the

AFNOR standard (AFNOR XP U 44–163) and the soil moisture was maintained by replacing

the weight loss with sterile water. At the end of incubation, the pH of the soil microcosms were

measured in water with a pH meter using a soil-to-water ratio of 1:5 (Table 2) and the soil sam-

ples were stored at -20˚C for further chemical and microbial analyses. The soil microbial com-

munities were analyzed after seven weeks of incubation, when the communities of microbial

decomposers were presumed to be well established and stable in each soil treatment.
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2.3 Microbial carbon biomass

The chloroform fumigation and extraction method described by Vance et al. [21] was used to

measure the soil microbial biomass carbon in the initial raw materials and for all of the SS and

SBS soil samples, after 49 days of incubation by using a Total Organic Carbon analyzer (Biori-

tech, Voisins-le-Bretonneux, France). The microbial biomass carbon was calculated using the

equation of Vance et al. [21]:

Biomass C ¼ ðCf � Cnf Þ � Kc ð1Þ

where Cf is the dissolved organic carbon in fumigated soil (or straw or biostimulant), Cnf is

the dissolved organic carbon in non-fumigated soil (or straw or biostimulant) and Kc is the

correction factor of 2.64.

We obtained negative microbial biomass carbon values for the BS and straw samples; a pos-

sible explanation for this is that the fumigation method is not suitable for determining the

Table 1. Analytical composition of the biostimulant under study.

Content (g/100 g dry BS)

Dry extract 92

Humidity 8

Raw ashes 56.70

Organic matter 35

Proteins 13.40

Total nitrogen 2.15

Phosphorus 0.3

Calcium 15

Sulfur 2.1

Magnesium 0.86

Amino acids

Alanine 1.20

Arginine 0.54

Aspartic acid 1.09

Cysteine 0.25

Glutamic acid 1.90

Glycine 0.66

Histidine 0.37

Hydroxyproline <0.05

Isoleucine 0.55

Leucine 1.32

Lysine 0.68

Methionine 0.28

Ornithine <0.05

Phenylalanine 0.59

Proline 1.08

Serine 0.73

Threonine 0.62

Total tryptophane 0.10

Tyrosine 0.42

Valine 0.76

https://doi.org/10.1371/journal.pone.0209089.t001
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microbial biomass in these materials or possibly because the % of dry matter for the straw and

BS was close to 93% for both and it is well known that microbial activity is low in dry matter.

2.4 Soil and BS microbial communities: DNA extraction and library

construction

DNA was extracted from 3 g of either soil or the BS using a protocol adapted from Quaiser

et al. [22] with 25 mL of lysis buffer (Cetyltrimethylammonium bromide (CTAB) 4%, Polyvi-

nylpyrrolidone (PVP) 0.5%, NaCl 0.75 M, potassium-phosphate 100 mM (50:50—K2HPO4:

KH2PO4), Ethylenediaminetetraacetic acid (EDTA) 20 mM, β-mercaptoethanol 1%, guanidine

thiocyanate 1 M) preheated to 65˚C and from 1 g of the BS using 7 ml of lysis buffer. After 30

min at 65˚C and intermittent vortexing every 5 min, one volume of chloroform-isoamylalco-

hol (24:1) was added, the samples were mixed by vortexing for 1 min and centrifuged during

30 min at 4500 rpm. The aqueous phase was recovered and the DNA was precipitated by add-

ing 0.5 volume of pure ethanol or 1 volume of 30% polyethylene glycol (PEG) for the BS sam-

ples. The DNA extracts were purified using the NucleoSpin gDNA Cleanup kit (Macherey-

Nagel) according to the manufacturers’ instructions. The genomic DNA quality was assessed

on 1% agarose gel, quantified on a nanodrop spectrophotometer (ND-1000, Nyxor Biotech,

Palaiseau, France) and quickly stored at -20˚C.

The bacterial and archaeal 16S rRNA gene libraries and the fungal ITS libraries were con-

structed using the "16S metagenomics sequencing library preparation" protocol given by Illu-

mina (https://www.illumina.com/content/dam/illumina-support/documents/documentation/

chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf) [23]

which is a two-step polymerase chain reaction (PCR) approach. The following primer sets

were used for the bacteria, fungi and archaea: 341F (5'-CCTACGGGNGGCWGCAG-3') and

785R (5'-GACTACHVGGGTATCTAATCC-3') [24], ITS1f (5'-CTTGGTCATTTAGAGGAAG
TAA-3') [25] and ITS2 (5'-GCTGCGTTCTTCATCGATGC-3') [26] and Arch344f (5'-AC
GGGGYGCAGCAGGCGCGA-3') [27] and Arch806R (5'-GGACTACVSGGGTATCTAAT-3')

[28], respectively. Each primer set contains the overhang adapter: forward overhang (5'-TC
GTCGGCAGCGTCAGATGTGTATAAGAGACAG-3') and reverse overhang (5'-GTCTCGTGG
GCTCGGAGATGTGTATAAGAGACAG-3') and targets the variable V3 and V4 regions of the

16S rRNA gene for the bacterial and archaeal ones and the ITS1 region for fungal ones. PCRs

were conducted in a final volume of 25 μl containing each bacterial or fungal primer (0.2 μM),

Table 2. Organic matter (OM), organic carbon (orgC) and total nitrogen (Ntot) concentrations in the original soil, straw and biostimulant and total contents in the

soil microcosms at the beginning of incubation.

Organic matter

(mg.g-1 d.w)

Organic carbon

(mg.g-1d.w)

Total nitrogen

(mg.g-1 d.w)

Microbial Biomass

(μgC.g-1 d.w)

pHwater

Raw materials

soil 17.0 9.9 0.9 140.4 6.7

straw 860.4 430.2 7.8 0� N.D

BS 350.0 204.0 21.5 0� 6.3

Soil microcosms (mg per 25g of dry soil) (μgC.g-1d.w)
control soil (CS) 425 245.0 22.5 N.D 6.0

soil with straw (SS) 528.3 295.0 23.4 141.4 6.3

soil with straw and BS(SBS) 528.4 295.1 23.5 201.4 6.9

The whole measurements are expressed on a soil dry weight basis (d.w).

�Negatives values for the microbial biomass carbon were obtained for BS and straw and are explained in the materials and methods section (2.2). ND = Not Determined.

https://doi.org/10.1371/journal.pone.0209089.t002
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each archaeal primer (0.6 μM), 12.5 μl 2X KAPA HiFiHotStart Ready Mix (2X), 2 μl of DNA

and ultrapure water to reach the final volume. The amplification conditions were as follows:

for bacteria, 3 min at 95˚C, 25 cycles of 30 s at 95˚C, 30 s at 55˚C and 30 s at 72˚C and a final 5

min extension step at 72˚C; for archaea, 5 min at 95˚C, followed by 30 cycles of 20 s at 98˚C,

15 s at 66˚C and 15 s at 72˚C and a final 1 min extension step at 72˚C; for fungi, 4 min at 95˚C,

followed by 30 cycles of 30 s at 95˚C, 30 s at 56˚C and 30 s at 72˚C and a final 10 min extension

step at 72˚C. Two independent PCR replicates were performed for each sample, the PCR prod-

ucts were pooled and purified using the Agencourt AMPure XP beads system. The second

PCR reaction attached specific indexes (i5, i7) to identify each sample and to the Illumina

sequencing adapters (P5, P7) using the Nextera XT index kit. This was performed in a final

volume of 50 μl containing 5 μl of each Nextera XT index primer, 5 μl of the first PCR product,

25 μl of the KAPA HiFiHotStart Ready Mix (2X) and 10 μl of PCR grade water. The amplifica-

tion conditions consisted of 3 min at 95˚C, followed by 8 cycles of 30 s at 95˚C, 30 s at 55˚C

and 30 s at 72˚C, and a final 5 min extension step at 72˚C. The PCR products were purified

with the Agencourt AMPure XP beads system.

The amplified bacterial, fungal and archaeal products were quantified by qPCR (light cycler

480, Roche, Meylan, France). Each well contained 3 μl of SYBR Green PCR Master Mix, 3 μl

of the PCR product and Illumina primers 0.2 μM final P5 (5’-AATGATACGGCGACCACCG
A-3') and P7 (5’-CAAGCAGAAGACGGCATACGA-3'). The qPCR program consisted of 3

min at 95˚C, followed by 45 cycles of 30 s at 95˚C, 45 s at 60˚C, 20 s at 72˚C and a final melting

curve step of 0.05 s at 95˚C, 1 min at 65˚C and an increase of 0.06˚C/s from 65˚C to 97˚C.

Then, the amplified products were combined in a unique pool in an equimolar ratio and

sequenced using 2x250 bp paired-end Illumina MiSeq with 20% PhiX at the “Human and

Environmental Genomic” platform (Rennes, France).

2.5 Microbial sequence analysis

For all of the samples (raw material and soil microcosms), which were performed each in three

replicates, we obtained the following total number of raw reads: 1,325,903 for bacteria,

1,955,564 for archaea and 2,607,580 for fungi. These sequences are available on the sequence

read archive (SRA) database (Bioproject SRP104693). The sequence read quality was con-

trolled with FastQC [29]. The bacterial and archaeal analyses were performed using the

FROGS pipeline [30] and the PIPITS pipeline was used for the fungal analyses [31].

Applying the FROGS pipeline, the reads were merged with a minimum overlap of 20 bp

(FLASH) [32], filtered according to the following criteria: expected amplicon size of 480 bp for

bacteria and 460 bp for archaea, minimal length of 450 bp for bacteria and 420 bp for archaea,

and maximal length of 480 bp for both and no ambiguous nucleotides were allowed. The

primer sequences and sequences where the two primers were not present were removed and

the sequences were dereplicated. The sequences were clustered using the swarm method [33]

with an aggregation distance equal to 3 for clustering. The chimera were removed using the

VSEARCH tool with the UCHIME de novo method [34,35] combined with a cross-sample val-

idation. The taxonomy affiliation was performed using the SILVA database (Silva 128) [36].

For fungi, the first step of the PIPITS pipeline was to the merge reads with a minimum

overlap of 20 bp, a minimal length of 250 bp and a maximal length of 480 bp. The assembled

reads were then filtered with a quality score of 33. The second step consisted of dereplicating

the sequences and extracting the ITS1 subregion. The dereplicated sequences were clustered at

a threshold similarity of 97%. The chimera were removed using UCHIME in UNITE [34] and

the representative operational taxonomic units (OTUs) were taxonomically assigned using the

RDP classifier compared against the Warcup fungal ITS reference database.
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The bacterial, archaeal and fungal OTUs present in at least 3 out of 15 samples and repre-

senting at least 0.0005% of all sequences were retained for the subsequent analyses. Thus, the

bacterial OTUs were represented by a minimum of 6 sequences, and there were 8 sequences

for the archaeal OTUs and 10 for the fungal OTUs. See S1 Table for more details on the data

processing.

2.6 Data analysis

All of the statistical analyses were performed using R (v3.3.2, Core Team, 2016). To avoid sam-

pling size effects, the number of reads per sample was randomly subsampled to the lowest

number of reads; the soil dataset was normalized separately from the BS and straw dataset: 51

829 reads for bacteria, 26 669 for fungi and 73 142 for archaea in the soil samples and 42 473

for bacteria, 102 839 for fungi and 4842 for archaea in the BS and straw samples. According to

the rarefaction curves, the sequencing effort provided a good estimate of the bacterial, fungal

and archaeal richness in the soil samples (S1, S2 and S3 Figs). The Shannon diversity index

was used to estimate the alpha diversity and the richness was estimated as the number of

OTUs. A Student’s t-test was used to test for differences in the microbial biomass carbon

between the soil treatments, and non-parametric Kruskal-Wallis analyses were performed on

the amount of orgC mineralized, the Shannon diversity indices and the observed richness val-

ues. A powered partial least squares discriminant analysis (PPLS-DA) was generated at the

OTU level to compare the bacterial, fungal and archaeal community compositions when straw

and/or the BS were applied to the soil. The individual plots coupled with a statistical permuta-

tion test based on a cross-model validation were used to identify how the groups, represented

by the various treatments, were structured. An analysis of variance (ANOVA) was carried out

on each OTU to identify significant differences in their abundances in the presence of the BS.

Only OTUs present in the three replicates of each soil treatment (S2 and S3 Tables) were

retained for further analysis. A BLASTn analysis [37] of the representative sequences for the

enriched OTUs was performed to test their similarity to sequences from microorganisms

native to the soil environment.

3. Results and discussion

3.1 Soil carbon content and mineralization

After 49 days of incubation, a total of 350 ± 8, 1740 ± 70 and 2140 ± 110 μg g-1 dry soil C-CO2

was emitted in the CS, SS and SBS treatments, respectively (Fig 1). In the SS treatment, we

observed a significant increase in emitted CO2 compared to the CS treatment indicating that

the straw, as an added organic substrate, was metabolized by heterotrophic microorganisms.

The increased emission of CO2 observed in the SS compared to the CS treatments (+1390 μg

of C-CO2) (Kruskal-Wallis, H = 7.2, P = 0.027) corresponded to 69.5% of the orgC potentially

derived from the inoculated straw. In the presence of the BS, the mineralization was statisti-

cally higher in SBS than in SS (2140 ± 110 versus 1740 ± 70 μg g-1) leading to a net increase of

an additional 400 μg of C mineralized per gram of soil, indicating that potentially 89.5% of the

orgC of the inoculated straw was mineralized. To confirm this, future experiments should be

carried out using 13C labelled straw so as to distinguish between soil-derived mineralized C

and straw-derived mineralized C. The increase in orgC mineralization in the SBS treatment

compared to the SS treatment was linked to a significantly higher microbial biomass (201.4 ±
10.4 μg C g-1 dry soil in SBS and 141.4 ± 9 μg C g-1 dry soil in SS) (t-test, P = 0.0018). The C

microbial biomass values obtained for the SS treatment were in agreement with another study

that reported values ranging from 67 μg C g-1 dry soil to 166 μg C g-1 dry soil in 13 agricultural

soils [38], while the C microbial biomass of the SBS treatment was closer to that observed in

Crop mineralization and bacterial and fungal soil decomposers

PLOS ONE | https://doi.org/10.1371/journal.pone.0209089 December 31, 2018 7 / 19

https://doi.org/10.1371/journal.pone.0209089


forest soils (215 μg C g-1 dry soil) but lower than those in grassland soils (250 μg C g-1 dry soil)

[39].

As hypothesized, mineralization and microbial biomass were increased in the presence of

the BS. These results are in agreement with the results of other studies with regards to the effect

of other BS on soil microorganisms. Chen et al. [40,41] demonstrated that soil amendments

using two BS stimulated the microbial activity and increased the decomposition rates of straw

more than two-fold compared to that in the control soil, as well as the mineralization of soil

Fig 1. Cumulative kinetics of the orgC mineralization and microbial biomass carbon in, the control soil (CS), the soil with straw (SS) and the soil with straw and

the BS (SBS). The error bars indicate the standard errors of the C-CO2 emission mean values (n = 3). At each sampling date, the data indicated with different letters are

significantly different according to the Kruskal-Wallis test. The microbial biomass carbon in the control soil was not determined (ND). The C-CO2 emission and

microbial biomass are “expressed” per g of dry soil (d.w.). The (�) correspond to significantly different values of microbial biomass carbon.

https://doi.org/10.1371/journal.pone.0209089.g001
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OM. Another study by Tejada et al. [42] demonstrated that four BS applied on the soil, which

differed in terms of their chemical composition, enhanced the soil enzymatic activities and

increased both the fungal and bacterial biomass by two or three fold, depending on the BS.

The increases in the C-CO2 emissions and the enhanced microbial biomass storage in SBS

compared to SS corresponded to a total of 460 μg orgC g-1 dry soil that could not be attributed

to the addition of orgC contained in the BS itself since it only corresponded to an input of 4 μg

of orgC g-1 dry soil. Similarly, this stimulation of the microbial activity could not be due to soil

N enrichment coming from the BS since it only corresponded to an input of 0.41 μg of total N

per gram of dry soil which was negligible compared to the initial content in the soil (Table 1).

Tejada et al. [42] highlighted a better stimulation of soil enzymatic activities in BS-amended

soil than with other sources of organic matter applied to the soil. As suggested by Parrado et al.

[43], the higher stimulation of the soil microbial community may have been due to the applica-

tion of a BS with high contents of low molecular weight proteins that can be directly assimi-

lated by the soil microorganisms. Our study showed that the BS used significantly increased

the OM mineralization and microbial biomass, without adding a significant amount of orgC

or total N. It is possible that the BS may have supplied proteins with low molecular weight,

amino acids [44] or growth factors such as phytohormones [45] that stimulated the microbial

community, although these factors have not been studied here. However as we can see in

Table 1, amino acids are widely present in the BS and they are used in protein synthesis or can

be directly absorbed by the soil microorganisms as an alternative source of nitrogen and car-

bon [46]. It has also have been reported that they enhance soil respiration and microbial bio-

mass activity [47].

Furthermore, it is well documented that the incorporation of fresh OM in soil may increase

SOM degradation [48,49]. For example, by using a 13C labeled wheat residue, Pascault et al.

[50] demonstrated a higher release of 12CO2 with wheat residues compared to the non-

amended control soil, pointing to a priming effect of native unlabeled SOM. The changes in

the native SOM degradation as a result of an exogenous substrate depends on the substrate

quality [51]. The input of crop residues that are known to decompose slowly result in a rapid

response from the microorganisms by producing enzymes that are able to degrade this exoge-

nous organic matter [52]; hence, microorganisms are also able to decompose SOM [53]. Other

studies using low molecular weight substances such as glucose or amino acids also demon-

strated the occurrence of a priming effect [54,55] and this type of molecules was present in the

BS. This suggests that, in our study, the addition of straw in the SS and SBS treatments may

have promoted this priming effect. However, we could not confirm that the increase in soil

orgC mineralization we observed was due to the degradation of the straw itself or to the occur-

rence of a priming effect, with a higher intensity in the presence of the BS.

3.2 Microbial community composition

The simultaneous enhancement of the orgC mineralization and microbial biomass were linked

to changes in the soil microbial communities. These changes in the microbial community

were not related to the pristine microbial composition of the BS itself (Fig 2). The main native

bacterial and fungal phyla that characterized the BS, such as Proteobacteria (β-Proteobacteria),
Cyanobacteria, Actinobacteria and Ascomycota, were not more represented in the SBS than in

the CS and SS treatments. For example, two bacterial OTUs were highly dominant in the BS

(Cyanobacteria, OTU1, and γ-Proteobacteria, OTU3, representing 26.7% and 10.3% of the

total sequences, respectively) but were detected at very low abundances in the SBS sample

(0.01% and 0.04% of the total sequences, respectively). For archaea, among the three classes

detected in the BS (the Soil crenarchaotic group (SCG), Methanomicrobia and South African
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gold mine group), only SCG was predominant in the three soil treatments. Therefore, our

results showed that the enhanced mineralization observed in the SBS treatment was not related

to a bioaugmentation through the inoculation of specific microorganisms present in the BS.

Simultaneously, the BS may have exerted an indirect effect on the microbial community by

altering the pH of the soil. While the pH of the BS was 6.25, the pH values was significantly

higher up to one half-unit pH in the SBS treatment (6.87 ± 0.15 versus 6.33 ± 0.13 in the SBS

Fig 2. Composition of the bacterial (a), fungal (b) and archaeal (c) microbial community in the various samples. Pristine microbial composition of the BS and

straw (“Input”) and composition of the bacterial, fungal and archaeal communities at the phylum level (and class level for the Proteobacteria and archaea) in the

three soil treatments after 7 weeks (49 days) of incubation with the associated richness and Shannon diversity index. BS: biostimulant samples, CS: control soil, SS:

soil with straw, SBS: soil with straw and BS, Means and standard errors were calculated (n = 3). The Kruskal-Wallis test was performed (P<0.05). Different letters

correspond to significantly different values.

https://doi.org/10.1371/journal.pone.0209089.g002
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and CS treatments, respectively; ANOVA p-value = 4.67.10−9) (Table 2). The soil pH is one of

the most influential factors affecting the microbial community in soil [56] as it influences abi-

otic factors such as carbon availability [57] or biotic factors such as the composition of fungal

and bacterial biomass [58] in agricultural soils. The soil can be subdivided into acidic (pH<5),

moderately acidic (pH = 5–6.5), neutral (pH = 6.6–7.5), and alkaline soils (pH > 7.5) [59].

Therefore, our results showed that the BS had a pH neutralizing effect that may have induced

changes in the bacterial and fungal communities.

3.2.1 Bacterial phyla. Irrespective of which soil treatment was used, the same phyla (e.g.

Acidobacteria, Planctomycetes and Proteobacteria) dominated the soil bacterial communities.

However, even at the phyla level, several changes were observed in the presence of the BS

(SBS) compared to the soil amended with straw (SS): the proportion of Planctomycetes was sig-

nificantly higher from 17.6% to 20.5%, and the trend for the proportion of Bacteroidetes and

Chlamydiae was also higher, but non-significantly, from 5.8% to 7.7% and from 2.16% to 2.9%,

respectively (Fig 2A). At the same time, the proportion of γ-Proteobacteria tended to be lower

in the SBS treatment than in SS (6.4% and 7.5%, respectively). Previous studies have reported

that the abundance of Bacteroidetes was highest in soils with high C availability and was posi-

tively correlated with the C mineralization rates [60] and that active Bacteroidetes members

were some of the initial metabolizers of the labile carbon inputs [61]. These are consistent with

our observation, the highest abundance of Bacteroidetes at 49 days being probably linked to

the use of labile C in the soil microcosm during the course of the incubation. In addition, the

soil pH could have played a role in these bacterial community changes in the SBS treatment.

We showed that the abundance of Bacteroidetes was higher in soil with higher pH, which is in

agreement with Lauber et al. [62] who demonstrated a significant and positive correlation

between Bacteroidetes abundance and soil pH (for pH values ranging from 4 to 8). At the

opposite, our findings on Planctomycetes, were inconsistent with the recent report of Zhang

et al. [63]. Whereas the latter authors showed a decrease in the Planctomycetes abundance

from acidic to near-neutral pH values and then an increase from near-neutral to alkaline pH

values, we demonstrated an increase from moderately acidic to near-neutral pH values.

3.2.2 Fungal phyla. The addition of the BS induced greater changes in the composition of

the fungal phyla since the relative abundances of Zygomycota was significantly higher in SS

than in SBS from 19.7% to 31.6% and Ascomycota tended to be lower from 47.9% to 35.3%,

respectively (Fig 2B). Generally, fungi grow well and tolerate acidic soils better than bacteria

[64], but some fungi belonging to phylum of Zygomycota and saprotrophic species (e.g.

Amblyosporium, Pseudombrophila, Coprinus, Mortierella) have been shown to grow well in

neutral to slightly alkaline conditions [65–67].These findings are consistent with our results

and suggest that the addition of the BS induced changes in fungal communities through its pH

neutralizing effect. Moreover, with the amendment of the straw by itself, the proportion of

Basidiomycota tended to be higher in both the SS and SBS treatments compared to the CS

treatment resulting in a lower fungal diversity in these treatments (Fig 2B). As a result, the

straw input may have selected Basidiomycota which are known litter decomposers able to

degrade complex and recalcitrant OM [68,69].

3.2.3 Archaeal phyla. Significant changes were not seen in the archaeal community in the

presence of the BS. At the class level, 99% of the archaeal sequences were affiliated with the Soil

Crenarchaeotic Group (SCG) in all of the soil treatments. The SCG class falls within the

recently described Thaumarchaeota phylum; these archaea are thought to be chemolithoauto-

trophs that use ammonium as an energy source [70]. To date, there is no proof that organisms

belonging to this phylum play a role in orgC mineralization [6]. So far, it appears that Thau-
marchaeota are directly involved in nitrogen metabolism and mainly comprise ammonia-oxi-

dizing archaea [71], which is in line with our results where no changes in the community
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structure of archaea was observed when straw and the BS were added. Furthermore, a study of

Hu et al. [72] demonstrated that Thaumarchaeota represented more than 85% of the total

archaea in soils with pH higher than 6, which is in agreement with our results: the three soils

microcosms are dominated by the Thaumarcheaota and have pH values ranging from 6 to 6.9.

3.3 Microbial diversity and richness

In order to determine the potential changes in the microbial communities due to the amend-

ments, we compared the richness and diversity of the microbial communities using 16S/ITS1

rRNA amplicons (Fig 2). Statistical differences (P< 0.05) were observed between the CS and

SBS treatments in terms of bacterial richness and the bacterial and fungal Shannon diversity

index, as well as between the CS and SS treatments for the fungal Shannon diversity index.

Because the bacterial and fungal diversities and bacterial richness were not different between

CS and SS treatment but significantly lowest in the SBS compared to the CS, this suggested

that this lowest diversities and richness could have been induced by a synergic effect of the BS

and straw which thereby established a dominance of certain bacteria and fungi. After 49 days

of incubations, it is probable that easily degradable compounds gradually gave way to recalci-

trant compounds that were more difficult to degrade and which therefore required specific

enzymes to do so [52]. Hence, the lowest bacterial and fungal diversity due to the addition of

straw and the BS can be explained by the degradation of more recalcitrant compounds that

can be carried out by a few groups of organisms with specific functions such as the production

of extracellular enzymes [73]. Therefore, due to the soil microbial enzymatic specificity for

substrate degradation, a succession of microorganisms is observed throughout the decomposi-

tion of the OM [74]. However, further temporal dynamics experiments should be undertaken

to clearly determine the microbial community succession in our study.

Among the bacterial and fungal phyla enhanced in the presence of the BS after 49 days of

incubation, different functional strategies regarding the use of soil carbon can be identified

according to the ecological classification scheme suggested by Fierer et al [60]. Planctomycetes
are described as a phylum that can exhibit oligotrophic tendencies with slow growth and a K-

selected life strategy [75], and Bacteroidetes are mainly copiotrophs [60]. Among the changes

detected in the fungal phyla, Zygomycota are known to use readily available sugars and to be

the first fungi to colonize a fresh substrate, but are also able to degrade recalcitrant compounds

[76,77]. Therefore, at the phylum level, the application of the BS on straw residues sustained

several microbial phyla but without any specific functional strategy towards OM decomposi-

tion optimization with either oligotrophic or copiotrophic tendencies. Also, we may consider

that 49 days of incubation was not long enough to allow microbial successions and the devel-

opment of specific functional strategies in the soil microbial communities.

3.4 Microbial recruitment

By analyzing the effect of the BS on the structure of the soil microbial community, significant

impacts were observed on both bacteria and fungi but not on archaea, (PPLS-DA analysis,

P = 0.004 and 73.5% of variance explained, P = 0.012 and 51.5% of variance explained and, P =
0.65 and 62.1% of variance explained, respectively, (Fig 3A and 3C). The community structures

of the soil bacteria and fungi were affected by the addition of both straw and the BS. These

results are in agreement with those obtained by Monard et al. [78] and Pascault et al. [50]: the

input of fresh OM (carbon substrate or wheat residues, respectively) on the soil induced

changes in the soil microbial community structures by selecting and stimulating specific

groups of bacteria.
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An ANOVA was performed in order to identify the bacterial and fungal OTUs that were

responsible for the differences that were observed in the communities when the BS was added

(Fig 3B and 3D). Out of a total of 8 697 bacterial OTUs and 842 fungal OTUs, 132 and 6 of

these OTUS, respectively, were enriched after the addition of the BS, except for fungal

OTU2492 which was also highly detected in the straw (718.3 ± 76.8 sequences). Among the

bacterial and fungal enriched OTUs, 83 were specific to the three soil microcosms and the

other OTUs were detected at low levels in the BS and/or straw alone. Furthermore, according

to the BLASTn analysis of the representative sequences of these enriched OTUs, they were all

highly similar to the sequences obtained from the microorganisms extracted from the soil

environment. This further supports the idea that the BS acted by stimulating specific indige-

nous microorganisms in the soil.

Among the most enriched OTUs in the SBS treatment compared to the SS treatment (Fig

3B), specific groups of bacteria were detected such as an unknown genus within the Cytopha-
gaceae family (S2 Table; OTU428, OTU495, OTU1016, OTU1771, OTU2157) known to

degrade complex carbohydrates [79], Phaselicystis sp. (OTU151) which appears to be distrib-

uted in soil samples containing decaying plant materials [80], an unknown genus within the

Verrucomicrobia phylum (OTU679, OTU1362, OTU1883, OTU570, OTU1069, OTU959,

OTU3594, OTU1413) known to have an abundance that is positively correlated with re-

calcitrant C compounds [81] and Pseudomonas sp. (OTU1435, OTU942, OTU41, OTU3,

OTU596) which are ecological opportunists (r-strategist) [61]. Two fungal OTUs were

enriched in the SBS treatment compared to the SS treatment. They were highly similar to

Ramicandelaber sp. (OTU364) and Mortierella sp. (OTU2889) which belong to the phylum

Fig 3. a and c) Powered partial least squares discriminant analysis (PPLS-DA) describing the bacterial and fungal community structures at the OTU level. The

three soil treatments (CS, SS, SBS) exhibited significant different compositions in terms of their bacterial and fungal communities. The CS groups represent the soil

control samples, the SS groups correspond to the soil with straw samples and the SBS groups represent the soil with straw and BS. b and d) Ternary plots describing the

distribution of the bacterial and fungal OTUs between the soil treatments (grey circles) showing the enriched (green circles) and depleted (red circles) OTUs after

the BS amendment. This analysis was performed on the relative abundances for the bacteria and fungi matrices. Each circle depicts one individual OTU. The size of the

circle reflects the relative abundance (RA) of the OTU. The position of each circle is determined by the contribution of the indicated compartments to the RA. An

extract from S2 and S3 Tables is presented which shows the RA and affiliation of some of the most abundant enriched OTUs.

https://doi.org/10.1371/journal.pone.0209089.g003
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Zygomycota. Zygomycota are known to exhibit a wide range of functional capabilities and to

degrade both labile and recalcitrant compounds [76,77]. Moreover, Ramicandelaber sp. and

Mortierella sp. are usually saprophytic in soil [82] and Mortierella sp. are P-solubilizing fungi

and have been shown to increase urease activity when inoculated in the rhizosphere of Malva-
ceae [83]. This involvement in the P and N cycles in the soil should have a positive effect on

plant growth. Most of the enriched OTUs detected were linked to groups that contain known

bacterial and fungal decomposers.

Conclusion

After seven weeks of incubation in soil microcosms, the biostimulant (BS) applied on the

straw residues in the soil significantly improved the orgC mineralization, increased the soil

microbial biomass and induced changes in both the soil bacterial and fungal communities. At

the phylum level, the action of the BS was related to subtle changes in the composition of the

soil indigenous bacterial and fungal communities presenting different functional strategies

with regards to the use of soil carbon. However, no significant changes in the archaeal commu-

nity could be identified. At the OTU level, some OTUs were enriched in the presence of the

biostimulant and were identified as decomposers able to degrade both labile and more recalci-

trant organic substrates suggesting that specific soil bacterial and fungal OTUs were recruited

therefore leading to lowest soil microbial richness and diversity. To confirm this possible

recruitment by the BS, further analyses using labelled 13C straw would be useful to identify the

active microbial decomposers and to determine if the straw and BS inputs could have pro-

moted a priming effect. These changes in the soil indigenous diversity induced by the BS

might support the activator effect of the BS observed on soil OM mineralization. This cannot

be attributed to either (i) the negligible orgC, total N contents of the BS, or (ii) the inoculation

of specific microorganisms naturally present in the BS. Thus, the BS may act through other

ways. Through its pH neutralizing effect, it may have induced changes in the bacterial and fun-

gal communities, and/or through the supply of amino acids, micronutrients or growth factors

that stimulate the microbial communities. Further dedicated analyses are needed to confirm

this hypothesis.
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