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Introduction

Bone is a highly vascularized connective tissue and is 
under continuous remodeling process to maintain homoeo-
stasis and repair microtraumas caused by several clinical 
conditions.1 However, under critical conditions, the physi-
ological process depends on external augmentation includ-
ing auxiliary therapies such as surgeries, bone implantation 
procedures, and use of biomaterials. Calcium silicate 
(CaSiO3)–based ceramics have been widely implicated in 
treating bone defect, as supported by its widespread use in 
the field of orthopedics. CaSiO3 ceramics possess bioac-
tivity and biodegradability suited for bone tissue engineer-
ing applications.2–6

CaSiO3 ceramics have been shown to promote osteo-
blasts’ cell attachment, proliferation, and differentiation.3,7–9 
CaSiO3-based cements were able to induce the formation of 
apatite when immersed in simulated body fluids (SBFs), 
thus indicating their bioactivity properties.10–13 Mesoporous 
CaSiO3 or wollastonite (m-WS) materials have been widely 
used for bone tissue regeneration, and the hierarchized  
pores in mesoporous materials facilitate improved apatite  
deposition and protein adsorption, a pre-requisite for cell 

interaction allowing their candidature over other non-
mesoporous materials for bone tissue regeneration.14–17

We previously synthesized m-WS particles using rice 
straw as a source of silica, and mesostructures in CaSiO3 
were formed by leaching the calcium ions through acid 
modification with hydrochloric acid. We also demonstrated 
that these biocompatible m-WS particles promoted mouse 
mesenchymal stem-cell proliferation and differentiation.8 
Even though biomaterials or scaffolds are found to be suit-
able for bone tissue engineering in vitro, these materials 
may have limitation for in vivo applications due to host 
response. To our knowledge, no study has been conducted 
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with m-WS particles for in vivo bone formation. Hence, in 
this study, we tested the bone-forming ability of m-WS par-
ticles in rat tibial defect model system.

Materials and methods

Materials

Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O), sodium 
hydroxide (NaOH), and hydrochloric acid (HCl) were pur-
chased from Sigma–Aldrich, USA. Carbopol 940 was pur-
chased from Loba Biochemie, India. All other reagents 
were of analytical grade.

Synthesis of m-WS from rice straw ash

The synthesis of m-WS was carried out as described ear-
lier.8 These particles exhibited the surface area of 353.48 
m2/g. They had their pore size (R) = 4.5 nm, pore volume 
= 0.757 cm2/g, and diameter of 1106 nm. Briefly, rice 
straw was cleaned and calcinated at 550°C to obtain white 
rice straw ash (RSA). The calculated amount of the RSA 
was refluxed in 1 M NaOH for 1 h and sodium silicate 
solution was obtained by filtration. Equimolar calcium 
nitrate solution was mixed with sodium silicate to precipi-
tate WS particles. The slurry containing WS:H2O in the 
ratio of 1:10 was acid modified by adjusting the pH to 5.5 
with 1 M HCl. The precipitate was collected by centrifuga-
tion and washed several times with distilled water, and 
upon drying at 100°C, m-WS particles were obtained and 
subjected for in vivo studies.

Animals and surgical procedure

A total of 36 male Albino-Wistar rats weighing around 250 
g were procured from National Institute of Nutrition 
(NIN), Hyderabad. All animal experimental procedures 
were approved by the animal ethical committee, Kovai 
Medical College and Hospital, Coimbatore, Tamil Nadu, 
India. A total of three groups (n = 6)—group 1: control, 
group 2: carbopol-treated, and group 3: carbopol + m-WS-
treated animals—were maintained for 2 and 4 weeks in 
this study. The animals were acclimated in the animal 
facility for 2 weeks before surgery. The rats were anesthe-
tized with 10% ketamine and 2% xylazine (1:1, 0.1 mL/100 
g body weight, intramuscular (i.m.)) and subjected to per-
foration of the right tibia using a dental drill with 3 mm of 
diameter under constant saline irrigation (0.9% NaCl). 
m-WS particles were mixed with an inert gel carbopol to 
form an adherent paste prior to filling in the defect. The 
defect was entirely left unfilled (group 1), filled with car-
bopol (group 2), or filled with m-WS paste (group 3). After 
second and fourth weeks, the animals were sacrificed by 
anesthesia, and the tibiae were immediately removed, radi-
ographed, and fixed in neutral 10% buffered formalin for 
48 h at room temperature for histological analyses.

Histological processing

The implanted bone/ceramic implants were collected from 
animals at second and fourth weeks postoperatively. The 
implanted sections were cut from both normal and 
implanted area of bone. The implants were washed thor-
oughly with physiological saline and were fixed in 10% 
formalin for 7 days. Subsequently, bones were decalcified 
in 10% ethylenediaminetetraacetic acid (EDTA). The sec-
tions were checked regularly for the status of decalcifica-
tion. The bone parts were identified for its flexibility, 
transparency, and penetrability by sharp pin to analyze the 
extent of decalcification. The decalcified tissues were pro-
cessed in a routine manner, and 6 µm sections were cut and 
stained with hematoxylin and eosin (H&E) and Masson’s 
trichrome staining, individually. The stained sections were 
observed for the status of the bone implants and cellular 
response of host bone to the implants. The stained sections 
were then viewed under a microscope to visualize the 
extent of bone formation.

Scanning electron microscope and energy-
dispersive spectra analyses

The calcified and unstained thin fixed sections of the bone 
were subjected to scanning electron microscope (SEM)–
energy-dispersive spectra (EDS) analyses for identifying 
the quality of new bone formed inside the critical-sized 
tibial defect. The sections were sputter coated with a thin 
layer of carbon and observed in HR-SEM Quanta 200 FEG 
Instrument, The Netherlands.

Results and discussion

Critical-sized tibial defect and radiographic 
assessment

Critical assessment of the osteogenic ability in vivo is cru-
cial for testing biomaterials intended for bone tissue  
engineering applications.18–25 With previous evidence 
emphasizing the osteogenic role of m-WS particles in vitro, 
in this study, we studied its osteogenic role in vivo in rat-
sized tibial defect model system. Dental burr of 3 mm diam-
eter was used to create the defect. The photographic images 
of the 3-mm circular tibial defect are represented in Figure 
1(a) and (b). As mentioned in the experimental section, the 
defects were entirely left unfilled (group 1), filled with car-
bopol (group 2), or filled with m-WS and carbopol gel 
(group 3). Carbopol is an inert gel which does not exert any 
action on bone formation in the defect. The radiographs of 
the rat tibial defect filled with m-WS particles–carbopol gel 
at second and fourth weeks are represented in Figure 2. The 
result indicated that the tibial bone defect in control group 
devoid of any implanted material showed a radiolucent gap. 
The presence of inert gel (carbopol) filled in the drilled hole 
of the animal group also showed similar radiolucent nature. 
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Radiographs depicted minimal periosteal reaction and 
smoothening of cortical bone defect edges in both control 
and carbopol-treated animal groups. When the tibial bone 
defect was filled with m-WS particles, there was improved 
wound closure at the second week, and there was high-
dense radio-opacity observed at the fourth week (Figure 2). 
The area of bone defect changed its shape to oval morphol-
ogy suggesting the initiation of bone healing. Resorption of 
the m-WS particles also might have begun as indicated by 
the smoothening of the round corners of the defect. On 
implantation, the particles are exposed to tissue fluid result-
ing in the hydration of m-WS particles and successive for-
mation of silanol groups, followed by the deposition of 
phosphate and formation of hydroxycarbonate apatite 
(HCA).26 The growth of new bone and bridging the defect 
area in response to m-WS particles is clearly indicative of 
the biocompatible and osteogenic nature of these particles.

Histological evaluation

Histological assessment was performed to determine the 
presence of new bone formation in the tibial defect. There 
was new bone growth (denoted NB) in tibial defect where 
it was filled with m-WS (Figure 3). The bone layer formed 
after 2 weeks failed to bridge the defect, but bone growth 

was observed with m-WS particle–treated groups at the 
end of 4 weeks post-implantation. Bone regeneration and 
integration with host bone tissue were higher at the end of 
4 weeks in response to m-WS particles. In both untreated 
and carbopol-treated groups at second and fourth weeks, 
the defect was mostly filled with fibrous connective tissue 
with less bone filling. Thus, H&E-stained histological 
analysis of the sectioned implants indicated the formation 
of new bone and the results are consistent with the radio-
graphic images of the m-WS-treated groups (Figures 2 and 
3). Biomaterials with the osteoinductive nature have the 
ability to guide bone formation from mesenchymal stem 
cells in the absence of mature bone cells.27,28 Deposition of 
collagen was analyzed by Masson’s trichrome staining 
with the sectioned implants, and the images are repre-
sented in Figure 4. At the end of both second and fourth 

Figure 1. Photographic images of the critical-sized tibial bone 
defect created in rats. (a) and (b) The defect measured 3 mm in 
diameter, and spherical dental burr was used to excavate bone 
tissue. Black arrows indicate the margins of the defect.

Figure 2. Representative X-ray photographs of the rat 
tibial defect of control clot (no filler), carbopol, and m-WS + 
carbopol-healed groups after second and fourth weeks post-
implantation. m-WS particles healed the defect at an early period 
of 2 weeks and extensively bridged the defect after 4 weeks.

Figure 3. H&E-stained images of the sectioned implants of the 
tibial defect after second and fourth weeks. No graft material 
was present in both control and carbopol-treated groups. Bone 
formation was seen with the inclusion of m-WS particles within 
the defect. Images were recorded with a 40× objective.
NB: new bone formed.

Figure 4. Microscopic images of Masson’s trichrome–stained 
sections of tibial sections after second and fourth weeks post-
implantation. Deposition of collagen was high among m-WS-
treated groups at both the time periods compared to control 
and carbopol-treated groups. Images were recorded with 40× 
objective.
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weeks, the tibial bone defect filled with m-WS particles 
showed an increased collagen deposition compared to con-
trol and carbopol-treated animal groups (Figure 4). Silicon 
(Si) is an important regulator of metabolism, collagen syn-
thesis, and bone mineralization.29–35 It is also involved in 
osteoblast proliferation, differentiation, and matrix miner-
alization.36–38 Silicon has been shown to enhance the pro-
liferation and osteogenic differentiation of osteoblasts and 
bone marrow stromal cells and thereby promoting bone 
formation in vivo.6,39 Increased collagen deposition 
observed among m-WS particle–treated groups (Figure 4) 
might be due to the silicon released from the particles in 
response to body fluids of the in vivo system.

SEM and EDS

The SEM images of the sectioned implants (a) and EDS 
(b) of m-WS-treated animal groups at second and fourth 
weeks are shown in Figure 5. The drill hole was almost 
filled at 4 weeks implantation in m-WS-treated animals 
(Figure 5(a)). The EDS analysis confirmed the presence 
of HCA layer in the implanted region (Figure 5(b)). The 
formation of new bone observed is contributed by the 
bone-bonding ability of the material with host bone 
which is an indispensable requirement for functional 
bone growth.40 Following implantation of m-WS parti-
cles, the surface reaction occurring will result in the for-
mation of bone-like apatite layer. The HCA layer 
formation is the key for interfacial bonding with host 
bone which is later covered with new bone tissue. Bone 
formation on the implanted material is driven by the 
formed apatite layer through surface reactions in 
response to the surrounding fluids. Bridging of the tibial 
defect (Figures 2–5) observed at 4 weeks of implantation 
could be due to the increased number of silanol groups 
associated with m-WS particles and increased sites of 
nucleation. Apatite mineralization of silicon-containing 

materials is an important phenomenon in the implant 
bone tissue chemical interaction, which governs the in 
vivo osteogenesis of such graft materials.40

Taken together, in this study, we identified the role of 
m-WS particles on the induction of new bone growth. 
Mesopores in the particles and silicon released from them 
might have fastened the surface reactions leading to the 
formation of more silanol groups, phosphate deposition, 
and successive bone tissue ingrowth in vivo.

Conclusion

The in vivo behavior of m-WS particles derived from RSA 
was investigated in rat critical-sized bone defect model 
system. From the results, the particles were found to pro-
mote deposition of collagen and phosphate and enhance 
new bone formation at 4 weeks of implantation period in 
the rat tibia bone defect. Therefore, we suggest that m-WS 
particles can be used as a potent filling material for bone 
tissue engineering applications.
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Figure 5. Analysis of apatite formation: (a) SEM analysis of the sectioned implants after second and fourth weeks post-implantation 
and (b) EDS analysis was performed for the m-WS particle–healed tibial defects. The presence of silicon (Si), calcium (Ca), and 
phosphorous (P) was observed. Deposition of phosphorous was more at 4 weeks compared to the end of 2 weeks.
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