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Abstract. Bacterial meningitis is an inflammatory disease of 
the meninges of the central nervous system (CNS). Strepto‑
coccus pneumoniae (S. pneumoniae), Neisseria meningitidis, 
and Haemophilus influenzae are the major bacterial pathogens 
causing meningitis with S. pneumoniae being responsible for 
two thirds of meningitis cases in the developed world. To reach 
the CNS following nasopharyngeal colonization and bacter-
aemia, the bacteria traverse from the circulation across the 
blood brain barrier (BBB) and choroid plexus. While the BBB 
has a protective role in healthy individuals by shielding the 
CNS from neurotoxic substances circulating in the blood and 
maintaining the homeostasis within the brain environment, 
dysfunction of the BBB is associated with the pathophysi-
ology of numerous neurologic disorders, including bacterial 
meningitis. Inflammatory processes, including release of a 
broad range of cytokines and free radicals, further increase 
vascular permeability and contribute to the excessive neural 
damage observed. Injury to the cerebral microvasculature and 
loss of blood flow auto‑regulation promote increased intra-
cranial pressure and may lead to vascular occlusion. Other 
common complications commonly associated with meningitis 
include abnormal neuronal hyper‑excitability (e.g., seizures) 
and loss of hearing. Despite the existence of antibiotic treat-
ment and adjuvant therapy, the relatively high mortality rate 
and the severe outcomes among survivors of pneumococcal 
meningitis in developing and developed countries increase the 
urgency in the requirement of discovering novel biomarkers 

for the early diagnosis as well as novel treatment approaches. 
The present review aimed to explore the changes in the brain 
vascular barriers, which allow S. pneumoniae to invade the 
CNS, and describe the resultant brain injuries following bacte-
rial meningitis.
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1. Introduction

Streptococcus pneumoniae Meningitis. Despite the implemen-
tation of childhood vaccination schemes and the availability 
of effective antibacterial agents, bacterial meningitis remains 
to affect individuals in developing and developed countries. 
Meningitis is a central nervous system (CNS) infection often 
associated with severe outcomes and significant long‑term 
effects in a substantial number of survivors. This disease thus 
requires prompt diagnosis and treatment (1). Complications 
may be sudden or gradual in onset and may arise anytime after 
the appearance of initial symptoms, including the time after 
completion of therapy. Symptoms of meningitis include fever, 
headache, confusion and vomiting, often preceded by symp-
toms of an upper respiratory tract infection. Clinical features 
used for diagnosis include cerebrospinal fluid (CSF) pleocy-
tosis with predominance of neutrophils, elevated CSF protein, 
decreased CSF glucose and isolation of the bacteria from the 
CSF by culture. S. pneumoniae, Neisseria meningitidis and 
Haemophilus  influenzae are the major bacterial pathogens 
causing meningitis with S. pneumoniae being responsible 
for two thirds of meningitis cases in the developed world (1). 

Role of neural barriers in the pathogenesis and outcome 
of Streptococcus pneumoniae meningitis (Review)

OFER PRAGER1,2,  ALON FRIEDMAN1‑3  and  YAFFA MIZRACHI NEBENZAHL4

1Department of Physiology and Cell Biology, Faculty of Health Sciences,  
Ben‑Gurion University of The Negev, Beer‑Sheva 84101; 2Cognitive & Brain Sciences,  

The Zlotowski Center for Neuroscience, Ben‑Gurion University of The Negev, Beer‑Sheva 84105, Israel;  3Department of 
Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;   

4The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, 
Ben‑Gurion University of The Negev, Beer‑Sheva 84101, Israel

Received September 28, 2016;  Accepted November 10, 2016

DOI: 10.3892/etm.2017.4082

Correspondence to: Professor Yaffa Mizrachi Nebenzahl, The 
Shraga Segal Department of Microbiology, Immunology and 
Genetics, Faculty of Health Sciences, Ben‑Gurion University of The 
Negev, P.O. Box 151, Ben Gurion Avenue, Beer‑Sheva 84101, Israel
E‑mail: ymizr@bgu.ac.il

Key words: S.  pneumoniae, meningitis, central nervous system, 
blood brain barrier, pathogenesis, virulence factors, innate 
immunity, inflammation



PRAGER et al:  Streptococcus pneumoniae AND THE BLOOD BRAIN BARRIER800

S. pneumoniae is a Gram‑positive pathogen, which colonizes 
the nasopharyngeal mucosa of children as well as adults and is 
transferred among individuals by coughing and sneezing (for 
review, see 2). In addition to meningitis, S. pneumoniae causes 
a broad spectrum of diseases, including otitis media, pneu-
monia and bacteremia (2), leading to substantial morbidity and 
mortality worldwide. Mortality due to pneumococcal menin-
gitis ranges between 15 and 40%, while ~50% of survivors 
experience long‑term health effects. Of note, even after a good 
recovery, neuropsychological testing demonstrates cognitive 
impairment in approximately one third of survivors  (3,4). 
Vaccination with the pneumococcal conjugate vaccine has 
reduced pneumococcal invasive diseases caused by the sero-
types included in the vaccine, but this reduction has been 
offset by increases of carriage and disease caused by strains 
not included in the vaccine formulation (2,5,6). The following 
review highlights the underlying mechanisms of neural 
complications following CNS invasion of S. pneumoniae.

Colonization. The pneumococcus habitat is the human 
nasopharynx mucosa with a prevalence of ~40% in infants 
and 15% in adults (7). The bacterium is transferred between 
individuals mainly by coughing and sneezing. Once in the 
niche, bacterial survival depends on adherence, nutrition 
and replication; the pneumococcus has to overcome the 
host's immune system as well as other microbial species that 
can colonize the same niche  (8). Two types of pili identi-
fied in S. pneumoniae are responsible for initial attachment 
of the bacterium to the host. The first pilus is an oligomeric 
appendage encoded by the rlrA operon (9) and the second pilus 
is encoded by pilus islet 2 (10). To reach the epithelial cell 
layer and colonize the nasopharynx, S. pneumoniae degrades 
the mucus by exoglycosidases such as neuraminidase  A, 
β‑galactosidase, β‑N‑acetylglucosaminidase and neuramini-
dase B, decreasing mucus viscosity and preventing mucus 
entrapment (11). In addition, it produces pneumolysin, a toxin 
that decreases epithelial cell cilia beating and enhances bacte-
rial adherence (12). Pneumococcus also expresses the enzymes 
N‑acetylglucosamine‑deacetylase A and O‑acetyltransferase 
that provide resistance to lysozyme that cleaves the peptido-
glycan in the cell wall of the pathogen (13). To compete with 
the host innate immune system at the nasopharynx site, the 
pneumococcus has developed several strategies: i) Encapsula-
tion and the use of proteases which prevent binding of secretory 
immunoglobulin (Ig) A and cleave IgA antibodies, immune 
system components designed to facilitate phagocytosis of the 
bacteria (14). ii) Inhibition of the activity of Lactoferrin, an 
iron‑binding glycoprotein, thus enabling the utilization of 
iron, which is necessary for the bacteria's metabolism (15). 
iii) Limitation of the activation of the complement cascade 
which normally promotes the cleavage of several complement 
factors, leading to bacterial opsonization and phagocytosis, 
leukocyte recruitment and creation of pores in the pathogen's 
membrane, thus inducing cell lysis (6,16).

Following the initial attachment, adhesive molecules 
embedded in the bacterial cell wall or the cytoplasmic membrane 
are exposed as a result of shedding of the capsule (17). Among 
these adhesins are: The lipoprotein pneumococcal surface 
adhesin A (18) which binds to the E‑cadherin receptor (19); the 
Pneumococcal adherence and virulence factor (Pav)‑A protein, 

which binds to the extracellular matrix protein fibronectin to 
produce a Pav‑A‑finbronectin complex that binds an integrin 
receptor (20,21); fructose bisphosphate aldolase (22,23), which 
was found to bind the flamingo cadherin receptor and NADH 
oxidase, which was found to bind, among others, laminin α5 
and contactin 4 (24). Recently, Pav‑B and CbpA (CbpA, also 
known as PspC) were found to have an important role in the 
interaction of S. pneumoniae with matricellular glycoprotein 
thrombosphondin‑1, a mediator of bacterial adhesion to host 
cells (25).

After binding, S. pneumoniae interacts with additional 
adhesins. These include phosphorylcholine, which binds to the 
platelet activating factor receptor (PAF‑R), CbpA (26) which 
binds to either the polymeric Ig receptor (pIgR) or to secretory 
IgA (21). The latter two adhesins are considered invasins, since 
they facilitate transcytosis through the mucosal epithelial cell 
layer from the apical membrane to the basal membrane using 
the PAF‑R and pIgR recycling pathways (27). Binding and 
crossing the epithelial cell layers allows access to the submu-
cosal layer, leading to invasive illness.

Bacteraemia. During the bacteremic phase, the pneumococcus 
reaches and aims to survive in the bloodstream. In the blood, 
the pneumococcus confronts additional host defense mecha-
nisms, the first line of defense being complement‑mediated 
opsonization and phagocytosis. To survive, the pneumococcus 
increases its capsule size, reduces complement deposition 
on its surface and limits subsequent interaction with phago-
cytes (28,29). This is achieved by bacterial surface proteins 
that target specific complement components, thus inhibiting 
complement‑mediated clearance, e.g., by recruiting factor H 
that inhibits the complement cascade (30,31). The second line 
of defense is recognition of the bacteria by antigen‑presenting 
cells through the binding of pattern recognition receptors 
directed specifically toward general motifs of molecules 
expressed by the pathogen. This results in release of cytokines 
such as tumor necrosis factor alpha (TNF‑α), interleukin (IL)‑1 
and IL‑6 that further induce the recruitment of neutrophils 
and lymphocytes, and simultaneously cause cerebrovascular 
damage (32). A prominent risk resulting in vascular injury is 
exposure of blood to an extravascular tissue factor and acti-
vation of the coagulation cascade that may lead to vascular 
clot formation  (33,34), BBB dysfunction and blood flow 
impairment (35).

2. Pneumococcal invasion of the CNS

A high amount of bacteria in the blood circulation is thought 
to be required for CNS invasion, and is thus considered as a 
risk factor for the development of meningitis. Bacteraemia 
allows the pneumococcus to cross the cerebral endothelium 
or the choroid plexus epithelium and enter the CNS. Although 
the blood‑CSF barrier and the BBB protect the brain and 
meningeal space from pathogen attacks, pneumococci have 
developed mechanisms to overcome this obstacle.

Blood‑CNS barriers. The cellular components of the neuro-
vascular unit use a combination of chemical and electrical 
signals to communicate. Proper neuronal signaling depends 
on precise ionic concentrations; thus, it is essential to maintain 
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a stable microenvironment within the neuropil. Three barrier 
layers limit and regulate molecular exchange at the interfaces 
between the blood and neural tissue: i) The BBB at the level 
of cerebrovascular endothelial cells; ii) the blood‑CSF barrier 
at the choroid plexus epithelium in the ventricles; and iii) the 
arachnoid‑membrane barrier, which underlies the dura and 
envelopes the brain. All three barriers apply a combination of 
a physical barrier (tight junctions between cells reducing flux 
through intercellular pathway), a transport barrier (transport 
mechanisms mediating solute flux) and a metabolic barrier 
(enzymes metabolizing molecules in transit) (36). The BBB, 
first described by Goldman (37), exerts the most significant 
control over the immediate microenvironment of brain cells. It 
bestows the blood vessels in the CNS with unique properties 
that tightly regulate the movement of molecules, ions and cells 
between the blood and the neural tissue. Due to the presence 
of tight junctions between adjacent endothelial cells which 
limit para‑cellular passage, trafficking across an intact BBB is 
mostly trans‑cellular (through carriers and vesicular systems) 
(for review see 37‑39). An additional route of entry for small 
lipophilic agents are lipid membranes, through which small 
gaseous molecules, including oxygen and carbon dioxide, 
can diffuse freely. Trans‑cellular traffic of small hydrophilic 
molecules is regulated by specific transport systems on the 
abluminal and luminal membranes to provide a selective 
‘transport barrier’ and prevent the entry of potentially harmful 
compounds while facilitating or permitting the entry of 
required nutrients (including glucose, amino acids, nucleo-
sides and monocarboxylic acids) (38). In addition, members 
of the ATP‑binding cassette (ABC) family, with support of 
metabolizing enzymes (e.g., cytochrome P450 s), act as efflux 
transporters by reducing the entry into the brain of numerous 
toxic components from the diet and environment (39). Unless 
they can be transferred by specific receptor‑mediated trans-
cytosis or by the less specific adsorptive‑mediated transcytosis, 
large hydrophilic molecules such as proteins and peptides are 
generally excluded (40,41). The two main trafficking routes 
for BBB transcytosis involve clathrin‑coated vesicles and 
caveolae (42,43). Compared to other tissues, the neutrophil 
infiltration rate into the brain is low due to the strictly regu-
lated immune cell‑BBB interaction. In conditions of increased 
vascular permeability, circulating neutrophils and mononu-
clear leukocytes, monocytes and macrophages penetrate into 
the CNS and have a role complementary to microglia, forming 
cuffs in the perivascular space, which act as a specific niche 
for a coordinated immune response (44,45). Failure of the 
BBB appears to be an important, and possibly a critical event 
in the development and progression of several brain diseases, 
including stroke, trauma, epilepsy, neurodegenerative diseases, 
tumors and bacterial infections. Barrier dysfunction can range 
from slight and transient tight junction opening, malfunction 
of transcellular transport mechanisms and ABC transporters 
to severe and long‑lasting barrier breakdown (46). In most 
cases, it is hard to determine whether barrier dysfunction is the 
direct cause of disease onset, but it has been established that 
disturbances in barrier functions contribute to and exacerbate 
developing pathologies.

The choroid plexus, found in all four ventricles, is comprised 
mainly of a single layer of highly vascularized epithelial cells 
connected by tight junctions. Macrophages and leukocytes 

also occupy the choroid plexus, suggesting its role as a gateway 
for immune cell trafficking in response to disease and trauma. 
Cells of the choroid plexus produce the CSF, which is secreted 
across the epithelium into the ventricles, while the interstitial 
fluid (ISF), which constitutes the remainder of the brain extra-
cellular fluid, is generated at least in part by secretion across 
the capillary endothelium of the BBB. The secretion of CSF 
and ISF is regulated by the Na+, K+‑ATPase, which is expressed 
in the abluminal side of the BBB endothelium and the apical 
membrane of the choroid plexus epithelium, and creates the 
ionic and osmotic gradient that results in flow of water (47,48). 
The third interface, provided by the arachnoid epithelium, acts 
as a seal between the extracellular fluids of the CNS and those 
of the rest of the body (49). Due to its avascular nature and 
relatively small surface area, the arachnoid does not represent 
a significant surface for exchange between the blood and the 
CNS, while it is also regarded as a barrier layer (50).

Pneumococcal trafficking across the barriers. In the 
pre‑antibiotic era, bacterial meningitis was a disease with 
devastating mortality, which was fatal to virtually all indi-
viduals affected (51). However, despite the advent of effective 
antimicrobial agents, a finite case fatality rate remains, with 
permanent neurologic sequelae affecting numerous survivors. 
One potential explanation is that the pathologic consequences 
of the disease within the CNS progress despite bacterial cure. 
The pathogen can use two routes to reach the brain, either 
directly through the endothelium of the BBB or through the 
choroidal epithelial cells. The BBB is known to be function-
ally altered in meningitis (52,53), and transit of the bacteria 
across its endothelium is conceivable via either trans‑cellular 
or para‑cellular pathways. Studies investigating the mecha-
nisms of trans‑cellular migration showed that the thickness of 
the bacterial capsule has an important role: While the most 
opaque variants (thick capsule) were killed, the transparent 
phase variants (thin capsule) were able to transcytose to the 
basal surface of the endothelium. This trans‑cellular pathway 
is dependent on the PAF receptor, a choline receptor, and the 
presence of CbpA that binds the pIgR (54). In addition, the 
pneumococcal surface protein CbpA enables binding to the 
laminin receptor on the brain endothelium and subsequent 
trans‑endothelial traffic  (55). An alternative mechanism 
involves inter‑cellular migration following disruption of tight 
junctions: A study using a rat model of meningitis showed that 
pinocytotic vesicle formation appeared to be an early response 
to pneumococcal infection in the subarachnoid space. This was 
followed by a progressive increase in complete separation of 
intercellular junctions as the infection progressed (56), either 
due to the pneumococcus itself by the release of compounds 
such as pneumolysin  (57) or as result from inflammatory 
response  (32,58,59). However, certain bacterial infections 
are thought to start in the choroid plexus prior to becoming 
diffused, suggesting that this may be the predominant site of 
abnormality in patients suffering from meningitis (60).

3. Immune response and neuro‑inflammatory mechanisms 
following CNS invasion

For the normal functioning of the brain, protection from 
blood‑borne toxins, proteins and cells is crucial. Accordingly, 
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a compromised BBB is tightly associated with changes in the 
extracellular milieu of the brain, activation of glial cells and 
a neuro‑inflammatory response which further contributes to 
the course of a disease (61). In peripheral organs, the pres-
ence and nature of pathogens are detected by innate dendritic 
cells, which then educate lymphocytes about the specifics of 
pathogen threat detect through the release of selective media-
tors, and the lymphocytes are then directed to the site harboring 
the pathogen (62,63). Compared with inflammatory reactions 
in other tissues, those within the CNS show substantial differ-
ences: i) The CNS parenchyma lacks resident dendritic cells 
and perivascular macrophages, and the vascular pericytes take 
over the functions of mature dendritic cells (64); ii) astrocytes, 
microglia and in certain regions mast cells are the innate 
parenchymal immune cells of the CNS (65,66); iii) due to the 
presence of the BBB, extravasation of large molecules and 
blood cells is reduced. Activation of complement cascades and 
recruitment of cells involved in the adaptive immune response 
into the CNS parenchyma is therefore more difficult. Under 
circumstances of successful CNS invasion, pneumococcus 
replication occurs concurrently with the release of inflam-
matory bacterial products  (67). Consequently, the brain is 
infiltrated by blood complement system components, anti-
bodies and neutrophils, resulting in bacterial opsonization and 
phagocytosis (6).

From pathogen recognition to release of inf lamma‑
tory molecules. Defense begins with the recognition of 
pathogen‑associated molecular patterns (PAMPs), which are 
structural signatures characteristic of the bacteria. These 
include bacterial products such as proteins, lipids, nucleic 
acids and carbohydrates. PAMPs are initially sensed by 
antigen‑presenting cells which express pattern recognition 
receptors. The main receptors involved in S. pneumoniae 
recognition are Toll‑like 2 receptor (TLR‑2, also known as 
CD282), which are recognized by peptidoglycans and lipo-
teichoic acids (68), TLR‑4 (also known as CD284) that are 
recognized by exotoxin pneumolysin (69) and TLR‑9 (also 
known as CD289), intracellular pattern recognition receptors 
that are activated by cytosine‑guanosine motifs (CpG) in bacte
rial DNA (70). TLR‑2 and ‑4 bind to myeloid differentiation 
factor 88 (MyD88) as a common intracellular adapter protein 
known, which activates the nuclear factor (NF)‑κB pathway 
with subsequent upregulation of pro‑inflammatory mediators. 
Studies have demonstrated that TLR‑2 and ‑4 have a more 
prominent role than TLR 9 in the induction of the inflamma-
tory response to pathogens and suggested that one receptor 
may compensate for the absence of the other (71). In addition, 
family members of the intracellular nucleotide oligomeriza-
tion domain (NOD) ‑like receptors (NLRs), Nod‑2, also have 
essential roles in Gram‑positive peptidoglycan detection: 
When activated, they stimulate NF‑κB or mitogen‑activated 
protein kinase pathways and activate caspase‑1 (72). This in 
turn stimulates the production of inflammatory cytokines 
and chemokines by astrocytes and microglia that express 
TLRs and NLRs (73). In humans, certain deficiencies and 
polymorphisms such as phosphorylation of interleukin 
receptor‑associated kinase and Myd88 adapter protein have 
been associated with invasive pneumococcal disease such as 
meningitis (74).

4. Immune residents of the brain‑microglia and astrocytes

Microglia. As described by Del Rio Hortega, microglia 
comprise up to 20% of the non‑neuronal cell population, are 
derived from the mesoderm and are considered as the resident 
macrophages of the CNS (75). The brain of adults has two 
major subsets of microglia: Parenchymal and perivascular 
microglia. The latter are located in the basal lamina of brain 
capillaries and the choroid plexus. The phagocytic proper-
ties of microglia (76) have been considered to be the first 
line of defense in the CNS and to impact numerous immune 
responses of the brain against infectious and acute as well 
as chronic neurological diseases (66,77). Resting microglia 
have small bodies and long, thin processes with ramified 
morphology, which correspond to the vigilant form which is 
able to promptly recognize homeostatic disturbances in the 
CNS (77). Under pathological conditions, microglia become 
activated and are characterized by an amoeboid morphology 
with short processes. Surface antigens and cytokine release 
corresponding to distinct phenotypes are associated with 
the transition from one form to another (78). The activated, 
phagocytic phenotype has been indicated to mediate the 
elimination of neurotoxic substances from brain parenchyma, 
such as blood‑borne albumin  (79). Since microglial cells 
are located in the perivascular space, it is likely that their 
interactions with endothelial cells influence the properties of 
the BBB. It has been suggested that, similarly to astrocytes, 
activation of microglia restores BBB integrity after its chemi-
cally stimulated loss by directing tight junction proteins to 
para‑cellular domains (80). However, in neuro‑inflammation, 
activated microglia may cause barrier impairment and BBB 
dysfunction by releasing the pro‑inflammatory cytokine 
TNF‑α (81). Apart from their participation in inflammatory 
and infectious events and their scavenger function, microglia 
also take part in several important physiological events in 
the adult brain, including induction of apoptosis in specific 
subpopulations of developing neurons, control of synapto-
genesis and synaptic transmission as well as synthesis of 
neurotrophic factors (82).

Astrocytes. Glial astrocytic cells are ideally situated to function 
as mediators in neurovascular communication; they surround 
synapses and can thus sense neuronal activity, whereas their 
end‑foot processes envelop blood vessels and may signal (and 
sense) smooth muscle cells and/or pericytes (83). Astrocytes 
are enriched in potassium channels, purinergic receptors 
and the gap junction protein connexin 43, as well as the 
water‑channel protein aquaporin‑4 (84), indicating key roles 
in potassium buffering (85), calcium‑dependent glio‑vascular 
signaling and regulation of brain water content. Astrocytes 
release several vasoactive factors, including nitric oxide (NO) 
and arachidonic acid metabolites, having a prominent role as 
mediators of vasomotor activity (86). Moreover, astrocytes 
produce neutrophins and a wide range of anti‑inflammatory 
cytokines (87). Upon activation of various signaling pathways 
[e.g. TLR/NLR and transforming growth factor (TGF) beta], 
astrocytes participate in innate immune reactions, synthesize 
and release neuro‑inflammatory mediators, including several 
complement components, cytokines such as IL‑1β and IL‑6, 
and chemokines (88‑92).
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Inflammatory mediators. Following recognition of the 
pathogen and activation of non‑neuronal cells, microglia and 
astrocytes produce and release a wide range of inflamma-
tory molecules in the brain. These include molecules such as 
cytokines, free radicals, matrix metalloproteinases (MMPs) 
and chemokines, which contribute to an increase in BBB 
permeability and enable recruitment of leukocytes to the site 
of infection. Alongside bacterial elimination, this results with 
brain edema, increased intracranial pressure and impaired 
cerebral blood flow, and may lead to irreversible neuronal 
injury (88).

Cytokines. Cytokines are multifunctional pleiotropic proteins 
with crucial roles in cellular activation and cell‑to‑cell 
communication. Depending on their function, they are clas-
sified as being either pro‑ or anti‑inflammatory according 
to the final balance of their effects on the immune system. 
Cytokines not only participate in the immune response but 
also in a variety of physiological and pathological processes, 
including events in the periphery and CNS; therefore, they 
act as immune regulators as well as neuromodulators. The 
neuro‑immune interactions are bidirectional‑cytokines can 
modulate the action, differentiation and survival of neurons, 
while neurotransmitters and neuropeptides released from 
neurons have a central role in influencing the immune response. 
The various cytokines directly affecting the CNS either origi-
nate from the peripheral immune system, in which case they 
migrate across the opened BBB, or they are produced locally 
within the CNS by brain resident cells (89).

Following pneumococcal infection, release of pro‑inflam-
matory cytokines includes molecules such as IL‑1, IL‑6, 
TNF‑α and interferon (IFN)‑γ. These cytokines are released 
by endothelial cells, astrocytes, microglia and neurons, 
resulting in increased BBB permeability and recruitment of 
leukocytes from the circulatory blood (32,90). TNF‑α is a 
158 amino acid cytokine; it was found to be produced in the 
cortex and hippocampus during the first 6 h, and remained 
elevated until 96 h after meningitis initiation (91,92). TNF‑α 
binding to its cognate receptor leads to NF‑κB activation that 
regulates the expression of other pro‑inflammatory media-
tors  (93). In patients with bacterial meningitis, intrathecal 
levels of TNF‑α were correlated with the severity of BBB 
disruption, neurologic sequelae and disease severity  (58). 
However, TNF‑α deficient mice infected with S. pneumoniae 
demonstrated increased mortality and spatial memory defi-
cits (94), suggesting that TNF‑α reflects disease severity but 
is not required to induce neurological complications. IL‑1β is 
a pro‑inflammatory cytokine produced early after bacterial 
invasion of the brain in the cortex and hippocampus by peri-
vascular mononuclear phagocytes, macrophages and glial cells 
through stimulation of bacterial compounds or TNF‑α (91,92). 
IL‑1β increases the expression of nearly all other cytokines, 
including TNF‑α, IL‑6, IFN‑γ and chemokines; however, its 
role in bacterial meningitis remains elusive. In patients with 
bacterial meningitis, IL‑1β levels were not correlated with the 
degree of BBB opening (58). By contrast, decreased levels of 
IL‑1β were associated with lower intracranial pressure (ICP), 
leukocyte recruitment and brain edema  (95). Intrathecal 
administration of IL‑1β did not lead to CSF pleocytosis or 
brain edema, but administration of anti‑IL‑1β antibodies 

decreased TNF‑α‑induced leukocyte influx (96). IL‑1 receptor 
(IL‑1R) gene‑deficient mice succumbed earlier to the disease 
and their mortality rate was significantly elevated, indicating 
that endogenous IL‑1β is required for an adequate host defense 
in pneumococcal meningitis (97). IL‑6 is expressed mostly in 
the cortex and is produced by endothelial cells, astrocytes and 
monocytes (98). Although the effects of IL‑6 are predominantly 
pro‑inflammatory, including leukocyte recruitment, the potent 
induction of acute‑phase proteins and fever (99), it also acts as 
an anti‑inflammatory cytokine. Indeed, IL‑6 gene deficiency 
in mice with bacterial meningitis was found to be associated 
with an increased inflammatory response and an impaired 
defense against pneumococcal pneumonia, as well as reduced 
vascular permeability and ICP  (100,101). IFN is another 
important pro‑inflammatory mediator in pneumococcal 
meningitis, found at elevated concentrations in meningitis 
patients' CSF  (102). It has been suggested that IFN‑γ is 
produced following bacterial recognition through activation of 
the NLR inflammasome pathways (103,104).

Anti‑inflammatory cytokines such as IL‑10 and TGF‑β 
have been shown to be upregulated during pneumococcal 
meningitis. IL‑10 is a potent immune‑suppressive cytokine 
produced by brain cells such as neurons and microglia as 
well as macrophages and monocytes  (105), and elevated 
levels have been found in the CSF of patients with bacterial 
meningitis (106). IL‑10 was shown to inhibit the production 
of pro‑inflammatory cytokines including TNF‑α and IL‑6, 
as well as the release of reactive oxygen species (ROS) (107), 
and to induce impairment of neutrophil phagocytosis and 
killing (108). Accordingly, systemic administration of recom-
binant IL‑10 in a rat model of pneumococcal meningitis 
resulted in lower levels of pro‑inflammatory cytokines, CSF 
pleocytosis and cerebral edema  (107). However, in IL‑10 
knockout mice with pneumococcal meningitis, bacterial loads 
and survival rates were similar to those in wild‑type mice (97). 
TGF‑β is a pleiotropic cytokine with potent inflammatory 
regulatory activity expressed in neurons and glial cells. 
Among its multiple functions, it modulates T‑cell activity, 
including proliferation and differentiation processes (109,110). 
The influence of TGF‑β on the immune reactivity of the CNS 
following infection remains to be under debate; it suppresses 
the production of pro‑inflammatory cytokines IL‑1β, IL‑6 and 
TNF‑α from microglia and macrophages (111,112), but has 
also been reported to increase the production in cultured astro-
cytes (113). Absence of TGF‑β signaling was demonstrated to 
facilitate the recruitment of leukocytes and the clearance of 
S. pneumoniae in the CNS of mice with meningitis, resulting 
in reduced cerebrovascular complications (114).

Chemokines. Chemokines are a subgroup of cytokines, which 
are considered to have chemotactic activity due to their ability 
to induce directed chemotaxis in nearby responsive cells. In 
pneumococcal meningitis, multiple chemokines have been 
reported to be upregulated and enhance the recruitment and 
accumulation of inflammatory cells in the CSF (115). IL‑8 is 
produced by a wide range of cells, including macrophages and 
monocytes, through IL‑1β, TNF‑α and stimuli of live bacteria. 
In rabbits with pneumococcal meningitis, intravenous 
administration of a monoclonal antibody to IL‑8 attenuated 
pleocytosis (116). Another group of chemokines are the CC 
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chemokine ligands (117), including monocyte chemoattractant 
proteins and macrophage inflammatory proteins (MIPs), 
which are released by astrocytes and microglia  (118,119). 
Intracisternal administration of recombinant molecules was 
found to induce BBB dysfunction, CSF leukocytosis and brain 
edema (96).

Leukocyte migration. As part of the immune response to 
bacterial infection, blood‑derived leukocytes, such as neutro-
philic granulocytes and monocytes, enter the CNS to clear the 
pathogen. The recruitment of leukocytes through the BBB is 
associated with meningeal and perivascular macrophage acti-
vation and upregulation of the endothelial adhesion molecules 
selectin and integrin (120,121). The PAF is a protein which 
facilitates the adhesion of leukocytes to the endothelium and 
is produced by neutrophils and endothelial cells in response 
to inflammatory stimulation  (122). Another translocation 
mediator in pneumococcal meningitis is the urokinase‑type 
plasminogen activator, which is also considered as a fibrin 
degrader (123). However, after migration into the CNS, leuko-
cytes release a variety of toxic molecules (e.g., ROS), causing 
cerebrovascular complications and neuronal injury (115).

MMPs. MMPs are a family of neutral proteases which are of 
importance in normal development, wound healing and a large 
variety of pathological processes, including neuro‑inflamma-
tion and the spread of metastatic cancer cells (124). In the 
CNS, MMPs have been shown to degrade components of the 
basal lamina, leading to BBB breakdown, and contribute to 
inflammation in numerous neurological diseases. In response 
to cellular stress, MMPs are secreted by a wide range of cells, 
including activated neutrophils and macrophages, neurons and 
glial cells (125). High concentrations of MMP‑8 and ‑9 have 
been detected in the CSF of patients with bacterial meningitis, 
and indeed, high concentrations of MMP‑9 have been demon-
strated to be correlated with TNF‑α levels, to induce BBB 
dysfunction, and to be a risk factor for the development of 
post‑meningitis neurological deficits (125).

Free radicals. A plethora of studies on patients as well as 
animal models implied that free radicals, including ROS and 
reactive nitrogen species (RNS), hydrogen peroxide (H2O2) 
and hydroxyl peroxide have a central role in the development 
of intracranial complications and brain damage in bacterial 
meningitis  (126,127). Brain cells and attracted leukocytes 
produce free radicals as part of the host immune response to 
invasive bacterial infection (128,129). S. pneumoniae itself 
is also an important source of H2O2, which causes direct 
cytotoxic damage and also reacts with the host's NO to 
form peroxynitrite (ONOO‑), a highly reactive oxidant (130). 
ONOO‑ is formed at sites where NO and superoxide anions are 
produced simultaneously (131,132). ONOO‑ can be cytotoxic 
by a number of mechanisms, including tyrosine nitration that 
affects cellular signaling (133), lipid peroxidation that induces 
loss of membrane function and integrity (134), and production 
of cytokines and MMPs (135,136). Adjuvant therapy with an 
ONOO‑ scavenger reduces the number of CSF leukocytes as 
well as IL‑1β and MIP‑2 concentrations in the brain (137), 
which suggests that ROS/RNS and pro‑inflammatory chemo-
kines/cytokines are involved in the attraction of blood‑bound 

leukocytes into the subarachnoid space (138). Furthermore, 
treatment with antioxidants was shown to attenuate BBB 
leakage (137,139).

5. Brain injury following pneumococcal invasion

In spite of advances in antimicrobial therapies and supportive 
care, brain injury and mortality associated with and resulting 
from S. pneumoniae infection have remained significant.

Cellular damage. An important histopathological finding in 
patients with S. pneumoniae meningitis as well as in experi-
mental meningitis is cell death in the dentate gyrus of the 
hippocampus (140), which was also correlated with the devel-
opment of learning deficits (141,142). S. pneumoniae is able 
to induce two functionally distinct forms of programmed cell 
death in the brain, which proceed either via TLR‑dependent 
or ‑independent pathways. The pneumococcal cell wall is 
a pro‑inflammatory component and causes apoptosis in 
the hippocampus mediated via TLR‑2 and activation of 
caspases (143). Living pneumococci and the major cytotoxins 
pneumolysin and H2O2 appear to induce damage to endothelial 
cells of the BBB through a TLR‑independent pathway (143). 
The these toxins induce an increase in ROS and intracel-
lular calcium, resulting in mitochondrial dysfunction that 
leads to the release of apoptosis‑inducing factors into the 
cytosol (130,144).

Cerebrovascular injury. Pneumococcal meningitis is at times 
accompanied by cerebrovascular complications, including 
ischemic stroke, venous thrombosis, intracerebral hemorrhage 
and vasculitis (145‑148). Additional studies have suggested that 
vasospasm, thrombosis and diffused cerebral intravascular 
coagulation may each contribute to cerebral injury (149‑151). 
Other factors, including alterations in blood pressure and 
impaired cerebral auto‑regulation of blood flow may also 
have a role (152,153). Following bacterial infection and stroke, 
cells in the penumbra are subjected to various inflammatory 
components such as infiltrating leukocytes, pro‑inflammatory 
cytokines and free radicals, which may be deleterious and lead 
to further cellular damage (154). Furthermore, subcortical 
ischemic white matter lesions have been identified, which led 
to axonal injury (155). Recently, the pro‑inflammatory cyto-
kine IL‑1 was identified as a key mediator of pneumococcal 
infection‑induced cerebral ischemia and neuronal injury (156). 
In a model of ischemic stroke, bacterial aspiration led to severe 
pneumonia, which persisted for fourteen days after stroke 
induction, suggesting that stroke increases the susceptibility 
to infection (157). Another severe vascular complication in 
pneumococcal meningitis is venous thrombosis  (158,159), 
associated with impairments of blood flow and perfusion pres-
sure, intracranial hemorrhage, BBB dysfunction and cerebral 
edema (160,161).

Seizures. Seizures are a common complication of 
S. pneumoniae meningitis during the acute phase of illness, 
with an increased risk of developing unprovoked seizures (e.g., 
epilepsy) later in life (162,163). Seizures occur frequently in 
adult patients and are associated with severe inflammation and 
structural CNS lesions (164,165). In children, the probability 
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of the occurrence of status epilepticus associated with fever 
is higher than that of short febrile seizures, and the classical 
symptoms and signs of meningitis may be absent under such 
conditions (166,167).

Studies have suggested that cerebrovascular injury and 
BBB dysfunction, which allow the infiltration of albumin, lead 
to activation of TGF‑β signaling in astrocytes. This further 
results in a neuro‑inflammatory response associated with 
up‑regulation and release of IL‑1β, IL‑6 and TGF‑β cytokines 
and seizures (168-172). Thus, in patients with pneumococcal 
meningitis, increased BBB permeability and inflammatory 
response as described above may similarly increase the likeli-
hood of seizures.

Labyrinthitis. One of the most common sequelae of pneumo-
coccal meningitis is bacterial labyrinthitis and sensory neural 
hearing loss. Labyrinthitis occurs as the bacteria reach the 
cochlear aqueduct from the subarachnoid space or travel with 
the eighth cranial nerve in the internal auditory canal (173,174), 
contributing to hair cell injury and neuronal cell death (175). 
A study using a mouse model of pneumococcal meningitis 
suggested a pro‑inflammatory role for the TLR‑MyD88 signaling 
pathway as a trigger for labyrinthitis (176). Synthesis of TNF‑α 
and free radicals has been demonstrated to have an important 
role in hearing loss following infection, and inhibition of their 
production was found to have a protective effect (175,177).

Neuropsychological and mental‑status impairment. Mild to 
severe intellectual and behavioral deficits, including cognitive 
impairment, learning disabilities and attention deficit hyperac-
tivity disorder are well‑recognized complications of bacterial 
meningitis in children and are the most common long‑term 
sequelae (178,179). Psychiatric illness and neurodegenerative 
diseases have been linked with cerebrovascular damage and 
BBB alterations: An elevated CSF/serum albumin ratio in 
patients suffering from dementia compared to non‑demented 
individuals was found (180), and elevated serum levels of 
S100 calcium‑binding protein B, normally found exclusively 
in the brain, were demonstrated in patients suffering from 
depression and schizophrenia  (181). In addition, accumu-
lating evidence indicated that immunologic responses have 
a role in deficits in cognitive function as well as depression; 
Increases in pro‑inflammatory cytokines, including TNF‑α, 
IFN and IL‑1β and ‑6, alongside a relative reduction of the 
anti‑inflammatory cytokine IL‑10, were demonstrated in 
depression. Furthermore, a positive correlation was shown 
between plasma concentrations of inflammatory media-
tors, such as IL‑1β and IL‑6, and the severity of depression 
symptoms (182,183). These suggest that early vascular injury 
during meningitis, including BBB dysfunction and neuro-
inflammatory processes, can be associated with delayed 
neuropsychological and mental problems.

6. Summary

In spite of the wealth of data accumulated on pneumococcal 
meningitis, as well as the existence of antibiotics, vaccina-
tion protocols and adjuvant treatments (e.g., drugs targeting 
free radicals, the caspase cascade and inf lammatory 
mediators), CNS invasion by S. pneumonia results in severe 

neuropathologies. Several studies point to a direct contribu-
tion of BBB dysfunction and inflammatory signaling to the 
etiology of brain diseases, including those caused by bacterial 
infection. Thus, following diagnosis of peripheral infection 
with S. pneumonia, imaging of cerebrovascular permeability 
and measurement of neuro‑inflammatory mediators in blood 
and CSF may aid in identifying patients that are at higher risk 
of contracting meningitis. Furthermore, since bacterial infec-
tion of the CNS requires crossing through the dysfunctional 
endothelium of BBB and the epithelium of the choroid plexus, 
cerebral vessels may serve as a potential target for preventing 
and treating bacterial meningitis.
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