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The migration of immune cells plays a key role in inflammation. This is evident in the fact that
inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these
patterns are pivotal for initiating the immune response, their dysregulation is associated with
life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and
cancer, amongst others. Over the last two decades, thanks to advancements in the intravital
microscopy technology, it has become possible to visualize cell migration in living organisms
with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the
immune response associated with the dynamism of cells. However, a comprehensive
classification of the main motility patterns of immune cells observed in vivo, along with their
relevance to the inflammatory process, is still lacking. In this reviewwe defined cell actions as
motility patterns displayed by immune cells, which are associated with a specific role during
the immune response. In this regard, we summarize the main actions performed by immune
cells during intravital microscopy studies. For each of these actions, we provide a consensus
name, a definition based onmorphodynamic properties, and the biological contexts in which
it was reported. Moreover, we provide an overview of the computational methods that were
employed for the quantification, fostering an interdisciplinary approach to study the immune
system from imaging data.

Keywords: cell actions, computer vision, inflammation, intravital imaging, leukocytes, motility patterns
INTRODUCTION

Inflammation is a highly dynamic process that involves changes in cell behavior both at the site of
the insult as well as at distant organs (1, 2). Immune cells are key players in this process, as they
relocate into inflamed tissues, and secrete mediators of inflammation that orchestrate a cascade of
immune reactions (3–7).

Over the last two decades, intravital microscopy (MP-IVM) techniques have consolidated the
in vivo analysis of the immune response. Videos acquired via MP-IVM capture the behavior of
immune cells, including their migratory and interaction patterns, in organs of living organisms (8–11).
However, the quantification of these videos remains challenging. This is due to a range of factors, such
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as the complexity of the in vivo environment, which includes a
multitude of cell types and anatomical structures (12) or the high
plasticity and dynamism of the migration patterns displayed by
immune cells, which change over time. Moreover, numerous
technical artifacts introduced by the intravital imaging
procedure also affect the analysis to a large extent (13).

The recently established image-based systems biology
paradigm offers a unique opportunity to study cell behavior
in vivo, as it combines imaging data and computational methods
(14). Analogously, recently developed computer vision methods
for action recognition (AR) have enabled the analysis of the
complex behavior of humans associated with specific actions
such as walking, jumping, etc. (15). This is a particularly
challenging task, as human actions may be hierarchical in their
nature, composed of multiple actors, or captured by different
Frontiers in Immunology | www.frontiersin.org 2
imaging modalities (15). Interestingly, these three challenges are
shared with the quantification of the immune cell behavior in
intravital movies, as they display different morphodynamics,
undergo cell-to-cell interactions, and can be imaged in
different anatomical regions. Hence, in line with AR, we define
cell actions as motility patterns associated with relevant
biological functions to dissect leukocyte behavior.

To this end, we collected and reported from the literature a
list of actions displayed by immune cells in different organs
during key inflammatory processes. A summary of the diseases,
organs, and studies included in this review is reported in Table 1.
Moreover, we provide a consensus definition for each action and
its biological relevance during inflammation. Lastly, we report
the computational methods currently available for the detection
and quantification of each reviewed action.
TABLE 1 | Summary of the actions described in different inflammatory conditions, organs, and cell types.

Condition Organ Cell type Reported actions

Acute inflammation Kidney Monocytes Patrolling (16)
Monocytes Neutrophils Contact formation (16)

Chronic inflammation Liver NKT Directed (17) Patrolling (17) Swarming (17)
Hypersensitivity Lymphatics T Arrested (18) Patrolling (18) Swarming (18)

T DCs Contact formation (18)
DCs Arrested (18) Patrolling (18)

Induced/Sterile inflammation Vasculature Monocytes Patrolling (19–21)
Neutrophils Directed (22) Arresting (22)

LN NK Contact formation (23) Patrolling (23, 24)
T cells Contact formation (23)
NKs B Contact formation (24)
B Arrested (25)
T Arrested (26) Patrolling (27)
T DCs Contact formation (27–31)

Skin Neutrophils Directed (32) Swarming (32)
Lung Eosinophils Directed (33)
Kidney Monocytes Patrolling (16)
CNS Monocytes Patrolling (34)
Liver Neutrophils Directed (35) Swarming (35)

Infection Spleen Neutrophils Directed (36) Patrolling (36)
DCs Swarming (36)
T Arrested (36)
Monocytes Swarming (36)

Skin Neutrophils Directed (37) Swarming (38, 39)
Eosinophils Macrophages Contact formation (40)
Eosinophils Arrested (40) Directed (40)

Lung Neutrophils Patrolling (38) Swarming (38)
LN Neutrophils Arrested (41) Directed (41) Swarming (42)

NKs DCs Contact formation (43)
NKs Arrested (43)

Injury Skin Neutrophils Directed (44, 45) Swarming (44, 45)
Steady state Vasculature Monocytes Patrolling (19, 20)

Skin Eosinophils Patrolling (40)
Eosinophils Macrophages Contact formation (40)

LN T Patrolling (46, 47)
Lung Eosinophils Patrolling (33)

Tumor Lungs Monocytes Patrolling (49)
Ovary T Directed (50)

Vaccination LN Neutrophils Arrested (51) Directed (51) Patrolling (51) Swarming (51)
Vasculature Monocytes Patrolling (52)
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INTRAVITAL IMAGING WORKFLOW

The application of MP-IVM for the imaging of multiple cells
during the inflammatory process involves the following steps.

Cell labeling
Different methods are available, including the adoptive transfer
of cells from transgenic animals expressing a fluorophore-tagged
protein, in vitro labeling with fluorescent dies, or the injection of
fluorescently labeled antibodies that specifically bind to the cells
of interest. Available optical probes for MP-IVM and fluorescent
proteins are comprehensively reviewed elsewhere (53, 54) and
are beyond the scope of this work.

Surgery
The next step to perform a MP-IVM protocol is to select the
proper surgical model, to enable the exposure and
immobilization of the targeted organ (Figure 1A) (8, 9, 55).
Although this typically requires minimally invasive surgery,
more advanced surgical setups can be employed for long-term
imaging of internal organs, including gut (56), brain and spinal
cord (57), primary tumors and metastasis (58, 59) amongst
others (60–63).

Image Acquisition
Once surgery is completed, the anesthetized animal is transported
to the microscope where image acquisition is performed. The
fluorophores present in the sample are excited, and the resulting
emitted fluorescence is acquired. A number of microscopy
platforms are available for intravital imaging of the immune
system (11, 64). Amongst these, multiphoton microscopy (MP-
IVM) allows for deeper tissue penetration (by reducing scattering
and autofluorescence) and prolonged acquisition time (by
significantly reducing photodamage) (65, 66). This is achieved
by employing a pulsed laser that emits excitation photons in the
near-infrared range (NIR). The simultaneous absorption of
multiple photons by a single fluorophore leads to the emission
of one photon with higher energy. Finally, emitted photons are
Frontiers in Immunology | www.frontiersin.org 3
collected with detectors such as high-sensitivity photomultipliers
(Figure 1B) (67).

4D imaging data (time lapses of 3D z-stacks) are obtained at
different time points by sliding the excitation point throughout
the sample on a focal plane and repeating this process by moving
the focal plane along the z-axis. One drawback of this process
is the reduced acquisition speed of MP-IVM. Conversely, other
technologies such as resonant scanners or spinning disk confocal
microscopy may be employed to capture rapid biological
processes such as short-lived interactions or morphological
changes (68).

Data Analysis
The standard pipeline to analyze IVM videos consists of tracking
the cells in the field of view, then computing motility measures
from the cell trajectories (Figure 1C) (69, 70). Computer vision
stands as a promising approach to automatically performing cell
tracking (71). However, to date, a series of limitations hamper
the accuracy of state-of-the-art automatic tracking algorithms
when applied to immune cells observed via MP-IVM. For
example, the high plasticity of the immune cells might yield to
double tracking errors (69). Additionally, the high cell density
associated with biological processes such as swarm formation
hinder the distinction of individual cells. Lastly, technical
artifacts introduced by the intravital imaging, such as varying
signal-to-noise ratio across space and time, might affect the
overall experimental readout (72, 73).

Therefore, to obtain insightful results, manual tracking
and editing of automatically generated tracks are still required.
Indeed, manual tracking significantly minimizes tracking
errors and improves the accuracy of motility measures used to
quantify cell migration and interaction (13). However, these
procedures are time-consuming and prone to bias from each
individual researcher.

Common Measures of Cell Motility
A variety of measures formerly used to study particle dynamics
in physics have been adopted by image analysts to study cell
A B C

FIGURE 1 | Intravital imaging of the immune system under inflammatory conditions. (A) Representation of the surgical model used to perform intravital imaging in
the murine popliteal lymph node, including a minimally invasive surgery and imaging through a transparent window. (B) Example of intravital imaging setup based on
2-photon microscopy, including a pulsed laser with near-infrared (NIR) emission wavelengths and photomultipliers (PMT) for fluorescence detection. (C) 4D videos
(3D z-stacks over time) capturing cell motility are acquired and visualized on a computer. Cells are tracked (white lines) to compute metrics such as speed,
directionality (dir), and plotting of tracks with a common origin (PTCO).
January 2022 | Volume 12 | Article 804159
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motility in different experimental setups, including intravital
imaging (69, 70). Amongst these, speed and confinement ratio
(also known as directionality, or meandering index) are the most
common parameters when performing MP-IVM analysis of
immune cells. Speed is defined as the ratio between the track
length and the track duration, while the confinement ratio is
defined as the distance between the first and the last point of the
trajectory (displacement) divided by the total length of the track
followed by a cell. This parameter tends to 1 for straight tracks,
but decreases to 0 for circular tracks.

The aforementioned measures can be computed either on entire
tracks (track-based) or on track fragments (step-based) (51). Track-
based measures describe the overall motility of a cell for the entire
period of observation. An important limitation in the application of
these measures is that tracking errors can compromise the readout.
Additionally, acellwhosebehaviorvariesover time is representedbya
single averagevalue, yielding toan information loss.Bycontrast, step-
basedmeasures are computed amongst adjacent time points only, or
on a temporal window, limiting the temporal propagation of errors.
Moreover, step-based measures further allow the quantification of
instantaneous changes in cell behavior, which may occur over time,
rather thantakinganaveragevalueof theentire track. Ifcellscannotbe
tracked for long periods of time, a step-basedmeasuremay represent
the only possible choice for quantification.

More advanced measurements to evaluate the directionality of
cells have also been defined. For example, the mean squared
displacement analysis (MSD) evaluates the diffusivity of a
particle by comparing it with the expected motion of a random
walk. This measure can be represented by plotting the squared
displacement over consecutive time steps, resulting in a straight
line for a randomly diffusive process. Conversely, plots above this
line refer to super diffusive, or directed, processes, while plots
below it indicate a confined motion (74). The motility coefficient,
expressed in µm2/min, is a diffusivity measure derived from the
MSD (70). This coefficient considers the square of the cell
displacement over time, which can be inferred as the slope of
the MSD plot and can be used to compare migratory modes of
different cells. In addition, the distribution of the turning angles
can be evaluated to assess how much a cell deviates from its
previous path. Following this analysis, narrow distribution
centered on small angles are indicative of straight trajectories (75).
ACTIONS PERFORMED BY INDIVIDUAL
CELLS

Patrolling
Patrolling, also referred as scanning (76) or stochastic migration
(46, 77), is an action associated with random-like movement
characterized by long tracks in a confined area, which results in
low directionality (Figures 2A, B) (19). The speed of patrolling
cells varies according to the cell type, conditions, and anatomical
site. For instance, monocytes exhibited a speed of 36 µm/min in
the endothelium of carotid arteries and 9 µm/min in the
mesenteric venules (52), while B cells exhibited a speed of 6
um/min in the lymph node follicles.
Frontiers in Immunology | www.frontiersin.org 4
Patrolling cells are found in different biological processes
occurring both at steady state and under inflammatory conditions.

Maximization of antigen encountering in steady state
conditions
Patrolling cells are capable of monitoring large areas and promptly
responding to specific antigens. For example, monocytes display a
patrolling behavior while monitoring the endothelium of blood
vessels (Figures 2C, i) (19). Upon activation, these cells promote the
recruitment of immune cells locally via paracrine secretion of
proinflammatory cytokines (16, 19, 20, 34, 52), and transient
interactions (21). Similarly, a population of neutrophils were
described with a patrolling behavior within the lumen of blood
vessels. This was and associated with an increased capacity of these
cells for being recruited to the inflammation site (78, 79). More
recently, tissue-resident eosinophils have also been reported to
display a patrolling behavior in different organs (33, 40).

In the LN, patrolling B cells continuously survey subcapsular
macrophages and follicular dendritic cells in order to identify
antigens that are either presented on a cell surface or suspended
in the environment (80). Moreover, within the germinal centers
(GC), patrolling B cells exhibited a probing, dendritic
morphology that conferred them a larger surface area and
therefore a greater opportunity for antigen encountering
(Figures 2C, ii) (80). In addition, patrolling of T cells was also
reported as a strategy to maximize the encountering of antigen
presenting cells (APCs) (46, 77, 81) and avoid obstacles in
densely packed microenvironments (82). Finally, Bajenoff and
colleagues reported that the apparently random movement
associated with the patrolling of T cells in the LN is indeed
reflecting the complex network of fibroblastic reticular cells (47).

Patrolling under inflammatory conditions
NK cells were reported to maintain a patrolling behavior during
priming (26), and while searching for cognate targets and
transformed cells (Figure 2C, iii) (24), suggesting that the
patrolling pattern is an efficient strategy for sensing and integrating
cytokine signals under inflammatory conditions (26). Similarly, T
cells displayed a patrolling behavior in the LN, to integrate signals
from multiple APCs. Upon the encountering of APCs this behavior
wasmaintained if the affinity was low, or switched to the formation of
local clusters in case of high affinity (83).

Moreover, within the tumor microenvironment, patrolling
monocytes were also associated with immune surveillance,
promptly detecting tumor material, establishing interactions
with metastasizing cells, and promoting recruitment and
activation of natural killer (NK) cells in lung carcinoma (49).

Directed Migration
Directed migration is associated with cells displacing along straight
trajectories. These cells typically exhibit long tracks with high
confinement ratio and possibly high speed (Figures 2D, E)
depending on the cell type, the conditions, and the microenvironment.

In inflammatory contexts, cells undergo directional migration in
response to chemotactic cues and inflammatory signals, as well as
when influenced by anatomical structures. Generally, directional
migration is described as a strategy to rapidly reach a specific target,
January 2022 | Volume 12 | Article 804159
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which also plays important roles in recruitment, tissue repair,
cleaning, and antigen presentation (84, 85). Amongst the different
biological context where cells display this action we can find:

Response to Chemotactic Gradients
One of the best-characterized processes associated with directional
migration is chemotaxis, which involves the polarization and
displacement of cells towards the source of a chemotactic gradient
(Figures 2F, i). For instance, neutrophils perform directed
migration towards injured, infected, or inflamed areas (35, 37, 44,
86, 87), where their presence is relevant for tissue repairing,
microbial clearing (88), amplification of the inflammatory
response (89), and shaping of the adaptive immune response (90).
In addition, macrophages perform directed migration in interstitial
tissue in response to bacterial infection or tissue injury (91).

Influence of Anatomical Structures on the Directed
Migration
Tissue architecture can influence cell movements, conferring
properties of directed migration. The most compelling example
is the transportation of cells via the bloodstream (92, 93). More
recently, transportation of immune cells via lymphatics (94, 95)
was also reported and associated with a strategy for rapidly
reaching lymphoid tissues (84). Moreover, the architecture of the
LN was reported to influence the recruitment of B and T cells,
Frontiers in Immunology | www.frontiersin.org 5
which displayed directional migration to relocate precisely in
their respective areas (96). Finally, directed migration of immune
cells was also associated with the architecture of tumor
microenvironments. For instance, CD8+ T cells exhibited a
directed migration pattern along collagen fibers in a model of
ovarian carcinoma (50) (Figures 2F, ii).

Arresting
Arresting is an action associated with cells that typically display
confined trajectories and a speed below a predefined threshold
(96) (Figures 2G, H). However, the migration of immune cells
typically involves alternating cycles of “stop-and-go” (97).
Hence, to define a cell as arrested, we consider that it should
be tracked for longer than the duration of the stop-and-go cycle.

During the inflammatory process, motile cells change their
behavior to arresting in order to perform a variety of functions,
including signaling, killing, and activation.

Cell Activation and Signaling
Effective intracellular communication requires arresting. Notably,
both B cells and T cells undergo an arresting phase prior to
interacting with DC during priming (98). This step is essential to
maximize the contact duration and to induce signaling.

In neutrophils, arresting was associated with the oxidative
burst (38), a state in which reactive oxygen species are generated.
FIGURE 2 | Gallery of actions displayed by individual immune cells. (A) Illustration of a patrolling cell, with the characteristic long track in a confined area, which is
associated with mid-speed and low directionality (high confinement). (B) MP-IVM micrograph showing a patrolling neutrophil (light blue) migrating between
macrophages (red) in the subcapsular sinus of a lymph node following infection. (C) Illustration of biological cases of patrolling behavior, including (i) a monocyte (Mo)
screening the endothelium of blood vessels, (ii) a B cell surveying antigen-presenting cells in the lymph nodes (M: macrophages, DC: dendritic cells), and (iii) a
natural killer (NK) cell during immune-surveillance in tumor microenvironments (T). (D) Illustration of a cell migrating directionally, with the characteristic straight tracks
associated with high directionality and possibly high speed. (E) MP-IVM micrograph showing a neutrophil (light blue) exhibiting directed migration towards the
subcapsular sinus area of a lymph node following infection. (F) Illustration of biological cases of directed migration including (i) a neutrophil (Neu) directed towards the
source of a chemotactic gradient, and (ii) a T cell (Tc) moving with directed migration while following collagen fibers (blue structures) in the tumor microenvironment (T).
(G) Illustration of an arrested cell with the characteristic folded track, which is associated with a low speed and high confinement. (H) MP-IVM micrograph showing a
neutrophil (light blue) arresting in the proximity of a macrophage (red) in the subcapsular sinus area of a lymph node following infection. (I) Illustration of biological cases
of arresting including (i) a neutrophil (Neu) during an adhesive interaction with an epithelial cell layer, and (ii) a neutrophil arresting during the production of reactive
oxygen species.
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This occurs both during phagocytosis and in response to soluble
antigens. In contrast, Beuneu and colleagues (26) reported that
NK cells do not arrest while being activated by DC. However, NK
cells were reported to arrest in the medullary part of the LN (99)
following influenza vaccination. Although the arrested NK cells
were forming stable contacts with macrophages, this behavior
was not associated with NK-mediated lysis. Therefore, it may
suggest an alternative activation pattern.

Killing
The formation of stable contacts between a cytotoxic cell and its
target is one of the best-characterized biological processes during
which cytotoxic cells arrest. For instance, CD8+ T cells arrest
during the formation of the cytotoxic synapses with target cells
and resume their migration after killing the target (48, 100).

Adhesive Interactions During Recruitment
During recruitment from the blood stream, several types of
leukocytes form adhesive interactions with stromal cells,
leading to a decrease in motility and eventually to their arrest
(22, 96) (Figure 2I). This process has been extensively revised (4,
101) and coincides with findings showing, that T cells interacting
with lymphatic capillaries were commonly arrested (18).
ACTIONS PERFORMED BY TWO OR
MORE CELLS

Studies of cell migration have typically been performed by
quantifying the motility of individual cells. Collective
migration patterns, meanwhile, are more difficult to interpret
Frontiers in Immunology | www.frontiersin.org 6
(69) but they remain necessary for understanding complex
biological processes such as inflammation. Indeed, Mayor and
colleagues argue that considering cells as part of supracellular
entities allows the quantification of migration at a higher
scale (102).

Contact Formation
Contact formation is an action characterized by the absence of
space between two or more cells (103) (Figures 3A, B). Indeed,
during contact formation, the distance between membranes of
cells decreases up to a distance of 15 nm to 100 nm (104). Cells
forming contacts may exhibit an arrested behavior or maintain a
patrolling behavior according to the duration and the type
of contact.

Cellular contacts are a form of cell-to-cell communication that
enables the formation of clusters between the proteins on the surface
of distinct cells (Figures 3A–C) (105, 106), and the delivery of
highly localized signals (40). Although contacts are continuously
formed and disrupted between migratory and resident cells in
physiological conditions, certain contacts of immune cells are
important for the inflammatory processes (99, 107) due to their
involvement in the modulation of the immune response.

Immunological Synapses
One of the best-characterized cases of contact formation between
immune cells is the immune synapse that occurs between DC and T
cells (Figures 3C, i). This process can occur either in lymphoid
organs such as the LN (28), or non-lymphoid organs such as the
lymphatic capillaries of the ear skin (18), and is pivotal for
immunity and tolerance (29). DC play a crucial role in initiating
the immune cell response as they scan the surrounding
FIGURE 3 | Gallery of actions displayed by two or a collectivity of cells. (A) Illustration of the morphodynamics of contact formation between two cells, characterized by a
low distance and the possible overlap of colors. (B) MP-IVM micrograph showing a neutrophil (green) establishing contact with a macrophage (violet). 3D reconstructions
are shown to highlight the shape of the cells during the formation of the contacts. (C) Illustration of biological cases of contact formation including (i) a T cell (Tc) forming
an immunological synapse with a dendritic cell (Dc) with a cluster of proteins in the contact area, and (ii) a T cell (Tc) accumulating cytotoxic granules in contact with a
tumor cell (T). (D) Illustration of the morphodynamics of swarm formation, characterized by cells moving towards a common target, resulting in the accumulation of cells in
a confined area (high density). (E) MP-IVM micrograph showing a neutrophil swarm (light blue) following infection in the subcapsular area of a lymph node. (F) Illustration
of biological cases including (i) a swarm of neutrophil (Neu) to contain pathogens in an isle enriched with microbicidal compounds, and (ii) a swarm of T cell (Tc)
accumulating around an antigen-presenting dendritic cell (Dc) to prevent the other Tc from interacting with the Dc.
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environment in search of antigens to capture and present to naive T
cells (108). The interaction between T cells and DC follow a series of
steps characterized by a varying contact duration. At first, T cells
engage many short-lived contacts with the surrounding DC,
reducing their overall motility due to the multiple interactions
(25). Upon successful encountering of a DC presenting the
antigen specific for the T cell receptor, long-term stable contacts
occur, and T cells remain arrested, which leads to their activation.
Finally, the T cell recover its motility and proliferate. This process
has been observed in an OT-I model, where a comparison between
antigen-specific CD8+ T cells and polyclonal CD8+ T cells revealed
that antigen-specific cells significantly decreased their speed in
response to the formation of stable interactions with DC (109).
By contrast, polyclonal CD8+ T cells maintained a constant speed
(109). This finding is in agreement with the T-DC model, where
different phases of the T cell-DC interaction were associated with
different contact durations (28), and highlights the importance of
contact duration for efficient cell activation (30).

Moreover, some studies reported that NK cells maintained a
motile behavior during the formation of short-term (1 – 3 min)
contacts with DC, by recognizing cytokines on the surface of DC
in addition to soluble signals (23, 43). This suggested an efficient
strategy to sense and integrate cytokine signals frommultiple DC
(23). However, other in vivo studies have reported the formation
of stable contacts with macrophages during the activation of
these cells (99), in accordance with previous studies performed in
vitro (110, 111).

Cytotoxic Synapses and Lysis
Cytotoxic T leukocytes (CTL) can establish cytotoxic synapses with
target cells, which eventually leads to the lysis of the target (112).
Cytotoxic synapses formed by CD8+ T cells (Figures 3C, ii), rely on
a shared molecular mechanism with CD4+ T cell immunological
synapses (112). However, CD8+ T cell synapses appear to be more
stable and efficient in killing the target (113). Two known killing
mechanisms involve the binding of Fas death ligand to Fas death
receptor, resulting in the induction of apoptotic death by caspase
activation (114). The second mechanism involves calcium-
dependent release of perforin and granzymes, yielding to the
activation of alternative apoptotic pathways (114). The latter
mechanism was reported to be faster since it does not require
specific receptors to be activated (112). Common targets of CTL are
virus-infected or transformed cells. Moreover, CTL killing efficiency
was reported to be affected by the affinity for its ligand (25, 112).

NK cells are also able to form contacts to lyse target cells
through degranulation of lytic enzymes. Within the LN, NK has
been observed to form contacts with B cells to eliminate major
histocompatibility complexes mismatched targets (24).
Additionally, in the context of tumor microenvironment, NK-
mediated lysis was reported to occur either by establishing
contacts of long duration with a single NK or via multiple
short contacts with several NK (26).

Swarming
Swarming is an action that involves a collectivity of cells
clustering in a defined space or moving towards a common
Frontiers in Immunology | www.frontiersin.org 7
target in a coordinated manner, giving rise to a swarm
(Figures 3D, E) (42). Swarms have been classified according to
their size and duration (42). Transient swarms with fewer than
150 cells are reported to last up to 40 minutes. Larger swarms can
include more than 300 cells and can persist for hours (42).

The swarming process has been primarily described in
neutrophils, which form cell aggregates in inflamed and
injured tissues. Notably, duration and swarm size were
positively correlated with the severity of the tissue damage or
infection, with extended lesions massively recruiting neutrophils
involved in swarms that persisted for days (32, 115). Cell death,
known to induce recruitment of phagocytic cells (51, 116, 117), is
regarded as one of the triggers of swarming.

Swarming is associated with two key biological functions, host
protection and tissue remodeling.

Host Protection
Swarm formation was reported in infection models as a strategy
to contain pathogens and protect the host (118). To this end,
swarms lead to the confinement of pathogens in isles where
microbicidal compounds concentrate (Figures 3F, i) (115).
Accordingly, neutrophil swarming was observed to contain
bacteria spread (39) and limit the growth of fungi in vivo
(119). Eosinophils were also observed performing swarms
throughout the parenchyma in the lungs in different infection
models. Amongst these, during parasitic infections, swarms of
eosinophils were maintained for several days (120).

Tissue Remodeling and Shaping the Immune
Response
Neutrophil swarming was also reported in the context of sterile
inflammation. Sterile photo burning (87) and needle damage (44)
caused neutrophils to form abrupt and long-lasting clusters of large
dimensions, suggesting a role in tissue remodeling and repair.

Additionally, the formation of swarms can alter the cellular
structure of immune organs. For instance, swarms formed by
neutrophils were reported to disrupt the network of resident SCS
macrophages in parasitic infection models (41, 115, 121).
Considering that SCS macrophages are important for
containing the spread of pathogens (122, 123) and for
activating the adaptive immunity (86, 122), the alteration of
this cell layer by swarms might influence the overall immune
response. Interestingly, other cell types, such as NK cells, were
also observed to form swarms in the SCS area of the LN and to
interact with resident CD11b+ cells. The accumulation of NK
cells in the SCS area was linked to the function of promoting self-
activation by the encountering of specific APC (124). Other cell
types such as T cells were reported to form swarms around APC
following immunization. Since most of the interactions in the
swarms were maintained over time (108), it has been proposed
that swarms may keep newly arrived T cells at the boundaries of
the swarm, limiting their interaction with DC (Figures 3F, ii)
(108). Finally, swarming of invariant natural killer T cells was
associated with a reduced level of fibrosis in a model of
steatohepatitis (17), suggesting a further role of swarming in
tissue remodeling under inflammatory conditions.
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METHODS TO DETECT AND QUANTIFY
CELL ACTIONS

Due to the difficulties associated with the processing and
quantification of IVM movies (125), computational methods
have become essential for the analysis of cell motility in vivo. A
variety of software and methods were applied to detect and
quantify cell actions. A summary of these methods, including
how to use them and how to interpret the computed numerical
values is presented in Table 2.

Quantification of Patrolling Cells
To quantify the patrolling behavior, coefficients that evaluate the
displacement over time, such as the directionality and the
motility index are typically used. These coefficients are larger
Frontiers in Immunology | www.frontiersin.org 8
than the ones displayed by arrested cells, but lower than the
values displayed by directional cells (18, 126, 127). Additionally,
the previously mentioned MSD analysis can be used to
distinguish patrolling cells from arrested or directed cells, as
they display a random-like migratory pattern. However, several
studies demonstrated that the movement of cells in vivo is not
stochastic, but rather influenced by alternative parameters such
as the interaction with stromal cells, amongst others (70).
Therefore, we suggest to complement the MSD analysis with
other parameters, such as the angle or speed distribution, which
would provide additional insights on the migratory mode.

Quantification of Directed Cells
Directional migration can be inferred by plotting the trajectories
of the analyzed cells with a common origin, resulting in tracks
TABLE 2 | Software and tools to quantify cell actions.

Action Tools How to use How to interpret Requires
surfaces

Requires
tracking

Patrolling Imaris After having tracked each cell, use the Filter tool to select tracks
according to Track Length and Track Straightness.

High Track Length, and mid–low Track
Straightness are indicative of patrolling

no Yes

Icy, QuantEV Launch the QuantEV plugin (track processor) and select tracks
according to the confinement ratio distribution

A confinement ratio distribution
skewed towards the right indicates
patrolling

no yes

Fiji. Trajectory
classifier

Run the Trajectory classifier for TrackMate plugin, analyze the tracks Patrolling cells are typically classified as
“subdiffusive”.

no yes

Directed Microsoft
Excel, Matlab,
Imaris

Import into Microsoft Excel, Matlab, or a similar program the standard
track measures, such as Track Duration and Track Straightness from
Imaris. Exclude short tracks (i.e., < 300s) or add a rule to compute
normalized Track Straightness.

Track Straightness is close to 1
indicates directed migration

optional yes

Icy, QuantEV Launch the QuantEV plugin (track processor) and select tracks whose A confinement ratio distribution
skewed towards the left indicates
directed migration

no yes

Fiji, Trajectory
classifier

Run the Trajectory classifier for TrackMate plugin, analyze the tracks. Directed cells are typically classified as
“directed/active motion”.

no yes

Arresting Imaris, Arrest
Coefficient XT

Select the cells of interest, launch the plugin, and define a speed
threshold to consider a cell arrested. The plugin computes the arrest
coefficient and counts the number of stops for each cell.

Values of the arrest coefficient close to
1 indicate arresting

optional yes

Icy, QuantEV Launch the QuantEV plugin (track processor) and select tracks whose
lifetime is sufficiently high.

Total path length of arrested cells is
typically low.

no yes

Contact
formation

Imaris, Kiss
and Run XT

Launch the plugin, define a distance threshold to detect a contact (i.e.,
2 µm) and select two surfaces (i.e., two types of cells) to compute
contact number and duration for each single cell.

The plugin automatically reports the
number and the duration of contacts
which can be used to discriminate
between short- and long-lived
interactions

yes optional

Imaris,
Colocalization,
Matlab

To detect contacts between cells of different color, launch the Coloc
functionality to create an imaging channel specific to the contacts.
Create a surface on this new channel and export the number of
surfaces to count contacts. Smoothing can be applied to enhance
contact detection with minimal overlap.

Contacts are associated with regions
having a high brightness intensity in
the created colocalization channel

no no

Swarming Matlab/R, etc. Import cell tracks, compute the distance over time vs. a common
target.

If multiple cells display a reduction of
the distance over time towards a
common target, this might recall a
swarming behavior.

no yes

Matlab/R, etc. Import cell tracks and compute a density map based on the emitted
fluorescence, or a velocity map based on optical flow

Swarming is associated with regions
having high density and convergent
velocity tensors

no yes

Imaris Reconstruct a surface on all the cell of interest with large smoothing (>
expected cell diameter), divide the surface volume by the typical cell
volume to overestimate cells in the swarm, and apply smoothing to fill
gaps.

Swarming is associated with large
areas or volumes of the reconstructed
surfaces. A growing behavior can be
inferred by plotting the surface area or
volume over time

yes no
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with a strong preferential migration direction (45, 51, 63). More
quantitatively, one of the parameters that better characterizes
directed migration is the confinement ratio, which presents high
values for highly directional cells (69). However, the confinement
ratio of different tracks is comparable only if they have similar
track durations. Otherwise, normalizing the trajectories for their
duration is often required. Another measure typically used for
predicting directed migration is the distribution of the turning
angles (36). Following this analysis, a skewing toward small
angles would indicate that a cell trajectory does not deviate
abruptly from its established path. In addition, the MSD analysis
could also indicate directional migration recalling super
diffusivity (36, 44).

When analyzing the overall motility of a cell population,
directional migration can be inferred by evaluating the distance
over time of all the cells with respect to a reference point or
region. The chosen reference point should ideally represent a
common target (32, 41, 51, 115) towards which the distance
decreases or increases.

Quantification of Arresting Cells
An arrested cell is typically detected by evaluating the arrest
coefficient (69). This coefficient measures the amount of time in
which a cell migrates with a speed below a defined threshold
(typically 2 µm/min) (31). However, the value of the arrest
coefficient depends on the track duration. Therefore, tracks (or
track fragments) with similar duration should be compared;
otherwise, normalization strategies are required for comparative
studies (i.e., dividing the arrest coefficient by the track duration).
The confinement ratio used to predict the directionality of a
trajectory is also used to detect arrested cells, which typically
display low values (31).

Quantification of Contacts
Contacts are typically detected by evaluating the distance
between cells. Such a distance can be computed either between
the centroids of the cells (75), or reconstructed surfaces (i.e.
between the closest points of two cells) (13). In the first case, a
contact is detected when the distance is less than a threshold,
which is equal to the expected cell diameter. However, errors
may be introduced when cells with a non-convex shape are
analyzed. In the second case, the distance threshold is preferably
small, up to the spatial resolution of the microscope (i.e., 1 µm).
This allows to detect contacts between cells of arbitrary shapes.
However, the distance between the membranes of two cells
forming a contact is on average lower than the spatial
resolution of fluorescent microscopes used in intravital imaging
(0.2 µm – 0.3 µm) (128). Moreover, an accurate reconstruction of
cell surfaces might be hampered by the presence of cell-to-cell
contacts themselves (13). For these reasons, cell-to-cell contacts
are still annotated manually (18). More robust approaches
inferred contact formation from time series, such as the
trajectories of the individual cells or the changes in cell speed
(27). Moreover, spatial colocalization of two distinct
fluorophores can be used to highlight overlapping cells without
the need for surface reconstruction (27) nor the computation of
spatial distances between cells.
Frontiers in Immunology | www.frontiersin.org 9
Contact dynamics can be quantified by computing for each
cell the contact duration and the number of contacts. This
ultimately allows one to distinguish between transient and
long-lasting contacts.

Quantification of Cell Swarms
To quantify swarm dynamics in the case of localized tissue
damage or infection, the distance between the affected region
and each cell at different time points can be computed. Cells
whose distance over time falls below a defined threshold are
considered part of a forming swarm (32, 41, 44, 51, 63).

Alternatively, when the swarm coordinates are not known,
the increase of fluorescence intensity over time in different areas
can be computed. In turn, surface and volumetric reconstruction
enable the monitoring of the swarm growth over time by
encompassing the fluorescence intensity emitted by the
forming swarm (41, 45, 51). This provides insights into the
different stages of the process, including initiation, growth,
stabilization (41) and whether the swarm is transient or
persistent (119). Furthermore, dividing the measured surface
or volume by the mean volume or area of cells leads to an
estimate of the number of swarming cells (41).

Swarming can be also inferred from the trajectories and speed of
cells. Indeed, color coding the cell trajectories for their instantaneous
cell speed can help to locate transient and persistent swarms (39).
Similarly, representing a heatmap of the cell velocities and densities
generates a spatiotemporal visualization that accounts for both
migratory and clustering dynamics (38).
CONCLUDING REMARKS

In line with the computer vision community, we considered
distinct motility patterns displayed by cells as elementary actions
(129, 130), which are the building blocks of several biological
processes. This approach is relevant to dissecting the complex
dynamics of inflammation, as it provides a link between
identifiable morpho-phenotypes and the underlying cellular
function. Moreover, by detecting the occurrence of each action
over time, it is possible to quantify the dynamic behavior of
immune cells in response to different stimuli.

Another advantage of decomposing cell motility in
elementary actions is that these can be quantified from tracks
of short duration (tracklets) or short image sequences using
instantaneous measures. However, a longer imaging time can
lead to more accurate results for actions such as swarming, which
can persist for up to several hours.

In this review, the visual approach adopted to classify each
action further aims to facilitate the interpretation of intravital
microscopy data for immunologists and imaging specialists. The
described measurements and definitions are provided to help
researchers in differentiating between distinct cellular actions
from a motility perspective. These are, however, intended only as
guidelines rather than absolute discriminatory factors, as no
consensus definition and numerical characterization exists thus
far. In fact, to identify cell actions, it might be necessary to adopt
January 2022 | Volume 12 | Article 804159
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a gating strategy that considers the combination of several
motility parameters (51). Future advancements in this
direction will require further characterization of cell motility
based on the function, cell type, and organ.

In conclusion, the development of computer vision methods
for cellular action recognition represents a promising
methodology for deciphering biological processes occurring
in vivo from imaging data.
INCLUSION CRITERIA

This review includes studies that reported specific motility
patterns of immune cells, which were observed under
inflammatory conditions in vivo. The included imaging
modalities were MP-IVM, spinning disk, laser scanning
confocal, and epifluorescence microscopy. All the definitions of
cell actions used in this work were inferred from the original
studies. In most cases, the authors explicitly named the migratory
patterns displayed by the imaged cells. Indeed, directed
migration, arresting, contact formation and swarming (or
Frontiers in Immunology | www.frontiersin.org 10
clustering) are well-characterized processes that were typically
referred to using a direct name. In these cases, we did not
perform re-analysis of the data. In the case of patrolling
instead, studies referred to it either with the same term, or a
similar nomenclature (i.e., scanning, undirected migration,
random migration), or provided measurements whose values
were indicative of this motility pattern.
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