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Linking synthesis and structure descriptors from a
large collection of synthetic records of zeolite
materials
Koki Muraoka 1, Yuki Sada1, Daiki Miyazaki1, Watcharop Chaikittisilp 1,2* & Tatsuya Okubo1*

Correlating synthesis conditions and their consequences is a significant challenge, particularly

for materials formed as metastable phases via kinetically controlled pathways, such as

zeolites, owing to a lack of descriptors that effectively illustrate the synthesis protocols and

their corresponding results. This study analyzes the synthetic records of zeolites compiled

from the literature using machine learning techniques to rationalize physicochemical,

structural, and heuristic insights to their chemistry. The synthesis descriptors extracted from

the machine learning models are used to identify structure descriptors with the appropriate

importance. A similarity network of crystal structures based on the structure descriptors

shows the formation of communities populated by synthetically similar materials, including

those outside the dataset. Crossover experiments based on previously overlooked structural

similarities reveal the synthesis similarity of zeolites, confirming the synthesis–structure

relationship. This approach is applicable to any system to rationalize empirical knowledge,

populate synthesis records, and discover novel materials.
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Driven by the increased computational power, the advances
in algorithms development, and the availability of a
massive amount of data, applications of machine learning

have expanded to solve human-level problems1–3, including those
in materials science4–6. The datasets in materials science casted to
the machine learning are heavily derived from theoretical calcu-
lations7–11. Once trained, the machine learning can be applied to
high-throughput screening of thousands or even millions of
material candidates. These exhaustive in silico data-mining
approaches enable us to identify the remarkable materials from
large, computationally generated database12–15. As a result, the
central research question is returning to the conventional one:
how to synthesize the targeted new materials?

Synthesis of materials can also receive the benefit from
machine learning. For example, a series of supervised classifica-
tion models was constructed from a large collection of experi-
mental data to predict synthetic consequences using a set of
synthesis descriptors16,17. This machine learning-based approach
to the experimental database enables us to extract the most sig-
nificant synthesis descriptors from chemical space with a high
dimension and massive entries, which is sometimes very hard to
be handled by humans. In particular, the pattern recognition
capability of machine learning is thought to be exceptionally
effective for the materials that are synthesized through kinetically
controlled pathways, which are difficult to be treated by
straightforward methodologies.

This holds for zeolites, a class of microporous aluminosilicate
crystals18. It is generally accepted that zeolites are formed as
metastable phases via kinetically controlled pathways18–20. Zeo-
lites having different crystalline phases can be obtained by only
slight change of the synthesis descriptors, such as chemical
compositions of raw materials, heating time, heating temperature,
and types of organic molecules called organic structure-directing
agents (OSDAs)21,22. Consequently, it is hardly possible to
describe the complex energy landscape to identify the crystalline
phases of the zeolite products for a given set of synthesis
descriptors by theoretical calculations and experiments.

Despite the long history of zeolite synthesis18,19, the causal
relationship between synthesis descriptors and the resulting
zeolite products remains unclear. As shown in Fig. 1b, the phase
change between zeolites is often dominated by multiple synthesis
descriptors, making the drawing of boundaries on two-
dimensional kinetic phase diagrams difficult22. Even when
focusing on a single synthesis descriptor, other factors can be
changed through the solution chemistry23,24; therefore, general
relationships between structure descriptors and synthesis
descriptors are difficult to elucidate22. Another difficulty arises in
the extraction of structure descriptors. One of the common
strategies to develop the structure descriptors is to decompose the
chemical topology into a collection of building units25. In the case
of metal-organic frameworks (MOFs), it is relatively simple
because MOFs are constructed from distinct organic linkers and
inorganic units26. On the other hand, the frameworks of zeolites
are built solely from a collection of TO4/2 (T is tetrahedral atoms
such as Si and Al) primary building units, making the identifi-
cation of structure descriptors inconclusive. Nevertheless, several
definitions of secondary building units27–29 have been proposed
by focusing on the common motifs observed in different zeolite
structures, such as those shown in Fig. 1c and Supplementary
Fig. 1. The correlations between the structure similarity and the
synthesis conditions have been observed in several cases30–32,
though the analyses of precursor species suggest that the building
units are not necessarily present in the intermediate mixtures33,34.

To correlate synthesis descriptors and structure descriptors, a
series of experimental data (Supplementary Table 1) is compiled
with several synthesis descriptors covering a wide range of the

chemical space in the OSDA-free synthesis of aluminosilicate
zeolites (Fig. 1a). The resulting dataset contains 686 synthesis
conditions. The products include 22 crystalline phases (Supple-
mentary Fig. 2) and an amorphous solid. The pattern recognition
capability of machine learning algorithms is used to rationalize
the empirical and physicochemical knowledge behind the large
number of experimental records. Further, graph theory is
employed to identify structural similarities in zeolite structures,
reflecting similarity in the synthesis by clustering synthetically
similar zeolites based on similarities in the structure descriptors
(Fig. 1d). Crossover experiments between structurally related
materials reveal previously overlooked synthesis similarities,
demonstrating the broad applicability of the synthesis–structure
relationship.

Results
Construction of machine learning models. To link the synthesis
descriptors and structure descriptors, it is necessary to focus on
the primary descriptors that are closely related to synthetic
consequences35. This problem can be formulated to find the
importance of the synthesis descriptors (x) and the structure
descriptors (w) in Fig. 1, in which x is the weight that effectively
separates two different domains in the weighted chemical space,
while w is calculated to have the proper weight to reproduce the
similarity (or distance) between zeolite structures in the weighted
chemical space (Fig. 1).

Chemical compositions, which are the most significant
synthesis descriptor for zeolite phase selections22, are typically
expressed as molar ratios relative to one or more chemical
components. To find the most appropriate chemical component
by which the other components are to be divided (i.e., the
denominator), various machine learning models were trained to
predict the synthesis results from synthesis descriptors including
temperature, heating time, and chemical composition with
different standard denominators. As summarized in Supplemen-
tary Table 2, the extreme gradient boosting (XGBoost) and
random forest models outperformed the other models, with test
accuracies of 75–80%. Among the best combinations, the
XGBoost model with (Si+Al) as the standard denominator
was selected because its hyperparameter tuning is computation-
ally efficient and (Si+Al) represents the total amount of
tetrahedral atoms in the synthesis system.

In addition to chemical compositions, heating temperatures,
and heating times, aging conditions30 and sources of reactants36

have been known to highly affect the zeolite synthesis. We
encoded these variables into one-hot vectors and added to the
synthesis descriptors for the construction of machine learning
models. As shown in Supplementary Table 3, additional
descriptors did not improve the test accuracy, except that the
application of the random forest on all synthesis descriptors
showed 82% accuracy. Considering the little improvement and
the lack of detailed conditions in early literature22, we decided to
exclude the one-hot vectors. Although this is beyond the scope of
this research, our developed machine learning models based on
XGBoost can predict not only synthesis results but also the
probability associated with them as it can be used to quantify the
likeliness of the formation of specific zeolite in a given synthesis
condition.

Not all attempts to crystallize zeolites are successful. Improper
heating conditions and/or chemical compositions can produce
amorphous aluminosilicates. To examine the relationships
between the synthesis descriptors within the synthetic ranges
that crystallize zeolites, we calculated the correlations as shown in
Fig. 2a. Positive or negative correlations signify a pair of synthesis
descriptors that is mutually dependent in the applicable domain

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12394-0

2 NATURE COMMUNICATIONS |         (2019) 10:4459 | https://doi.org/10.1038/s41467-019-12394-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


for synthesis of zeolites. Positive correlation indicates that paired
descriptors typically change in the same direction (either increase
or decrease) to successfully crystallize zeolites, while negative
value means descriptors change oppositely.

The strongest correlation was observed between Na/(Si+Al)
and M/(Si+Al), suggesting that the most frequently used cation
is Na probably due to its ability to crystallize a variety of zeolite
structures. Other sources of alkali metal cations including Li/
(Si+Al) and K/(Si+Al) showed very weak negative correlation,
confirming the importance of Na in the dataset. Relatively strong
correlations were observed between M/(Si+Al) versus tempera-
ture, Si/(Si+Al), and H2O/(Si+Al). The negative correlation
between M/(Si+Al) and temperature is reasonable considering
that the increase of one of them generally enhances the kinetics of
synthesis. The conditions with too high alkalinity and too high
temperatures are expected to be beyond the appropriate domain
of chemical space for crystallization of zeolites, while those with
too low alkalinity and too low temperatures are sometimes not
sufficient to foster the dissolution and polymerization of reactants
and intermediates, respectively.

The negatively correlated relation between M/(Si+Al) and Si/
(Si+Al) can be described by the solubility of Al sources. In
typical conditions, Al sources tend to exist in the solid or gel
phase22,30 throughout the synthesis due to its poor solubility in
alkaline aqueous media. Therefore, the balance between the
amounts of Al and M must be critical because Al sources must be
dissolved, at least partially, to be involved in the reactions
forming aluminosilicates, and the alkalinity has to be not too high
to allow the formation of the crystallized products. The positive
correlation between M/(Si+Al) and H2O/(Si+Al) suggests that
the amount of hydroxide relative to the amount of water must be
considered, indicating the effects of solution chemistry of silicates
and aluminates in the crystallization of zeolites. As remarked
here, chemically reasonable insights can be obtained from the
general correlations among synthesis descriptors.

We also mapped the dataset by selecting sets of the synthesis
descriptors as shown in Fig. 2b and c. In the dataset, synthesis of
zeolites covered a wide range of temperatures from ambient
temperature to 230 °C (Fig. 2b). In the lower temperature range,
the most frequent temperatures were ambient temperatures,
60 °C, and 100 °C, while at higher temperatures the distribution
of data was relatively uniform. The fastest synthesis in the dataset
was the crystallization of LTA at 200 °C for 30 min37, while the
longest synthesis took more than 2 months with relatively low
temperature of 64 °C38, suggesting the diverse time scale in the
dataset. Besides these outliers, most of the syntheses were carried
out within 3 weeks as can be seen in the distribution of heating
time (Fig. 2b). The negative correlation between M/(Si+Al) and
Si/(Si+Al) is confirmed in Fig. 2c. The plot revealed that
the majority of the zeolite synthesis was done with the range of
Si/(Si+Al) > 0.5 and M/(Si+Al) < 3. Distribution of the dataset
on these synthesis descriptors for each crystalline phase is shown
in Supplementary Fig. 3.

Interpretation of the model and thermodynamic insights.
Machine learning models such as XGBoost and random forest
can be difficult to interpret because they are composed of multiple
classifiers. One approach for interpreting these black box models
is to derive the importance of the descriptors. The importance of
the synthesis descriptors calculated from the XGBoost model was
high for Si/(Si+Al), Na/(Si+Al), heating time, and H2O/(Si+
Al) (Supplementary Fig. 4). Another interpretation approach is
the application of interpretable models including decision trees
for trained models16. The XGBoost model with the best perfor-
mance (test accuracy= 80%) was interpreted as the decision tree
(test accuracy= 76%) shown in Fig. 3. The syntheses were first
divided based on the Na/(Si+Al) ratio. Zeolite structures
obtained with high Na/(Si+Al) included FAU, LTA, and SOD,
while lower Na/(Si+Al) mixtures preferred the formation of
structures such as MFI, MOR, and LTL. The next boundary for
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the high Na/(Si+Al) groups was defined at the Si/(Si+Al) ratio
of 0.5, which corresponds to the Si/Al ratio in the synthesis
mixtures of 1 (note that Si/(Si+Al) was the actual synthesis
descriptor used in the machine learning models, but to simplify
the discussion Si/AlReactant is used hereafter, as this is the value
typically described in the literature). This is interesting because
the lowest Si/Al in solid zeolite products (Si/AlProduct) is also 1
owing to Löwenstein’s rule39, which forbids the formation of
Al–O–Al bonds. As a result, the chemistry of Si-rich and Al-rich
conditions is substantially different. The fact that the
machine learning model built solely from experimental data can
acquire such chemically reasonable knowledge proves the effec-
tiveness of the method used here.

The three major phases observed in the branches with Si/
AlReactant > 1.0 were FAU, GIS, and ANA, which were separated
by the synthesis temperature. FAU was the most dominant phase
at the lowest temperature, while ANA is dominated at the highest
temperature. This is in line with the phase change from FAU to
GIS to ANA described based on Ostwald’s step rule40—a
commonly observed phenomenon in crystallization processes,

in which multiple metastable phases are formed sequentially until
reaching a stable phase20,41. Owing to the difficulty in direct
evaluation of thermodynamic properties of zeolites, a previous
study40 estimated the thermodynamic stability of different
zeolites by comparing the density of zeolites in their pure-silica
compositions and correlating it with their enthalpy of forma-
tion20. This kind of interpretation, however, has to be taken very
carefully because (i) the thermodynamic properties and density of
zeolites depend on the compositions and atomic configurations42,
(ii) the calorimetric relationship between transition enthalpy and
density is rather qualitative20, and (iii) the thermodynamic
stability should be quantified by the Gibbs free energy rather than
enthalpy20,41. Instead of using the density as the descriptor of the
thermodynamic stability, the Metropolis Monte Carlo method43

was employed to estimate the Gibbs free energies by considering
the effects of the composition and atomic configuration (see
computational details in the section “Methods”). The Gibbs
free energies of zeolites with Si/AlProduct= 2 depicted in Fig. 4a
are consistent with Ostwald’s step rule, exhibiting the FAU-to-
GIS-to-ANA transformation from lower to higher densities40.
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FAU is the least stable structure that progressively transforms to
GIS, and finally ANA.

Ostwald’s step rule was also used previously to explain the
LTA-to-SOD-to-CAN transformation by elevating heating tem-
perature and/or extending heating time40. The temperature
dependence of the LTA-to-CAN transformation was described
in the decision tree, whereas SOD was separated based on Na/
(Si+Al). According to the Gibbs free energies for Si/AlProduct= 1
(Fig. 4b), LTA exhibited a higher energy than SOD and CAN,
implying the formation of LTA in the early stage of crystallization
according to Ostwald’s step rule. The Gibbs free energy of CAN,
however, was higher than that of SOD, contradicting the previous
discussion based on their densities40. These results suggest that
the LTA-to-SOD and LTA-to-CAN transformations proceeded
according to Ostwald’s step rule, while SOD-to-CAN may not.
Compared to the wide synthetic range yielding the FAU-to-GIS-
to-ANA transformation, the range of phase transformations in

Al-rich conditions seems to be narrower40. Especially, the SOD-
to-CAN transformation typically involves incomplete crystal-
lization and/or impurity40,44, suggesting a limited applicability of
the SOD-to-CAN transformation. It is noteworthy that our
calculations did not consider water that could have major impact
on the stability of Al-rich zeolites, which should be taken into
account for further studies.

The right side of the decision tree in Fig. 3 satisfied Na/(Si+
Al) ≤ 0.57. As discussed above, the Al/(Si+Al) and M/(Si+Al)
ratios were positively correlated in the chemical space that can
yield zeolite, implying the smaller amount of Na/(Si+Al)
requires the reduction of Al/(Si+Al) for the successful crystal-
lization. As expected, the right side of the decision tree involved
the conditions with higher Si/AlReactant. Akin to the left side, the
second boundary employed Si/AlReactant as the descriptor, again
confirming the importance of Na/(Si+Al) and Si/(Si+Al)
(Supplementary Fig. 4). HEU and MER were obtained as the
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major products at 2.4 < Si/AlReactant ≤ 5.0, depending on K/(Si+
Al). At Na/(Si+Al) ≤ 0.57 and Si/AlReactant ≤ 2.4, EDI was the
dominant phase. Note that in this branch other metal cations,
such as Li and Tl are required to crystallize zeolites partly due to
the insufficient amount of Na.

At Na/(Si+Al) ≤ 0.57 and Si/AlReactant > 5.0, MFI or MOR were
obtained as the major products in the absence of K (Fig. 3).
According to the empirical knowledge, conditions with high Si/
AlReactant and low alkalinity favor the formation of zeolites
containing five-membered ring units (5r, see Supplementary
Fig. 1)31,42. The extraction of such empirical knowledge without
providing any structural or topological information validates our
approach. The boundary between MFI and MOR was drawn at Si/
AlReactant= 25, which is consistent with previous reports, where
high-silica conditions favored MFI while low-silica conditions
tended to produce MOR in OSDA-free conditions31,42,45. We tried
to rationalize this phase boundary by calculating the Gibbs free
energy at different Si/AlProduct (Fig. 4d). The results suggest the
thermodynamic stability of MFI over MOR at higher Si/AlProduct,
which is in accordance with the higher density ofMFI under a pure-
silica composition45. However, when Al and Na increase, MOR is
stabilized. This transition occurred at a Si/AlProduct of 8–11, which is
highly consistent with the experimental results31,45. Although
synthesis using zeolites as reactants is out of scope for the current
dataset (see the “Methods” section), a very recent report onMFI-to-
MOR transformation starting from FAU as the reactant is
remarkable46. As is commonly observed in seed-directed, OSDA-
free synthesis of zeolites, Si/Al decreases upon progress of reaction31.
In the recent report46, Si/AlReactant= 31 decreased to Si/AlProduct=
16 (MFI), and then Si/AlProduct= 6 (MOR), which is consistent with
the relationship between structure versus composition in Fig. 4d,
again indicating the reliability of our computational method. It is
noteworthy that this recent report also suggested the limitation of
zeolite density to predict Ostwald’s step rule for certain zeolite
transformations (vide supra).

When K was present at relatively high Si conditions (Si/
AlReactant > 5.0), LTL or ERI–OFF were predominant (Fig. 3). The
increased alkalinity derived from the Na and K can dissolve a
much greater amount of silicates, thereby yielding a lower Si/
AlProduct. As a result, zeolite structures without 5r units, such as
LTL and ERI–OFF, can be obtained (see also Supplementary
Fig. 12). LTL, ERI, and OFF are structurally similar because they
share d6r and can units (Supplementary Fig. 12a). Interestingly,
structural similarity was also observed in the neighboring branch,
where MFI and MOR share mor units (Fig. 4c, d). Such structural
similarity has been used as a guideline in seed-directed zeolite
syntheses31. Supplementary Table 4 lists the chemical compositions
of the reactants in seed-directed, OSDA-free synthesis of zeolites,
in which the zeolite products obtained with and without seed
crystals are different but contain common building units. When
these conditions are applied to the decision tree in Fig. 3,
interestingly, all of the seed-directed syntheses containing this
structural similarity fall on the branches of MFI, MOR, LTL, or
ERI–OFF. It should be noted that these seed-directed syntheses
were not used to train the machine learning models. Under these
conditions of Na/(Si+Al) ≤ 0.57 and Si/AlReactant > 5.0, the
structural similarity may be more pronounced in determining
the zeolite products.

We further analyzed the possible Al distributions in the mor
and d6r units. As is known, in addition to the Al–O–Al bond39,
the Al–O–Si–O–Al sequence is not likely to be present in both
units because they can energetically destabilize the zeolite
structures, which is called as Löwenstein’s rule and Dempsey’s
rule, respectively47–49. All possible configurations of Al in the mor
and d6r units when Al was introduced as much as possible while
avoiding the formation of Al–O–Al and Al–O–Si–O–Al bonds

are present in Supplementary Fig. 13. In both units, the average
Si/Al of these atomic configurations were 5, identical to the
Si/AlReactant in the decision boundary. At Si/AlReactant > 5.0, the
mor and d6r can be formed without forming Al–O–Al and
Al–O–Si–O–Al bonds, while these unstable atomic sequences are
inevitable at Si/AlReactant < 5.0. Although the actual Al distribution
is not random but biased48,50,51, the topological characteristics
inherent in the mor and d6r do not seem to be unconnected to the
decision boundary at Si/AlReactant= 5.0.

We hypothesize that conditions with Na/(Si+Al) > 0.57 are
too harsh for survival of certain crucial precursors, which can
be aluminosilicate oligomers and nanoparticles. To validate this,
we performed solution-state 29Si NMR analysis of transparent
sodium silicate solution having NaOH/Si= 0.54 and NaOH/Si=
0.60 (see Supplementary Fig. 14). NMR analysis for OH/Si= 0.60
detected three signals that can be assigned to Q2 ((SiO)2Si(O−)2),
Q3 ((SiO)3Si(O−)), and Q4 ((SiO)4Si) Si species. The sharp
signals for Q2 and Q3 are derived from small silicate species,
while the broad peak for Q4 is indicative for formation of larger
oligomers and/or nanoparticles. In addition to these three signals,
the sodium silicate solution for OH/Si= 0.60 gave sharp signals
for Q0 (Si(O−)4)) and Q1 ((SiO)Si(O−)3), indicating that larger
silicate species decompose into monomer and dimer, respectively.
Although actual synthesis temperatures and chemical composi-
tions differ depending on synthesis conditions, Na/(Si+Al)
~0.57, appeared as a criterion in the decision tree (Fig. 3), is
seemingly the boundary that decides what kind of soluble silicate
species are dominant in liquid phase of a synthesis mixture.
Collectively, the structure similarity in the synthesis clearly exists
in the particular synthetic range, although it is not necessarily
observed outside the applicable domain.

Construction of a similarity network for zeolites. The
machine learning models were solely trained for the synthesis
descriptors, and the results can be used to rationalize physico-
chemical, structural, and empirical insights including solubility,
Ostwald’s step rule, Löwenstein’s rule, and structural similarity
(vide supra). From the viewpoint of the structural similarity,
some building units, including mor and d6r, are likely more
important than others. Indeed, not all of the building units should
be equally significant, but some should correspond to critical
motifs for the nucleation and growth of the crystals35. Because
direct observation of these critical building units, if they exist, is
technologically demanding, prioritization of the building units
through fitting to the experimental results35 is the most natural
approach. Thus, a numerical optimization algorithm was
employed to transfer the similarities found in the multi-
dimensional chemical space composed of the synthesis descrip-
tors to the structural similarity of the crystals.

The synthesis similarity for a pair of zeolites can be quantified
based on the center of the synthesizable domain for each zeolite
(Fig. 1b and Supplementary Table 5). Variations in Si/AlReactant
and Na/(Si+Al) were more influential than those of other
synthesis descriptors upon calculating the distances between the
synthesis conditions because the standardized synthesis descrip-
tors were weighted by the importance in the XGBoost
(Supplementary Fig. 4). The structural similarity of the zeolite
structures was defined by one-dimensional vectors, often called
fingerprints52, expressing the presence or absence of building
units. Fingerprints can be used to predict the targeted features of
chemical entities52 and automate retrosynthesis53,54. The most
appropriate weighting (i.e., importance) of the building units that
could excellently approximate the synthesis similarity was
calculated by solving the optimization problem (described in
the “Methods” section). As shown in Supplementary Fig. 15,
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the important building units with a high weight and small
standard deviation were sod, d8r, mor, and d6r, which are
consistent with the structural similarities observed in the decision
tree (Fig. 3).

To obtain additional insights, the structural similarities
between all of the crystal structures of zeolites and zeotypes55

were calculated using the weighted fingerprint. The structural
similarity is essentially the proximity in the multidimensional
space composed of the structure descriptors (Fig. 1c)56. A
similarity network of the zeolite structures was constructed by
connecting structurally similar crystalline topologies as shown in
Fig. 5, in which the layout of the nodes reflects the structural
similarity57. To partition the network into sets of communities, a
clustering algorithm was applied, which solely reflects the
connections and their weights58. The clustering identified seven
communities, which were colored and labeled as communities
I–VII (see Fig. 5).

Most of the constituent structures of community I were relatively
Al-rich (typically, Si/AlProduct < 3) zeolites. Lower part of commu-
nity I was characterized by the common building unit sod scoring
the highest importance (Supplementary Fig. 15). Some of the
structures in the lower part of this sub-community (Ilower) only
occur naturally as minerals and have never been synthesized in the
laboratory55. On the other hand, the most important building unit
in the upper part of community I (Iupper) was d6r, demonstrating its
significance in the decision tree (vide supra). Many structures in this
sub-community Iupper were categorized as the so-called ABC-
6 stacking family. In this sub-community, AEI, AFX, CHA, EAB,
ERI, GME, LEV, OFF, and SFW can be synthesized as
aluminosilicate zeolites with OSDAs (Supplementary Table 6). In
addition, several structures in sub-community Iupper can be formed
in phosphate-based compositions, e.g., as aluminophosphate
(AlPO4) zeotypes, including AEI, AFT, AFX, AFV, AVL, CHA,
ERI, LEV, LTL, SAS, SAT, SAV, SBS, and SBT.
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The phosphate-based zeotypes in community I were connected
to structures in community II, which is dominated by other
phosphate-based structures. In particular, a sub-community in
community II consisting of AEL, AET, AFI, AFO, ATV, PSI,
SAF, and VFI possessed high structural similarity arising from
the common afi and bog units (see Supplementary Fig. 1). Similar
to d6r, the structures of afi and bog units built from 4r and 6rmay
have structural compatibility with aluminophosphates. The
constituent structures of community III were also phosphate-
based structures but did not contain 6r except for OWE.
Community IV reflected the importance of the d8r-containing
RHO and PAU structures, which are considered as members of
the so-called RHO-family32. The structural similarity of the
RHO-family provided a guideline for the successful synthesis of
new zeolites in this family, including PST-20 and PST-2532,
remarkably demonstrating the synthesis–structure relationship.
Inclusion of computationally generated hypothetical structures
into the similarity network can give further insights for their
synthesis and may lead to the discovery of new zeolites, although
this is beyond the scope of the current study.

The major building units in community V were bre and sti.
One of the interesting features of this community was that it
contains naturally occurring aluminosilicate zeolites, including
BOG, BRE, HEU, TER, and STI. More importantly, all of the
structures in this community had topologically multidimensional
channels in two or more directions59, even though rings larger
than 6r were not considered as the structure descriptors in this
study. Furthermore, all of the structures except TER and BRE
have interconnected channels with different pore apertures (see
Supplementary Table 7). The fact that community V compiled
such structures suggests that bre and sti are likely related to the
formation of multipore zeolites.

Community VI was dominated by high-silica zeolites and
zeotypes containing 5r. Insights can be acquired from the locations
of the nodes in Fig. 5. For example, CAS–NSI and STF–SFF are
closely related structures constructed with different stacking
sequences of layer-like building units60,61. The structures clustered
at the bottom of community VI (DDR, DOH, MEL, MEP, MFI,
MRE, MTF, MTN, MTF, MTT, NON, SGT, and TON) are all
obtained as pure-silica zeolites from Si source, water, and OSDAs
with hydroxides, demonstrating their synthesis similarity. Commu-
nity VII was composed of the so-called unfeasible structures
possessing 3r, lov, and/or vsv units that have proven to be too
strained for silicate structures62. The crystallization of such highly
strained structures requires atypical tetrahedral atoms, such as Be,
Zn, and Ge to relax the structural distortion.

Application of the similarity network to zeolite synthesis. To
provide further evidence for the applicability of the similarity net-
work, crossover experiments of zeolite syntheses using OSDAs were
performed. Among structurally related zeolites, the EEI–EUO–NES
zeolite family as well as IHW were selected (Fig. 6), as they were
located in community VI (Fig. 5) with close proximity. The struc-
tural similarity between EEI, EUO, and NES has been previously
recognized owing to their similar layered motifs and common
building units63. Nevertheless, IHW64 has not been considered as a
member of this zeolite family, and its synthesis conditions are
notably different from the other structures (see Supplementary
Table 8). The biggest difference in the synthesis of IHW compared
to the other structures is the use of fluoride media, which leads to
substantially different chemistry compared to its hydroxide coun-
terpart. The crossover experiments were carried out by mimicking
the typical synthesis conditions for EEI65, EUO66, and NES67, but
replacing the OSDAs originally used (1–3) with 4, which was
reported to crystallize IHW64 (see Fig. 6).

Although the explored three conditions have notably similar
Si/(Si+Al), OSDA/(Si+Al), and H2O/(Si+Al) ratios, the other
parameters including type of inorganic cations, heating condi-
tions, and used chemicals are different, resulting in different
products (Table 1). The employment of 4 with the synthesis
conditions for NES yielded a brown suspension, implying that
Hoffman degradation of 4 occurred during hydrothermal
treatment at 180 °C for 406 h. The NES synthesis conditions
seemed to be too harsh for 4 and hindered the involvement of 4
in the crystallization of zeolites. The relatively long heating time
seemingly led to the formation of α-quartz, as indicated by the
powder XRD pattern in Fig. 6f. The synthesis conditions for EUO
in the presence of 4 resulted in the formation of a brown
suspension, again suggesting the degradation of 4. The XRD
pattern of the solid product confirmed the presence of a trace
amount of MOR. Indeed, the decision tree in Fig. 3 predicts the
formation of MOR under these conditions. On the other hand,
the lower temperature in the typical synthesis conditions for EEI
was apparently appropriate for 4, judging from the resulting
white product that was identified as EUO (see the XRD pattern in
Fig. 6f). The fact that the same OSDA can direct the formation of
structurally similar IHW and EUO zeolites by mimicking the
synthesis conditions for EEI confirms the synthesis similarity of
the structures and the applicability of the synthesis–structure
relationship beyond the OSDA-free synthesis of zeolites.

Discussion
Previous studies have struggled to provide a clear description of the
synthesis–structure relationship in materials, such as zeolites that
are formed through kinetically controlled pathways. This study
takes advantage of machine learning techniques to recognize pat-
terns hidden in the experimental data. The knowledge extracted
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from the machine learning models rationalizes physicochemical,
structural, and empirical insights into the zeolite chemistry. Proper
synthesis descriptors are identified from the training with quanti-
tative importance, which is subsequently transferred to recognize
the primary structure descriptors. Based on the synthesis and
structure descriptors with rationalized importance, a similarity
network can be constructed by including the zeolite structures
outside of the dataset used for machine learning, demonstrating the
broad applicability of the approach. The similarity map revealed
previously overlooked structural similarities, which were verified
with crossover experiments. The current approach can be applied to
any materials, including those formed through kinetically controlled
pathways. The guided synthesis of materials based on the
synthesis–structure relationship can be used to not only rationalize
the known syntheses and discover novel materials, but also to
increase the size and diversity of the available datasets, which are
remarkably important for improving the linkages between synthesis
descriptors and structure descriptors.

Methods
Dataset. Although several zeolites have been synthesized in the presence of seed
crystals, OSDAs, and fluoride, the present study collected experimental data only
from OSDA-free syntheses of aluminosilicate zeolites in hydroxide media without
seeds. Records of syntheses that resulted in multiple crystalline phases under the
same conditions were excluded, with a few exceptions. Synthesis of EMT zeolite
under OSDA-free conditions often yields FAU zeolite as an impurity. Considering
the limited reports of OSDA-free synthesis of pure EMT68 in the dataset, both
EMT and EMT–FAU intergrowths were regarded as EMT–FAU. For similar
reasons, the records for synthesis of TON and mixtures of TON and cristobalite
were regarded as TON. Syntheses of ERI and OFF were expressed as ERI–OFF
because they are typically formed as intergrown crystals in OSDA-free synthesis.
ABW, EON, GME, LTN, and MAZ were omitted from the dataset because there
are only few synthetic reports of pure phase formation. Literature used as the data
source is summarized in Supplementary Table 1. It largely relies on a review by
Oleksiak and Rimer22 that exhaustively summarized reliable literatures. We also
added several uncovered experiments, which were tested by machine learning
techniques used in this study for consistency with the review.

Machine learning. The dataset was divided into a training set (80%) and a test set
(20%) to tune and validate the machine learning models. Supervised
machine learning models including decision tree, random forest, and support
vector machine models were constructed using scikit-learn69. Five-fold cross-
validation was used to train the machine learning models and to optimize their
hyperparameters with a grid search of the candidate values presented in Supple-
mentary Tables 9–11. The models based on XGBoost were constructed using its
Python interface70. The hyperparameters of XGBoost were tuned with Bayesian
optimization using Gaussian Processes71 for the candidate values listed in Sup-
plementary Table 12. Continuous features were standardized upon training and
prediction of the machine learning models.

Metropolis Monte Carlo simulation. The Metropolis Monte Carlo method at a
finite temperature43 was employed to estimate the Gibbs free energies of zeolites.
Zeolite models with specified Si/AlProduct having Na+ were first created by ran-
domly placing Al and counter cations while avoiding the formation of
Al–O–Al42,48 from idealized crystal models55. Then, the structures were optimized
using an interatomic potential tuned for zeolites72 with GULP software73. After
optimization for 10 steps, the randomly chosen AlO4 and its corresponding Na+

cation were swapped with another randomly selected TO4(Na+). If the energy
decreased following the structure optimization for 10 steps, the swap was accepted.
Otherwise, the swap was accepted with the following probability:

P ¼ exp � ΔU
kBT

� �
ð1Þ

where −ΔU is the difference in energy before and after swapping, and kB is the
Boltzmann constant. The temperature (T) was 300 K. This cycle of swapping and
structure optimization was repeated 1000 times. The Gibbs free energy of a
zeolite with a given composition was estimated by applying the following
equation:

G ¼ �kBT ln
X
i

exp � Ei
kBT

� �" #
ð2Þ

where Ei is the energy of the ith atomic configuration. Mean and standard
deviation of G were calculated from five independent simulations.

Analyses of synthesis and structural similarities. Sequential least-squares
programming74 was used to solve the following optimization problem:

minimizewi

X
i

X
i≠j

xri � xrj
� �2

� wiui � wjuj
� �2

� �
ð3Þ

where i iterates over all of the crystal structures of interest, x is the importance of
the synthesis descriptor computed by XGBoost, ri is a representative value of the
synthesis descriptors in structure i, ui is the binary vector expressing the presence
or absence of the building units in structure i, and wi is the weight of the building
units. The central synthesis condition, ri, is the geometric median of the synthetic
reports for each zeolite structure in the standardized chemical space weighted by its
importance in XGBoost.

Crystal structures of zeolites were retrieved from the database55 excluding
those with defects. A complete list of the building units is presented in
Supplementary Fig. 1. Rings larger than a six-membered ring (6r) were excluded
because their large degree of freedom allows for diverse bond angles and
distortions in the crystal structures. Subgraph isomorphism was performed using
the VF2 algorithm75 to detect building units in the crystal structures. The unit
cells were expanded to 2 × 2 × 2 super cells. For the topological analysis,
tetrahedral atoms were regarded as nodes and bridging oxygen atoms were
regarded as links. Structural similarities between crystal topologies were
calculated with the Tanimoto similarity index56 using the presence (or absence)
of building units as the fingerprint. The fingerprint was weighted by the
corresponding importance, wi. Unknown weights of building units were filled
with the average of the known weights. The similarity network was constructed
by linking a pair of crystals with a Tanimoto similarity of more than 0.7. The
largest connected network was partitioned by modularity optimization58 and
visualized using the ForceAtlas2 algorithm57.

Chemical synthesis. See details in Supplementary Methods.

Data availability
The data that support the findings of this study are available within the Article and
its Supplementary Information, or from the corresponding authors on reasonable
request.
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