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Abstract
Purpose Acute submaximal exercise and whey protein supplementation have been reported to improve postprandial meta-
bolic and appetite responses to a subsequent meal independently. We aimed to examine the combination of these strategies 
on postprandial responses to a carbohydrate-rich breakfast.
Methods Twelve centrally obese males (age 41 ± 3 years, waist circumference 123.4 ± 2.9 cm), completed three trials in a 
single-blind, crossover design. Participants rested for 30 min (CON) or completed 30 min low–moderate-intensity treadmill 
walking (51 ± 1% V̇O2peak ) followed immediately by ingestion of 20 g whey protein (EX + PRO) or placebo (EX). After 
15 min, a standardised breakfast was consumed and blood, expired gas and subjective appetite were sampled postprandially. 
After 240 min, an ad libitum lunch meal was provided to assess energy intake.
Results During EX + PRO, post-breakfast peak blood glucose was reduced when compared with EX and CON (EX + PRO: 
7.6 ± 0.4 vs EX: 8.4 ± 0.3; CON: 8.3 ± 0.3 mmol  l−1, p ≤ 0.04). Early postprandial glucose AUC 0–60 min was significantly 
lower under EX + PRO than EX (p = 0.011), but not CON (p = 0.12). Over the full postprandial period, AUC 0–240 min during 
EX + PRO did not differ from other trials (p > 0.05). Peak plasma insulin concentrations and AUC 0–240 min were higher dur-
ing EX + PRO than CON, but similar to EX. Plasma triglyceride concentrations, substrate oxidation and subjective appetite 
responses were similar across trials and ad libitum energy intake was not influenced by prior fasted exercise, nor its combi-
nation with whey protein supplementation (p > 0.05).
Conclusion Following fasted low–moderate-intensity exercise, consuming whey protein before breakfast may improve post-
prandial glucose excursions, without influencing appetite or subsequent energy intake, in centrally obese males.
Trial registration number NCT02714309.
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Introduction

It is well established that obesity is associated with dysregu-
lation of a number of metabolic processes including glucose 
and lipoprotein metabolism, and thus increased risk of devel-
oping type 2 diabetes and cardiovascular disease [1]. Indeed, 
in developed countries, obesity is by far the most prevalent 

cause of insulin resistance [2], which is related to chronic, 
low-grade inflammation and macrophage infiltration in adi-
pose tissue and increased circulating concentrations of pro-
inflammatory cytokines [3, 4]. Central (abdominal) obesity 
is known to be particularly hazardous in the pathogenesis 
of insulin resistance and type 2 diabetes [5], with visceral 
fat tissue expressing higher levels of many cytokines [6] 
and a higher rate of lipolysis [7] than subcutaneous depots. 
The liver is, therefore, exposed to high levels of both non-
esterified fatty acids and pro-inflammatory factors released 
from visceral fat, leading to elevated hepatic triglyceride 
and consequent deleterious effects on hepatic insulin sen-
sitivity [8].

In the progressive decline from normal to impaired glu-
cose tolerance that precedes the development of type 2 
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diabetes, it is postprandial rather than fasting glucose that 
appears to deteriorate first [9, 10]. Postprandial hyperglycae-
mia has been identified as an independent risk factor for car-
diovascular disease in diabetic and non-diabetic populations 
[11–13], including when fasting glucose is in the normal 
range [14]. Excessive postprandial glucose excursions are, 
therefore, a strong predictor of future cardiovascular disease 
events [15]. Moreover, dysregulated lipoprotein metabolism 
is prevalent in those with central obesity and insulin resist-
ance, with post-meal hypertriglyceridaemia increasingly rec-
ognised as a contributor to cardiovascular disease risk [16].

Exercise is a potent non-pharmacological strategy to 
reduce the burden of insulin resistance induced postprandial 
hyperglycaemia [17, 18] and lipidaemia [19]. Acute bouts 
of moderate-intensity exercise can upregulate a number of 
pathways that contribute to increased postprandial glucose 
disposal. This includes expression and translocation of 
GLUT4 to the cell membrane [20], which persists for several 
hours after cessation of exercise [21], in addition to some 
evidence of upregulated insulin signalling pathways follow-
ing moderate-intensity exercise [22]. Additionally, exercise 
reduces postprandial lipaemia via increased hydrolysis of 
intramuscular triglyceride, due to increased lipoprotein 
lipase activity and reduced hepatic output of very low-den-
sity lipoproteins [23]. Regular training appears to impact 
postprandial glucose disposal via improvements in insulin 
sensitivity induced by adaptations including upregulation 
of muscle GLUT4 protein, increased enzyme capacities and 
muscle capillarization [20].

Nutritional strategies can also impact postprandial hyper-
glycaemia, and it has recently been demonstrated that pran-
dial whey protein supplementation can significantly reduce 
subsequent glycaemic excursions in overweight men [24]. 
Whey protein contains amino acids and bioactive peptides 
which reduce postprandial glucose excursions via insulin-
dependent and independent mechanisms [25]. Numerous 
studies have investigated the efficacy of whey protein supple-
mentation on subsequent postprandial glycaemia in patients 
with type 2 diabetes [26–28], however, few trials have been 
conducted in centrally obese, non-diabetic individuals. Such 
individuals are at risk of being exposed to the adverse effects 
of postprandial hyperglycaemia [29]. Considering the effec-
tiveness of both exercise and whey protein supplementation 
for improving postprandial glycaemia, a combination of 
these strategies may be a more effective approach.

The vast majority of studies investigating the effects 
of post-exercise whey protein supplementation have been 
conducted following resistance-type exercise, with benefi-
cial effects on muscle protein synthesis [30] and lean mass 
maintenance [31, 32] previously described. However, the 
influence of whey protein supplementation following aerobic 
exercise on subsequent metabolic and appetite responses has 
received little attention. Reduced ad libitum energy intake 

has been observed 60 min after milk [33] or whey protein 
[34] consumption following prior moderate-intensity cycling 
exercise in recreationally active participants. Whether post-
prandial metabolic and appetite responses would be influ-
enced by post-exercise whey protein consumption in habitu-
ally inactive obese individuals remains unclear. Given that a 
single bout of exercise may produce divergent responses in 
subsequent glucose tolerance [35], and that whey has been 
observed to influence postprandial glycaemia and insuli-
naemia consistently [36], the impact of post-exercise whey 
consumption on postprandial metabolic responses may be 
of significance.

Therefore, the aim of this study was to investigate the 
effect of fasted moderate-intensity exercise and subsequent 
whey protein supplementation on postprandial metabolic 
and appetite responses in centrally obese males.

Materials and methods

Participants

Male participants, aged 18–55 years, with central obesity 
and a low physical activity level were recruited. Central 
obesity was defined as waist circumference above the WHO 
threshold (102 cm) for abdominal obesity in males [37]. 
Physical activity level was assessed using the categorical 
scoring method following completion of the International 
Physical Activity Questionnaire [38]. Participants were 
excluded if they suffered from cardiovascular, metabolic or 
renal disorders, had a current illness, were taking medication 
that may affect metabolism or were a smoker. Additionally, 
participants were excluded if they self-reported regularly 
skipping breakfast (consuming breakfast on two or less 
occasions in the previous 7 days), having food allergies/
intolerances or an eating disorder. All participants provided 
written informed consent prior to participation. Sample size 
was determined using a within-subject power analysis using 
a previous study in an overweight/obese population [39]. 
Following consumption of a whey protein preload with a 
mixed-macronutrient breakfast, a 16% reduction in glucose 
AUC was observed with a within-group variance of 11%. 
Statistical power was set at 80%, with a two-sided alpha 
level of 0.05.

Experimental design

In a single-blind within-subject design, participants com-
pleted three trials, separated by at least 7 days. Participants 
were randomly assigned to pre-determined counterbalanced 
trial schedules that were created using an online randomi-
sation tool for researchers (https ://www.rando mizat ion.

https://www.randomization.com/
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com/). Two exercise trials involved a 30 min bout of brisk 
treadmill walking followed by consumption of a whey pro-
tein (EX + PRO) or placebo (EX) preload beverage. A third 
trial involved participants remaining sedentary for the same 
duration followed by consumption of the placebo beverage 
(CON). A standardised, carbohydrate-rich, breakfast meal 
was provided 15 min after consumption of test preloads 
(whey protein or placebo) under all conditions. Participants 
remained sedentary for a further 240 min, followed by con-
sumption of an ad libitum mixed-macronutrient lunch meal. 
This research took place within the Faculty of Health and 
Life Sciences research laboratories, Northumbria University, 
UK, with recruitment, data collection and analysis taking 
place between March and August 2016.

Pre‑trial procedures

Prior to experimental visits, participants completed a sub-
maximal treadmill walking test to determine their prescribed 
walking speed for the main trials. Four steady-state walking 
stages were completed on a motorised laboratory treadmill 
(Pulsar 3p, h/p/cosmos, Germany). Participants began walk-
ing at 3–4 km h−1 with walking speed increased by 0.5 or 
1 km h−1 at the end of each 3 min stage according to the 
discretion of the researcher, and based on the rating of per-
ceived exertion (RPE) in the final 30 s of each stage [40]. 
Throughout the test, expired gas was sampled using a breath 
by breath gas analyser (Oxycon Pro, CareFusion, USA) and 
heart rate was recorded using short-range telemetry (Polar 
RS400, Polar Electro, Finland). The relationship between 
oxygen consumption and heart rate was extrapolated to age-
predicted maximum heart rate to estimate V̇O2peak for each 
participant. The walking speed eliciting an intensity of 50% 
V̇O2peak was determined from the relationship between oxy-
gen consumption and walking speed, and selected as the 
prescribed walking speed during main trials.

Participants were instructed to avoid strenuous physical 
activity in addition to caffeine and alcohol consumption for 
24 h prior to each laboratory visit. To standardise pre-trial 
nutritional intake, an identical mixed-macronutrient evening 
meal was provided before each visit, and participants were 
asked to consume this 12 h prior to arrival. This consisted 
of a beef lasagne meal (Tesco, UK) with a honey-flavoured 
oat bar (Nature Valley, USA), providing 3501 kJ energy 
(837 kcal; 37% carbohydrate, 19% protein, 44% fat).

Main trial procedures

Participants arrived at the laboratory following an overnight 
fast, where a cannula was inserted into an antecubital vein. 
Baseline venous and capillary blood samples were taken, 
and measures of subjective appetite and expired gas were 

collected. During CON participants remained rested, whilst 
during EX + PRO and EX, a 30 min bout of steady-state 
brisk treadmill walking at 50% V̇O2peak was performed. The 
mode, intensity and duration of exercise was designed to be 
achievable for habitually sedentary individuals, while also 
conforming to UK recommendations for prescribed levels of 
daily physical activity for prevention of obesity [41].

Within 5 min of exercise completion, participants con-
sumed a test beverage containing whey protein during 
EX + PRO, and a placebo beverage during EX. During CON, 
a placebo beverage was consumed at the corresponding time 
point. The remainder of the trial procedure was identical 
under all conditions. A standardised breakfast was consumed 
15 min after test beverage ingestion, and participants subse-
quently remained seated and rested for 240 min with blood, 
expired gas and VAS sampled at regular intervals (Fig. 1). 
After 240 min, an ad libitum lunch meal was provided to 
assess energy intake.

Test meals

In the EX + PRO trial, the test beverage consisted of 20 g 
whey protein isolate (Lacprodan SP-9225 Instant; Arla Food 
Ingredients Group, Viby, Denmark) combined with 150 ml 
water and 0.5 ml energy-free strawberry flavouring (Fla-
vDrops, Myprotein, UK). In the EX and CON trials, an iso-
volumetric bolus of similarly flavoured water was consumed 
as a placebo. All test drinks were provided in opaque bottles. 
An additional 200 ml drinking water was administered after 
each test beverage to eliminate any after taste.

A standardised portion of rolled porridge oats with semi-
skimmed milk and honey was provided as breakfast under all 
conditions, providing 1958 kJ of energy (468 kcal; 70% car-
bohydrate, 17% fat, 13% protein). Participants were encour-
aged to consume this meal within 10 min, and 250 ml drink-
ing water was provided alongside the porridge. A timer was 
started upon completion of this meal.

A homogenous pasta meal was provided ad libitum at 
lunch to assess energy intake. This consisted of cooked dried 
pasta, a tomato-based sauce, cheddar cheese and olive oil 
(Tesco, UK) as described previously [42], providing 53%, 
14% and 33% energy from carbohydrate, protein and fat, 
respectively. Participants were initially provided with a 
400 g (2845 kJ, 680 kcal) portion of the pasta and were 
instructed to eat until they felt ‘comfortably full’ on each 
occasion. The serving bowl was topped up with fresh pasta 
prior to completion, thus removing the effect of bowl clear-
ance as a stimulus for food intake termination. All portions 
of cooked pasta (served or unserved) were weighed imme-
diately before and after consumption to determine energy 
intake.

https://www.randomization.com/
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Indirect calorimetry

Expired gas was sampled at regular intervals throughout 
resting and exercise periods of the protocol (Fig. 1) using 
an online gas analyser (Oxycon Pro, CareFusion, USA). 
Samples were collected at baseline following 10 min rest, 
immediately after the test beverage, 20 min post-breakfast, 
and every subsequent 30 min. Resting expired gas was sam-
pled for 10 min periods, with data from the first and last 
minute of each period discarded. During treadmill walk-
ing, expired gas was collected for 5 min periods at 5, 15 
and 25 min during the exercise bout, with the first and last 
minutes discarded. Resting substrate oxidation rates were 
calculated as per the equations of Frayn [43] and exercising 
substrate oxidation rates were calculated as per Jeukend-
rup and Wallis [44], accounting for the increased glycogen 
contribution to carbohydrate metabolism during moderate-
intensity exercise.

Blood sampling and analysis

A cannula (Vasofix 22G, B.Braun Melsungen AG, Ger-
many) was inserted into a vein in the antecubital fossa upon 
participant arrival. At regular intervals (Fig. 1), 10 ml of 
whole venous blood was transferred into EDTA-coated tubes 
(Vacutainer, Becton Dickinson, USA) and immediately cen-
trifuged for 10 min at 1734 g and 4 °C (Allegra X-22R, 
Beckman Coulter, USA). Plasma was stored at − 80 °C for 
subsequent analysis. Fingertip capillary blood was sampled 
(20 µl) at corresponding time points with blood glucose con-
centration immediately determined (Biosen C_line analyser, 
EKF Diagnostics, UK). Additional samples were collected 
at 5 and 10 min post-meal to increase the resolution of the 

blood glucose curve. A commercially available ELISA (IBL 
International, Hamburg, Germany) was used to determine 
venous plasma insulin concentrations, with intra- and inter-
assay variation (CV) of 7.8% and 8.8%, respectively. Enzy-
matic colorimetric assays were performed on an automated 
analyser (RX Daytona, Randox Laboratories, UK) to deter-
mine plasma glycerol and triglyceride concentrations.

Subjective appetite

Subjective appetite ratings were assessed using VAS, 
with a combined appetite score subsequently calculated 
as described previously [45]. Ratings for hunger, fullness, 
PFC and satisfaction were collected at corresponding time 
points to venous blood samples (Fig. 1), with a final VAS 
completed following termination of the lunch meal.

Statistical analysis

Total AUC was calculated from blood analyte and sub-
jective appetite data for the early (0–60 min), intermedi-
ate (0–120 min) and full (0–240 min) postprandial periods 
using the trapezoidal method [46]. Fasting and postprandial 
concentrations of plasma glucose and insulin were used 
to calculate the Matsuda Insulin Sensitivity Index (ISI) 
[47]. Missing data (2.5% of all planned observations) were 
imputed using the linear interpolation technique. Completer 
only statistical analysis was performed using SPSS (version 
21, IBM, USA). Glucose, insulin, triglyceride, glycerol and 
subjective appetite responses were analysed using two-way 
repeated measures analysis of variance (ANOVA) with con-
dition and time as factors. Baseline comparisons between 

Fig. 1  Schematic representation of experimental trials. WP whey protein, BL baseline
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trials, AUC for all variables, measures of energy balance and 
substrate metabolism were assessed using one-way repeated 
measures ANOVA. Post hoc comparisons were conducted 
upon identification of significant main effects and were 
adjusted for multiple comparisons using the Bonferroni 
correction. The level of statistical significance was set at 
p < 0.05 and data are presented as mean ± standard error of 
the mean (SEM).

Results

Participant characteristics

In total, 15 participants were recruited to take part in the 
study. Three participants did not complete the protocol, with 
one dropping out prior to, and two following the pre-trial 
submaximal walking test. Participant characteristics for all 
participants who completed the study (n = 12) are displayed 
in Table 1.

Blood glucose and plasma insulin

Glucose displayed a significant condition × time interac-
tion effect (p < 0.001), time effect (p < 0.001) and main 
effect of condition (p = 0.009; Fig. 2a). The post-breakfast 
increase in glucose was reduced in EX + PRO compared 
with placebo trials at 15–30  min post-breakfast, and a 
significantly reduced peak was observed in this condition 
(EX + PRO: 7.6 ± 0.4 vs EX: 8.4 ± 0.3, CON: 8.3 ± 0.3 mmol 
 l−1, p ≤ 0.04). Early postprandial glucose AUC 0–60 min was 
significantly lower under EX + PRO when compared to EX 
(Fig. 2b; p = 0.011), but not significantly different from CON 

(p = 0.12) after correcting for multiple comparisons. Glucose 
was significantly lower during CON than EX + PRO and 
EX at 90 min, and lower than EX + PRO at 120 min post-
breakfast (all p < 0.05). Values declined significantly below 
baseline levels after 180 min in all conditions. Over the full 
postprandial period (0–240 min), glycaemia was greater dur-
ing EX compared with CON (p = 0.002) but not significantly 
higher than EX + PRO (Fig. 2b; p = 0.241).

Insulin displayed a significant interaction of condition 
and time (p = 0.006), and main effects for time (p < 0.001) 
and condition (p = 0.027; Fig. 2c). Plasma insulin con-
centrations were not different immediately post-exer-
cise, but were significantly greater immediately prior to 
breakfast in EX + PRO compared with CON (EX + PRO: 
249 ± 32 vs CON: 118 ± 13 pmol  l−1, p < 0.001), but not 
EX (151 ± 44 pmol  l−1, p = 0.379). A larger peak in insu-
lin was observed during EX + PRO compared with CON 
(EX + PRO: 1374 ± 602 vs CON: 1050 ± 420  pmol  l−1, 
p = 0.004) and insulin AUC was greater during EX + PRO 
than CON, but not EX, during the acute (0–60 min), inter-
mediate (0–120 min) and full (0–240 min) postprandial anal-
yses (Fig. 2d). There were no differences observed between 
conditions in whole-body insulin sensitivity following 
breakfast consumption (Matsuda-ISI: EX + PRO: 2.3 ± 0.3, 
EX: 2.3 ± 0.3, CON: 2.6 ± 0.4; p = 0.344).

Plasma triglyceride and glycerol

There was no effect of condition or condition x time inter-
action effect on plasma triglyceride responses (Fig. 3a). 
There were no differences between conditions at baseline, 
immediately post-exercise, or immediately prior to break-
fast in plasma triglyceride concentrations (p > 0.05). Fol-
lowing breakfast, responses were significantly affected by 
time (p < 0.001), such that triglyceride was significantly 
increased above baseline at 120–210 min post-breakfast in 
all conditions (Fig. 3a; all p < 0.05). AUC was similar across 
conditions (Fig. 3b; all p > 0.05).

Post-breakfast glycerol concentrations were influenced 
by condition (p = 0.004) and time (p < 0.001), with a con-
dition x time interaction effect also observed (p < 0.001; 
Fig. 3c). Circulating glycerol concentrations did not differ 
between conditions at baseline, but were significantly greater 
in exercise trials than CON immediately post-exercise 
(Fig. 3b; both p ≤ 0.004), remaining elevated immediately 
prior to breakfast in EX (p = 0.019). AUC 0–240 min was lower 
in EX + PRO compared to both EX (p = 0.023) and CON 
(p = 0.005; Fig. 3d).

Energy balance and substrate oxidation

The amount of energy expended did not differ between 
EX + PRO and EX throughout (p > 0.05), but was greater 

Table 1  Participant characteristics

a Fasting values are presented as mean of fasting samples for each 
main trial

All participants (n = 12)

Characteristics
 Age (years) 41 ± 3
 Body mass (kg) 121.9 ± 3.2
 Stature (cm) 179.5 ± 1.7
 BMI (kg m−2) 37.8 ± 0.6
 Waist circumference (cm) 123.4 ± 2.9
 Waist/hip ratio 1.01 ± 0.02
 V̇O2peak  (ml   kg−1  min−1) 25.5 ± 1.1

Fasting  variablesa

 Blood glucose (mmol l−1) 5.2 ± 0.2
 Plasma insulin (pmol l−1) 122.6 ± 16.4
 HOMA-IR 4.7 ± 0.7
 Plasma triglyceride (mmol l−1) 1.50 ± 0.18
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during the exercise period in EX + PRO and EX than CON, 
fully accounting for the significantly greater total energy 
expenditure in exercise trials compared with CON (both 
p < 0.001; Table 2). No differences were detected between 
conditions in absolute energy intake at the ad libitum lunch 
meal (p = 0.886), signifying that participants did not com-
pensate for the excess energy expended in exercise trials 
at the subsequent lunch meal. When total intake over the 

whole trial (breakfast, test drink and lunch) was compared, 
no between-condition differences were present (p = 0.491).

Rates of fat and carbohydrate oxidation did not differ 
between conditions at baseline (p = 0.593 and p = 0.879, 
respectively). Greater amounts of fat and carbohydrate were 
utilised over the course of each exercise trial in comparison 
to resting control (all p < 0.05), however, substrate metabo-
lism was not influenced by consumption of whey protein, 

Fig. 2  Mean ± SEM (n = 12) temporal changes in blood glucose 
(a) and plasma insulin (c) concentrations, with associated AUC 
for glucose (b) and insulin (d). Significant differences (p < 0.05) 
between conditions at individual time points are defined as follows; 

a EX + PRO vs CON; b EX vs CON; c EX + PRO vs EX. Significant 
differences between bars are denoted with an asterisk. Dotted line 
indicates time of breakfast consumption. EX + PRO exercise with 
whey protein preload trial, EX exercise trial, CON resting trial
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with similar fat and carbohydrate oxidation observed 
between EX + PRO and EX throughout (all p > 0.05; 
Table 2).

Subjective appetite ratings

A significant effect of time on combined appetite responses 
was observed (p < 0.001). Appetite decreased similarly 

following breakfast in all trials, returning to baseline levels 
at 90–240 min post-breakfast, before decreasing similarly 
after the ad libitum lunch meal (Fig. 4a). There was no 
difference in AUC for combined appetite score (Fig. 4b) 
or individual components of subjective appetite under all 
conditions (all p > 0.05).

Fig. 3  Mean ± SEM (n = 12) temporal changes in plasma triglyc-
eride (a) and glycerol (c) concentrations with associated AUC for 
triglyceride (b) and glycerol (d). Significant differences (p < 0.05) 
between conditions at individual time points are defined as follows; 

a EX + PRO vs CON; b EX vs CON; c EX + PRO vs EX. Significant 
differences between bars are denoted with an asterisk. Dotted line 
indicates time of breakfast consumption. EX + PRO exercise with 
whey protein preload trial, EX exercise trial, CON resting trial
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Discussion

The main finding observed was that fasted exercise followed 
by pre-breakfast whey protein supplementation improved 
early postprandial glycaemia. This was illustrated by a 
reduction in the post-breakfast glucose peak in comparison 
to both placebo trials, and lower glucose AUC (0–60 min) when 
compared to exercise alone. In addition, it is shown that 
fasted exercise in conjunction with post-exercise whey pro-
tein supplementation does not influence subsequent energy 
intake in centrally obese males.

An acute bout of exercise moderately impaired glucose 
tolerance, indicated by a higher glucose AUC 0–240 min in the 
exercise control compared to resting control, while insulin 
AUC remained unchanged. Glucose peak and early AUC 
were not different between these conditions, indicating that 
this effect was manifested by a more prolonged elevation 
in blood glucose after prior exercise. When whey protein 
was ingested following exercise, this impairment appears 
to be negated, with glycaemia not differing from control 
overall. Additionally, glycaemia was ~ 9% lower in the early 
(0–60 min) period following breakfast when compared to 
exercise without additional protein, whilst peak postpran-
dial glucose was significantly reduced compared to other 
conditions.

The increased glycaemic response immediately follow-
ing a bout of exercise is in accordance with previous find-
ings in healthy trained [48] and obese normoglycaemic 
males [49]. Rose et al. [48] observed a 30% elevation in 

Table 2  Energy intake, expenditure and substrate metabolism during 
the exercise period (30 min), post-breakfast period (240 min) or full 
protocol (~ 300 min)

Data presented as mean ± SEM. Matching superscript letters within a 
row denotes significant difference between conditions (p < 0.05)
EX + PRO exercise with whey protein preload trial, EX exercise trial, 
CON resting trial

EX + PRO EX CON

Energy intake (kJ)
 Breakfast 2302 ± 0 1958 ± 0 1958 ± 0
 Lunch 4623 ± 356 4728 ± 385 4569 ± 343
 Total 6925 ± 356 6686 ± 385 6527 ± 343

Energy expenditure (kJ)
 Exercise period 938 ± 48a 914 ± 43b 203 ± 14a,b

 Post-breakfast 1657 ± 87 1695 ± 83 1572 ± 73
 Total 2690 ± 134a 2712 ± 122b 1866 ± 86a,b

Carbohydrate oxidation (g)
 Exercise period 31.4 ± 2.6a 30.1 ± 2.7b 6.1 ± 1.1a,b

 Post-breakfast 55.4 ± 4.3 56.2 ± 5.7 57.1 ± 4.3
 Total 89.3 ± 6.9a 89.0 ± 8.2b 65.5 ± 5.5a,b

Fat oxidation (g)
 Exercise period 10.7 ± 1.3a 10.7 ± 1.3b 2.9 ± 0.4a,b

 Post-breakfast 21.0 ± 2.0 21.7 ± 2.1 18.0 ± 2.1
 Total 33.1 ± 3.3a 33.9 ± 3.5b 22.4 ± 2.6a,b

Fig. 4  Mean ± SEM (n = 12) temporal changes (a) and AUC (b) for combined appetite score. Dotted lines indicate time of meal consumption. 
EX + PRO exercise with whey protein preload trial, EX exercise trial, CON resting trial
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glucose appearance during an OGTT following 30 min of 
cycling exercise, albeit at a higher intensity (70% V̇O2peak ) 
than the current study. The counterregulatory response to 
sustained exercise (more than ~ 20 min) involves increases 
in glucagon, catecholamines, and cortisol secretion, 
among other hormones [50], which may result in a rate 
of glucose appearance [51] which exceeds disappearance 
[52]. Exercise-induced elevation in catecholamine levels 
has also been shown to enhance the appearance of orally 
ingested glucose in an animal model via stimulation of 
sodium-glucose linked transporter type 1 (SGLT1) [53], 
whilst increased postprandial splanchnic perfusion after 
exercise may also explain increased glucose absorption 
[54]. It is currently unclear how long this effect persists 
for, however, it is likely to be transient in nature [49], and 
blood glucose levels were similar between exercise and 
control trials beyond 120 min post-breakfast in the cur-
rent study. Moreover, should obese individuals take part 
in regular exercise training, then improvements in aerobic 
fitness and potential weight loss are likely to have inde-
pendent effects on improving glucose metabolism [20, 55]. 
Nevertheless, knowledge of the acute effect of exercise on 
glucose tolerance when food is ingested immediately or 
shortly after exercise, is of significance when aiming to 
ameliorate the adverse effects of postprandial hypergly-
caemia on metabolic health [56, 57].

The observed reduction in acute glycaemia follow-
ing post-exercise whey protein supplementation could be 
attributed to a combination of mechanisms, including the 
direct effects of amino acids, particularly leucine, on β-cell 
stimulation [58] and activation of the incretin response [59]. 
Circulating insulin was increased 15 min after consumption 
of the whey preload, coinciding with the timing of break-
fast consumption. The post-breakfast rise in insulin secre-
tion also occurred earlier in the EX + PRO trial, with higher 
concentrations observed at 15 min post-breakfast compared 
with both non-protein conditions. The post-breakfast eleva-
tion in EX + PRO persists for up to 90 min, without further 
reductions in postprandial glycaemia. Increased postprandial 
insulinaemia in the absence of a reduction in glycaemia is 
suggestive of compromised insulin sensitivity, an effect that 
has previously been observed following acute whey protein 
ingestion [60]. Thus, there is potential for the chronic expo-
sure to the insulinotrophic effects of whey protein to have 
a desensitising effect on sites of insulin secretion or action, 
however, the implementation of longer-term supplementa-
tion protocols are required to investigate this potential effect. 
As the acute glucose response was attenuated in EX + PRO 
compared with EX, in the context of a potentially increased 
rate of post-exercise glucose absorption, this is suggestive of 
delayed gastrointestinal transport of orally ingested glucose. 
The rate of gastric emptying exerts considerable influence on 
the magnitude of postprandial glucose excursions [61, 62], 

accounting for ~ 35% of variance in glycaemic response to 
carbohydrate-containing meals in healthy individuals [63].

Large fluctuations in circulating glucose concentrations 
have deleterious effects on endothelial function and oxida-
tive stress in both healthy individuals and T2DM patients 
[57]. The attenuation of peak glucose excursion compared 
to both exercise and resting control conditions in the current 
study may, therefore, indicate a role for pre-meal supple-
mentation of whey protein both at rest, and when consuming 
meals shortly after bouts of low–moderate-intensity exer-
cise, in obese individuals. The stimulus was not large enough 
to detect a reduction in glycaemia over the full postpran-
dial period, however, it was sufficient to negate the increase 
observed in post-exercise glycaemia without additional whey 
protein.

There was no effect of whey protein supplementation on 
postprandial triglyceride in the current study. This reflects 
previous findings when similar doses of whey protein have 
been administered prior to the same breakfast meal [24] or 
meals with considerably higher fat loads [64–66], albeit 
without prior exercise. Conversely, studies administering 
considerably higher doses of whey protein (45 g) along-
side high fat loads (80 g) have shown significant reductions 
in postprandial lipaemia [67, 68]. The present study was 
designed to reflect practical application, thus the amount of 
whey protein and the composition of test meals were realistic 
in the context of habitual eating habits [69].

Elevated glycerol concentrations immediately post-exer-
cise are indicative of increased lipolysis and lipid substrate 
availability for exercise, confirmed by the observed increase 
in fat oxidation during exercise. Increased fat oxidation is 
associated with the postprandial triglyceride-lowering effects 
of exercise [70], however, postprandial substrate utilisation 
was not significantly different between exercise and control 
trials in the present study, and triglyceride responses were 
similar between conditions. A large body of evidence impli-
cates exercise in the attenuation of postprandial lipaemia 
[19, 23], however, the clear majority of studies have admin-
istered a test meal > 4 h after cessation of exercise. Those 
studies that have shown a more acute effect have adminis-
tered meals considerably greater in fat content (> 95 g) and 
prescribed a greater workload during aerobic exercise bouts 
than the current study [71, 72]. Furthermore, replacement of 
the exercise-induced energy deficit via mixed-macronutrient 
[73] or carbohydrate [74] feeding attenuates or abolishes 
improvements in postprandial triglyceridaemia. In the cur-
rent study, participants consumed breakfast containing more 
than double the amount of energy expended during tread-
mill walking, which may account for the similar lipaemic 
responses in exercise and resting conditions. It has also been 
observed that consumption of a meal immediately after exer-
cise diminishes the shift from carbohydrate to fat oxidation 
that usually follows exercise [75], which may explain the 
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lack of significant differences in substrate utilisation in rest-
ing and exercise conditions in this study. Although it could 
be speculated that the intensity of the exercise bout was not 
high enough to have a prolonged metabolic effect, it has pre-
viously been established that total energy expenditure rather 
than intensity is of primary importance to the triglyceride-
lowering effect of prior exercise [19].

Appetite was unaffected by prior exercise in the current 
study, which appears to be consistent with previous evidence 
suggesting that appetite is not altered by acute moderate-
intensity exercise [76]. In accordance with the comparable 
subjective appetite responses, lunch meal energy intake 4 h 
post-breakfast was similar between conditions. The fact that 
participants did not compensate for the deficit created by 
prior exercise reflects the findings of the majority of exercise 
studies [77] and brisk walking protocols [78] in lean, healthy 
individuals, whilst limited evidence exists to support a simi-
lar tendency in obese individuals. The moderate energy defi-
cit created by the exercise bout in the present study, in addi-
tion to the short duration between exercise and consumption 
of a standardised breakfast, is likely to have influenced this 
response. It may also be a possibility that energy expendi-
ture from exercise is gradually compensated for over several 
meals or even days, however such compensation is likely to 
only partially account for energy expended [79]. Neverthe-
less, the difference in energy balance in the exercise control 
trial compared with resting control was equivalent to the net 
amount expended during exercise, highlighting the potential 
efficacy of brisk walking to create acute energy deficits in 
obese individuals.

A limitation of the current study is the lack of a non-
exercise whey protein condition, which makes uncoupling 
of the effects of whey protein and prior exercise on gly-
caemia problematic. Whether the blood glucose response 
would be further reduced by consuming a whey protein 
preload in the absence of prior exercise can only be specu-
lated, however, we have previously observed reductions in 
peak glucose and postprandial glycaemia at rest follow-
ing whey protein consumption prior to the same breakfast 
meal in centrally obese males [24]. Furthermore, imple-
mentation of a longer investigation period may have been 
warranted, as the transient effects of a single bout of exer-
cise on insulin sensitivity may last for up to 72 h [21], 
indicating that these beneficial effects may occur beyond 
the time frame examined here. The timing of post-exercise 
feeding may have limited the ability to identify signifi-
cant effects of exercise on postprandial lipaemia and sub-
sequent intake, however, the consumption of a meal or 
snack following fasted morning exercise is likely, ensuring 
that these findings hold relevance in a free-living setting. 
The fact that the study was ran in a single-blind fashion 
may also be considered a limitation, however, efforts were 
made to eliminate sources of bias including analysing all 

samples from a participant on a single run where pos-
sible, and employing an additional (blinded) researcher 
to independently measure appetite responses to verify the 
measurements made by the primary researcher.

The use of paired t tests to conduct pairwise compari-
sons for differences within main effects may be considered 
a limitation due to the assumption that systematic differ-
ences in responses between testing visits are absent. This 
was mitigated as far as possible by including a consider-
able wash out period between visits of 7 days, in addition 
to counterbalancing trial order regimens. Additionally, the 
study was powered to detect differences in the primary 
outcome of postprandial glycaemia, with the consequent 
likelihood that secondary outcomes may have been under-
powered to detect differences.

The ecological validity of these findings is reinforced by 
utilising a dose of protein that could realistically be sup-
plemented prior to a meal, along with an exercise load that 
is realistic and tolerable in the population of interest. Care 
was also taken to use foods that were typical of those con-
sumed at breakfast and lunch meals across the population. 
Whilst the effects of high levels of protein intake on health 
is of interest, current evidence suggests that whey protein 
supplementation and higher total protein is not detrimental 
to bone health [80]. Acute trials such as the current study 
provide valuable information regarding the effects of whey 
protein consumption on immediate post-meal responses, 
however, consideration should be given to the fact that 
prevention of deteriorating metabolic health may require 
chronic improvements in postprandial glycaemia and other 
markers, which cannot be observed in the acute laboratory 
setting. Studies assessing the longer term effects of whey 
supplementation are relatively few in number, with only a 
small number in overweight/obese [81–83] or diabetic [84] 
individuals. Although some inconsistencies are apparent, 
the limited evidence to date appears to show that chronic 
supplementation of the diet with whey protein is associ-
ated with metabolic health benefits including improved 
fasting lipid profile and insulin sensitivity, with possible 
effects on food intake and body mass. There is increas-
ing focus on non-pharmaceutical methods and functional 
foods in this area, and such work may be advanced through 
development of an optimal chronic supplementation strat-
egy, while development of food products incorporating 
whey protein may enhance adherence to supplementation.

In summary, an isolated bout of brisk walking exer-
cise moderately impaired post-exercise glucose tolerance, 
however a whey protein preload consumed immediately 
post-exercise negates this effect. Furthermore, acute post-
prandial glycaemia was attenuated following whey protein 
consumption, whilst energy intake at a later lunch meal 
was not influenced by the intervention.
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