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Abstract: Work zone safety is a high priority for transportation agencies across the United States.
Enforcing speed compliance in work zones is an important factor for reducing the frequency and
severity of crashes. This paper uses connected vehicle trajectory data to evaluate the impact of
automated work zone speed enforcement on three work zones in Pennsylvania and two work zones
in Indiana. Analysis was conducted on more than 300 million datapoints from over 71 billion records
between April and August 2021. Speed distribution and speed compliance studies with and without
automated enforcement were conducted along every tenth of a mile, and the results found that
overall speed compliance inside the work zones increased with the presence of enforcement. In the
three Pennsylvania work zones analyzed, the proportions of vehicles travelling within the allowable
11 mph tolerance were 63%, 75% and 84%. In contrast, in Indiana, a state with no automated
enforcement, the proportions of vehicles travelling within the same 11 mph tolerance were found to
be 25% and 50%. Shorter work zones (less than 3 miles) were associated with better compliance than
longer work zones. Spatial analysis also found that speeds rebounded within 1–2 miles after leaving
the enforcement location.

Keywords: connected vehicle; trajectory; speeds; automated enforcement

1. Introduction

Ensuring compliance with work zone speeds is a critical objective for transportation
agencies and partners across the United States. Every year there are nearly 800 fatalities
and more than 120,000 work zone related crashes [1]. Enforcing speed compliance is
one way to improve work zone safety and reduce crashes. Although several studies
have found law enforcement to have the largest impact on speed compliance [2–5], this
solution is not scalable, especially due to the lack of both staffing and resources. Moreover,
enforcement activities in work zones can sometimes be dangerous for both traveling
motorists and enforcement officers. In the past decade, automated speed enforcement
programs using both radar and camera-based technology have gained popularity. Several
studies have shown that automated enforcement programs can significantly reduce work
zone speeds [6–8]; however, most of them were limited to assessing the localized impact
on speeds. The presence of equipment and/or personnel when speeds are collected can
also bias the data. Connected vehicle (CV) trajectory data now provide an opportunity to
perform a comprehensive analysis of work zone speeds over extended periods without
introducing any sampling bias. The objective of this paper is to describe a methodology
using CV trajectory data to inform agencies on the operation of automated enforcement.

This paper is organized as follows: the first section introduces the problem statement
and objective of this study; this is followed by an enhanced literature review and identifica-
tion of research gaps. The third section provides a summary of the Automated Work Zone
Speed Enforcement program in the Commonwealth of Pennsylvania, followed by the study
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scope and objectives. The fifth and sixth sections describe the connected vehicle trajectory
data and enforcement data used in this study. The following sections present data analysis
and speed compliance results during the presence and absence of automated enforcement.
This is followed by a presentation of the findings regarding the impact of work zone length
on speed compliance and a comparison of automated work zones in Pennsylvania with
work zones in Indiana, where no automated enforcement is employed. The final section
provides a summary of this research along with potential future work opportunities.

2. Literature Review

Speeding is a major factor that influences the severity and frequency of crashes in
work zones [9–12]. Agencies have adopted several measures to control work zone speeding,
including but not limited to, reduced speed limit signs [13], radar-based speed feedback
displays [13–15], variable message signs [14,16] and transverse rumble strips [17]. Enforce-
ment measures such as the presence of law enforcement [2,14] and cameras [13] have also
been instrumental in reducing work zone speeds.

Fontaine et al. conducted a feasibility study of real-time remote speed enforcement for
work zones and found that it may overcome many of the legislative barriers that prevent
the use of automated enforcement and also provide a safety benefit to law enforcement
officers [18]. In 2004, Illinois became the first state to pass legislation that allowed the use
of automated speed photo-radar enforcement (SPE) in work zones. Subsequent studies
on Illinois work zones found that SPE was effective in reducing speeds of cars and heavy
vehicles during both free-flow and general traffic stream conditions [6–8,19]. The average
reductions in speeds were found to be between 4 and 8 mph for cars and between 3 and
7 mph for heavy vehicles. The reduction in speeding at 1.5 miles downstream of the
enforcement was found to vary between 0% and 44%. Studies in Arizona revealed that
automated enforcement using a fixed camera on Arizona State Route 101 reduced speeds
by 9 mph and the estimated total number of target crashes by 44–54% [20]. Studies by other
agencies including Washington DOT [21], Oregon DOT [22] and Maryland DOT [23] also
found significant speed reductions with the use of automated enforcement. In Maryland,
where the program has been deployed at nearly 100 work zones since 2010, the number of
vehicles exceeding the speed limit tolerance (12 mph above speed limit) has been reduced
by nearly 90% since its inception.

Although the localized impact of automated enforcement is well documented, there
are very limited studies that have looked at the spatial and temporal compliance of speeds
across the work zone. Franz et al. conducted a study using tube counters and microwave
sensors to understand the spatial (2 miles upstream and downstream) and temporal speed-
ing effects, and found that speeds tend to reduce at enforcement locations but increase after
the enforcement zone [24]. Temporal analysis showed a general reduction in aggressive
driving during the enforcement period with more stable spatial speeding distribution.
Wasson et al. used Bluetooth probe data to study the spatial and temporal impact of overall
speeding during enforcement activity on a 12 mi work zone in Indiana [25]. Their results
showed that space mean speeds dropped by approximately 5 mph throughout the work
zone during enforcement and increased within 30 min after the enforcement detail ended.

CV trajectory data, which provides a large sample that extends both spatially and
temporally across the work zone, enables researchers to perform a holistic analysis of the
speeding patterns inside the work zone. Few studies have used this data to understand
speed compliance in work zones. Mathew et al. studied the spatial and temporal effect of
speed feedback display signs and posted speed limit signs on a 15 mi work zone in Indi-
ana [26]. While posted speed limit transitions did not have any impact on speed reductions,
the speed feedback display sign saw a maximum reduction in median speeds by 5 mph.
The overall reach of the data enabled the researchers to discover that geometric constraints
such as lane closures and tight shoulders had the most impact on speed reductions in the
work zone.
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As seen, several studies have evaluated the performance of automated enforcement;
however, the evaluation was mostly carried out at a localized level—either at the location
of the enforcement or a few miles upstream or downstream of the enforcement. Although
automated enforcement was found to improve the speed compliance in such cases, it is
also necessary to understand the impact across the entire length of the work zone. The
ubiquity of connected vehicle data now provides an opportunity to perform a holistic
analysis without the need for any significant infrastructure investments. The objective of
this paper is to describe the methodology for using CV trajectory data to characterize both
the spatial and temporal effects of automated enforcement on driver behavior throughout
the length of the work zone.

3. Automated Speed Enforcement in Pennsylvania

In 2020, there were nearly 1300 work zone crashes in Pennsylvania, which resulted
in over 800 injuries and 15 fatalities [27]. The automated work zone speed enforcement
(AWZSE) program in Pennsylvania was enacted into law by Act 86 (2018), which authorizes
automated speed enforcement in active work zones [28]. This program is jointly supported
by the Pennsylvania Department of Transportation, the Pennsylvania Turnpike Commission
and the Pennsylvania State Police with the goal of promoting work zone safety by reducing
speeds and improving driver behavior. A field unit is deployed (Figure 1a(1i)) in the
work zone (typically for 8 h per day), which uses both radar and roof-mounted cameras
to capture vehicle speeds. During active enforcement, advance warning signs (Figure 1b)
are also placed at 500 ft and 1000 ft ahead of the field unit to alert the incoming motorists.
Violations are issued for speeds exceeding a tolerance of 11 mph over the speed limit. The
first offense is treated as a zero-first violation and fines are issued for repeat violators, i.e.,
for the second and any subsequent offenses.

Statewide automated enforcement began in March 2020 but was halted due to the
pandemic and then resumed at critical and emergency work zones in April 2020. In 2020,
there were over 2000 deployments, which resulted in more than 219,000 violations and
roughly $1.7 M of fines from nearly 12% repeat offenders. Preliminary results showed that
speeds dropped in the work zones, with a 16.6% reduction in the percentage of vehicles
travelling over the speed limit and a 43.6% reduction in the percentage of vehicles over the
speed limit tolerance [28].
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(a) (b) 

Figure 1. Automated speed enforcement field unit and warning signs. (a) Field unit with radar
equipment and roof mounted cameras. (b) Speed enforcement warning sign. Callout 1i shows the
field unit on I-78 work zone in I-78, Pennsylvania.
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4. Scope and Objective

The scope of this paper is to present a methodology for using CV trajectory data to
characterize the speed in three work zones in Pennsylvania that had automated speed
enforcement deployed between April and August 2021. This includes the following:

• An evaluation of speed limit compliance during the presence and absence of automated
enforcement;

• A comparison of speed compliance on short versus long work zones;
• Performing longitudinal analysis of the speed variation across the length of the

work zone;
• A comparison of speed compliance with work zones without automated enforcement

in Indiana.

5. Work Zones in Pennsylvania with Automated Speed Enforcement

Three work zones with active automated speed enforcement between April and
August 2021 were selected for this study (Figure 2). The first work zone is located south
of Pittsburgh on I-79 south (S), between mile markers (MM) 51 and 48, with a work zone
speed limit of 45 mph (Figure 2(2i)). The second work zone is located north of Pittsburgh
on the Pennsylvania Turnpike I-76 W between MM 31 and 28 (Figure 2(2ii)). The speed
limit in this work zone is 55 mph. The final work zone is a 10-mile section between
MM 45 and 35 on I-78 W. The speed limit in this work zone, located west of Allentown
(Figure 2(2iii)), is 50 mph. All three work zones underwent reconstruction activities and
generally maintained two travel lanes within barrier protection while enforcement was
present. Detailed logs with durations and locations of active enforcement on each day
were also available. Automated enforcement was not deployed during adverse weather
conditions such as heavy rains and thunderstorms. Although previous studies have used
probe vehicle data to capture speed variations during rain events [29], this paper does not
consider the impact of weather.
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Figure 2. Study work zones in PA with active automated speed enforcement. Callout 2i, 2ii and 2iii
shows the I-79, I-76 and I-78 work zones, respectively.
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6. Anonymized Connected Vehicle Trajectory Data

The CV data used in this study were obtained from a third-party commercial data
vendor that partners with original equipment manufacturers (OEM) to provide anonymized
vehicle trajectories. Each trajectory consists of a series of waypoints with a reporting
frequency of 1–3 s and a spatial fidelity of 3 m. Each waypoint consists of unique trajectory
identifiers, geographic coordinates, timestamps, speeds, headings and ignition statuses for
passenger cars. Previous studies have indicated that these CV data represent approximately
3–5% of the total vehicles operating on interstates [30]. For the study period between April
and August 2021, there were approximately 71 billion CV records available in Pennsylvania.
To portray the extent and coverage of this data, Figure 3 shows a map of nearly 35 million
CV records generated during the noon hour on one day in Pennsylvania. During this study,
over 322 million CV records from nearly 538,000 unique trips were extracted across the
three work zones of interest. I-79, I-78 and I-76 generated roughly 162, 100 and 60 million
records in both directions, respectively. I-79 S, I-78 W and I-76 W returned 87, 50 and
30 million records, respectively.
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Figure 3. CV trajectory data points during an hour in PA.

Spatial Referencing CV Data to Roadway Mile Markers

To perform spatial analysis, it is necessary to transform the data relative to the mile
markers (MM) or mile posts on the roadway. This is accomplished by conducting a
geospatial join of CV data and interstate mile markers. Figure 4a shows the data points
(Figure 4(4i)) every three seconds from one CV travelling on I-79 S. Figure 4b shows data
points from multiple trajectories on this section. The mile markers occurring every tenth of
a mile (MM 48.8, 48.7 and 48.6) are then overlaid and connected by line segments (Figure 4c).
A spatial polygon is developed by adding a two-sided buffer to this line segment connecting
the mile markers, and the CV data points within this polygon are joined to the mile markers
(Figure 4d). For example, all the CV data points between MM 48.6 and 48.7 are assigned a
spatial reference of MM 48.6. In addition to this spatial joining, a heading filter (+/−10◦ of
the roadway line segment heading) is also applied to the CV data to remove directional
outliers.
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Figure 4. Geospatial joining of connected vehicle trajectories to roadway mile markers. (a) Trajectory
data every 3 s from one CV. (b) All CV trajectories. (c) Overlaying interstate mile markers. (d) Geospa-
tial joining of CV trajectory points to interstate mile marker polygons. Callout 4i shows the datapoints
from one CV.

7. Impact of Automated Enforcement across Work Zones

Analysis was limited to periods between 6 A.M. and 6 P.M. to remove any potential
bias outside enforcement hours. Speeds below 25 mph were also discarded to exclude
congestion and queuing impacts. In addition, speeds above 120 mph were treated as
outliers and excluded from the analysis.

7.1. Interquartile Range (IQR) Plots

Figure 5 illustrates an IQR plot of speeds every 0.1 miles along the study section
between MM 55 and 43 on I-79 S. The x-axis indicates the mile markers along the direction
of travel, and the y-axis shows the speeds. The normal speed limit on this section of I-79 is
55 mph. The bottom bar of the interquartile plots shows the 25th percentile, the top bar
shows the 75th percentile and the middle bar shows the median speed. The tan backfill
highlights the work zone extents, the horizontal dotted red line represents the work zone
speed limit (45 mph) and the horizontal black solid line represents the 11-mph speed limit
tolerance (56 mph). The vertical dot-dash line shows the location of automated enforcement
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(at MM 48) and the two dotted lines before it shows the location of the warning signs
(Figure 1b).
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Figure 5a depicts the variation in speeds when automated enforcement was absent
(at MM 48), and Figure 5b depicts a similar graphic when enforcement was present (at
MM 48). When the two figures are compared, there is a noteworthy drop in speeds on
Figure 5b around the enforcement location (Figure 5(5i)). On closer examination, the drop
in speeds begin a few tenths of a mile ahead of the warning signs indicating a strong speed
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limit compliance during the presence of enforcement. The speeds further drop when the
motorists see the enforcement vehicle in their sight, and the drop in speeds continues for
approximately 0.2 miles past the enforcement vehicle. It is also interesting to note that,
irrespective of the enforcement activity, nearly 75% of all the speeds inside the work zone
are within the speed limit tolerance.

Figure 5 also provides an opportunity to understand the speed patterns before entering
and after exiting the work zone. The reduction in speeds begin roughly 1 mile before
entering the work zone (Figure 5(5ii)). Similarly, the speeds climb back up to 55 mph within
a mile after exiting the work zone (Figure 5(5iii)). This is further corroborated in Figure 6,
which compares the cumulative frequency of the speeds during the presence (green) and
absence (red) of enforcement across 1-mile sections before and after the location of the
enforcement. For the 1-mile stretch just before and after the enforcement location, there
is a shift in the green curve (enforcement present) towards the left signaling a reduction
in speeds. For all the other sections, the two curves overlay each other, indicating similar
vehicle speeds.
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A nonparametric Kolmogorov–Smirnov test (K-S test) is also conducted for detecting
the horizontal differences between the two distributions [31]. The D-statistic shows the
maximum vertical distance between the two cumulative frequency diagrams on Figure 6.
Table 1 shows the results from the K–S test at every 1-mile section before and after the
location of enforcement. Results show that the distributions during the presence and
absence of enforcement are statistically significant at all locations (at a 99% confidence
level), with the maximum separation observed within 1 mile of the enforcement location.
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Table 1. Kolmogorov–Smirnov test showing the distributions during the presence and absence of
enforcement.

Location D-Statistic p-Value

4–5 mi before 0.033 * <0.001
3–4 mi before 0.075 * <0.001
2–3 mi before 0.028 * <0.001
1–2 mi before 0.024 * <0.001
0–1 mi before 0.129 * <0.001
0–1 mi after 0.146 * <0.001
1–2 mi after 0.03 * <0.001
2–3 mi after 0.018 * <0.001
3–4 mi after 0.004 * 0.007
4–5 mi after 0.025 * <0.001

* Significant at 99% confidence level.

Although K–S test show statistically significant differences with and without enforce-
ment at multiple locations, the more important takeaway from Figure 6 is that the upper
tails (high speeds) are quite close and demonstrate the impact of reducing high speeds in
work zones, even when the automated enforcement is not present.

7.2. Speed Compliance Proportion

These data also provide an opportunity to conduct a longitudinal analysis of speed
compliance over the entire length of the work zone. Figure 7 illustrates the speed compli-
ance both with the speed limit and within the speed limit tolerance across the I-79 S work
zone, during the absence (Figure 7a) and presence (Figure 7b) of enforcement at MM 48.0.
In general, irrespective of the enforcement, the average speed limit compliance (inside the
work zone) was roughly 15%, whereas compliance within the speed limit tolerance was
nearly 75%. During active enforcement, the average compliance with the speed limit and
within the speed limit tolerance increased by roughly 3% and more than 1%, respectively,
compared to periods without enforcement.

Table 2 presents a summary of the average compliance over the three work zones
during the presence and absence of automated enforcement. The 3-mile I-76 W work zone
recorded the highest compliance, with more than 25% under the speed limit and nearly
85% under the speed limit tolerance. However, the presence of enforcement was not found
to have a major impact on the speed compliance. The I-78 W work zone was found to have
the least compliance—a little above 10% under speed limit and close to 60% under speed
limit tolerance. This could be due to the greater length of this work zone, which stretches
over 10 miles.

Table 2. Summary of average speed compliance inside the work zone with and without enforcement.

WZ
Length

(mi)

WZ Speed
Limit
(mph)

WZ Speed Limit
Tolerance

(mph)

Compliance with WZ
Speed Limit

Compliance within WZ
Speed Limit Tolerance

Enf. Absent Enf. Present Enf. Absent Enf. Present

I-79 S 3 45 56 12.7% 15.4% (↑) 73.7% 74.8% (↑)
I-78 W 10 50 61 10.6% 11.5% (↑) 59.3% 62.6% (↑)
I-76 W 3 55 66 25.4% 26.9% (↑) 84.6% 84.3% (↓)
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8. Impact of Work Zone Length

Although there are no standard definitions for classifying work zones based on length,
in this study we consider work zones less than 3 miles to be short work zones and those
greater than 3 miles to be long work zones. Among the three work zones, the two shorter
ones (I-79 S and I-76 W) were found to have better speed compliance than the longer I-78 W
work zone. As seen before in Figure 7b, there are less fluctuations in speed compliance
within the 3-mile I-79 S work zone. The speed compliance is uniform for most of the
work zone, except towards the end where the compliance increases due to the presence of
enforcement. Figure 8 shows the proportion of speed compliance over the 10-mile I-78 W
work zone. In contrast, there are few considerable fluctuations (Figure 8(8i–8iv)) on the
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longer work zone—potentially areas free of work activity and geometric constraints such
as lane reductions. The level of compliance within the speed limit tolerance even drops to
less than 25% in a few of these zones (Figure 8(8i,8ii)). It is common for agencies to combine
two or more work zones separated by a short distance (less than a mile or two) into a single
work zone; however, our findings suggest that this could lead to several speed fluctuations
and, more importantly, a significant reduction in speed compliance.
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9. Comparison with Work Zones without Automated Enforcement

Figure 9 illustrates the IQR plots (similar to Figure 5) for two work zones without
automated enforcement on I-65 S in Indiana. Figure 9a represents the work zone from MM
182 to MM 170 during the month of July 2021 (herein referred to as I-65 Sa) and Figure 9b
represents the work zone from MM 153 to MM 138 during May 2021 (referred to as I-65 Sb).
The speed limits (dotted red horizontal line) on both work zones transition from 70 to
55 mph, with I-65 Sb also having a section with a 45 mph limit. The speed limit tolerance
(solid black horizontal line) is offset by 11 mph from the speed limit. For I-65 Sb, the
IQR plots occlude the speed limit tolerance line when the speeds go back to 55 mph at
MM 141.6 (Figure 9b). Both work zones underwent reconstruction activities with partial
lane reductions.
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Figure 9. IQR speed plots for non-enforcement work zones. (a) I-65 Sa WZ MM 182 to MM 170, IN
during July 2021. (b) I-65 Sb WZ MM 153 to MM 138, IN during May 2021. Callouts 9i-9iii shows the
speed reductions due to geometric constraints.

As indicated earlier, neither of these work zones had automated enforcement, and
only occasional enforcement by officers in marked cruisers due to narrow shoulders that
provided a challenging environment for safely monitoring and/or stopping motorists. In
general, there were only a few sections where more than 75% of the speeds were within
the speed limit tolerance (Figure 9(9i–9iii)). Further investigations revealed that geometric
constraints such as lane reductions (Figure 9(9i,9ii)) and narrow lanes without any shoulders
(Figure 9(9iii)) resulted in these speed drops [26]. On I-65 Sb, almost all of the median
speeds were roughly 20 mph over the speed limit, except the zone with narrow shoulder
shown by callout 9iii. The average compliance with the speed limit across the work zone
was found to be less than 11% for I-65 Sa and less than 5% for I-65 Sb (Table 3). Only half of
the analyzed speeds were within the speed limit tolerance on I-65 Sa, whereas for I-65 Sb,
less than a quarter of the speeds were within the speed limit tolerance.
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Table 3. Summary of average speed compliance on IN work zones without automated enforcement.

WZ Length
(mi)

WZ Speed Limit
(mph)

WZ Speed Limit
Tolerance

(mph)

Compliance with
WZ Speed Limit

Compliance
within WZ Speed
Limit Tolerance

I-65 Sa 5 55 66 10.8% 50.3%

I-65 Sb 9 45/55 56/66 4.3% 24.7%

Figure 10 provides an overall comparison of the speed compliance across the PA work
zones with automated enforcement and IN work zones without automated enforcement. In
general, the work zones with automated enforcement performed well, with nearly 12–60%
better compliance. The I-78 W (PA) and I-65 Sa (IN) work zones have comparable speed
compliance, possibly due to their longer extents (over 10 miles in length).

Sensors 2022, 22, x FOR PEER REVIEW 13 of 16 
 

 

was found to be less than 11% for I-65 Sa and less than 5% for I-65 Sb (Table 3). Only half 

of the analyzed speeds were within the speed limit tolerance on I-65 Sa, whereas for I-65 

Sb, less than a quarter of the speeds were within the speed limit tolerance. 

Table 3. Summary of average speed compliance on IN work zones without automated enforcement. 

WZ 
Length 

(mi) 

WZ Speed 

Limit 

(mph) 

WZ Speed Limit 

Tolerance 

(mph) 

Compliance with WZ 

Speed Limit 

Compliance within 

WZ Speed Limit 

Tolerance 

I-65 Sa 5 55 66 10.8% 50.3% 

I-65 Sb 9 45/55 56/66 4.3% 24.7% 

Figure 10 provides an overall comparison of the speed compliance across the PA 

work zones with automated enforcement and IN work zones without automated enforce-

ment. In general, the work zones with automated enforcement performed well, with 

nearly 12–60% better compliance. The I-78 W (PA) and I-65 Sa (IN) work zones have com-

parable speed compliance, possibly due to their longer extents (over 10 miles in length). 

 

Figure 10. Speed compliance comparison for work zones with and without enforcement. 

10. Summary and Conclusions 

This study analyzed over 322 million connected vehicle records between April and 

August 2021 to study the spatial and temporal impact of the automated work zone speed 

enforcement program on three work zones in Pennsylvania. Compliance with the speed 

limit and within a speed limit tolerance of 11 mph over the speed limit were evaluated. 

The graphical visualizations provide an overall understanding of the speed variations 

(Figure 5) and compliance (Figure 6) throughout the length of the work zone as well as 

before entering and after leaving the work zone. Reductions in speeds were found to occur 

within a mile before entering the work zone. Similarly, speeds went back up within a mile 

after passing the work zone. 

Figure 10. Speed compliance comparison for work zones with and without enforcement.

10. Summary and Conclusions

This study analyzed over 322 million connected vehicle records between April and
August 2021 to study the spatial and temporal impact of the automated work zone speed
enforcement program on three work zones in Pennsylvania. Compliance with the speed
limit and within a speed limit tolerance of 11 mph over the speed limit were evaluated.
The graphical visualizations provide an overall understanding of the speed variations
(Figure 5) and compliance (Figure 6) throughout the length of the work zone as well as
before entering and after leaving the work zone. Reductions in speeds were found to occur
within a mile before entering the work zone. Similarly, speeds went back up within a mile
after passing the work zone.

During the absence of enforcement, the average compliance with work zone speed
limits ranged from 10–25% and compliance within the speed limit tolerance ranged from
59–84%. During enforcement, the average compliance with the work zone speed limit
ranged from roughly 11–27% and compliance within the speed limit tolerance ranged from
62–84% (Table 2). Short work zones (3 miles or less) were found to have better speed limit
compliance (Figure 8) than longer work zones (10 miles).



Sensors 2022, 22, 2885 14 of 15

This study also compared and evaluated the speed limit compliance on two work
zones in Indiana without automated enforcement. Compliance with the speed limit and
within the speed limit tolerance was estimated to be only around 4–11% and 25–50%,
respectively (Table 3, Figure 10).

The connected vehicle data used in this study not only remove the need for on-site
data collection, but also provides high-fidelity samples of vehicular speeds at 1–3 s intervals.
Although the qualitative analysis presented in this study highlights discernible variations
in speeding patterns during the presence and absence of automated enforcement, there
could be several other factors that impact the driving behavior of motorists inside a work
zone. Future research will include a comprehensive statistical analysis and econometric
modeling that captures work zone geometry, work zone type (short term/long term), time
of day (day/night), weather and vehicle type (passenger car/truck) to understand the
significant factors that impact driving behavior inside the work zone.

The analysis and visualizations presented in this study highlight the reach and scalabil-
ity of this big data to facilitate a comprehensive analysis of driving behavior and speeding
compliance in the work zones. Although this is a sample dataset of all the vehicles in the
traffic stream, the methodologies and framework provide a complete understanding of the
speeding patterns across the entire length of the work zone, which agencies can use for
better planning and resource allocations.
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