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ABSTRACT

De novo mutations (DNMs) have been shown to be
a major cause of severe early-onset genetic disor-
ders such as autism spectrum disorder and intel-
lectual disability. Over one million DNMs have been
identified in developmental disorders by next gen-
eration sequencing, but linking these DNMs to the
genes that they impact remains a challenge, as the
majority of them are embedded in non-coding re-
gions. As most developmental diseases occur in the
early stages of development or during childhood,
it is crucial to clarify the details of epigenetic reg-
ulation in early development in order to interpret
the mechanisms underlying developmental disor-
ders. Here, we develop EpiDenovo, a database that is
freely available at http://www.epidenovo.biols.ac.cn/,
and which provides the associations between embry-
onic epigenomes and DNMs in developmental dis-
orders, including several neuropsychiatric disorders
and congenital heart disease. EpiDenovo provides
an easy-to-use web interface allowing users rapidly
to find the epigenetic signatures of DNMs and the ex-
pression patterns of the genes that they regulate dur-
ing embryonic development. In summary, EpiDenovo
is a useful resource for selecting candidate genes
for further functional studies in embryonic develop-
ment, and for investigating regulatory DNMs as well
as other genetic variants causing or underlying de-
velopmental disorders.

INTRODUCTION

During early mammalian development, many significant
epigenetic events occur, including the alteration of chro-
matin modification and chromatin accessibility, and the reg-
ulation of transcription factors (1,2). Epigenetic modifica-
tions, such as histone methylation and acetylation, can act
as regulatory switches for gene transcription during embry-
onic development, and their dysfunction can give rise to de-
velopmental abnormalities (3,4). For example, altered epi-
genetic regulation in early development has been shown to
be associated with schizophrenia (5). Thus, understanding
the correlations among transcriptome and epigenome dur-
ing early development will help in interpreting the underly-
ing mechanisms that lead to neurodevelopmental disorders
and to other developmental diseases (6).

De novo mutations (DNMs) in coding regions have al-
ready been shown to be a major cause of severe early-
onset genetic disorders, such as autism spectrum disorder
and intellectual disability (7). In addition, DNMs in reg-
ulatory elements can cause neurodevelopmental disorders
(8), such as autism and schizophrenia (6–10). In congeni-
tal heart disease, another kind of developmental disease, a
marked excess of DNMs was observed in the genes involved
in the production, removal or reading of H3K4 methylation
(H3K4me) (11). Furthermore, a non-coding genetic vari-
ant, a distal regulator of endothelin-1 gene expression, is as-
sociated with five vascular diseases (12). These studies indi-
cate the crucial roles of DNMs in regulatory elements (13) in
congenital heart disease. Additionally, high-resolution 3D
maps of chromatin interactions during early human corti-
cal development have identified hundreds of genes that in-
teract physically with enhancers gained in humans, many of
which are implicated in mediating the expression of quan-
titative trait loci (eQTL), and are associated with human
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Figure 1. Workflow to identify regulatory de novo mutations involved in embryonic epigenetic regulation by EpiDenovo.

cognitive function (7). Taking together, DNMs occurring
in regulatory regions might interrupt gene regulation and
induce developmental malformations (7). However, the as-
sociation between epigenetic regulation and DNMs in de-
velopmental diseases is rarely understood.

Here, we present a database, named EpiDenovo (Figure
1), which is a platform for exploring the associations be-
tween embryonic epigenetic regulation and DNMs in devel-
opmental disorders, including neuropsychiatric disorders
and congenital heart disease. The main intention of Epi-
Denovo is to investigate early developmental epigenomes
and transcriptomes that are related to DNMs in develop-
mental disorders, as certain DNMs could interrupt epige-
netic regulation and gene expression during early embry-
onic development and consequently induce the symptoms
of developmental diseases and disorders (14). Consider-
ing stage-specific gene activation is preserved during pre-
implantation development in both humans and mice (15),
we have also integrated mouse embryonic epigenomes to ex-
pand the interpretive information of genes associated with
DNMs. The present study provides a framework to help un-
derstanding of the impact of DNMs on early development
and highlighted the novel mechanisms underlying the onset
of developmental disorders.

DATA COLLECTION AND PROCESSING

Data sources

EpiDenovo is a comprehensive, annotated resource
of DNMs in developmental disorders, based on the
epigenomes of publicly available chromatin immunoprecip-
itation sequencing (ChIP-seq) and chromatin accessibility

data during the embryonic development of mammals,
including humans and mice. Samples collected include
DNMs from denovo-db (16) and epigenomes from Se-
quence Read Archive (SRA) in the NCBI Gene Expression
Omnibus (GEO) database (17). The following metadata for
each sample was systematically annotated: assay, factor,
species, group, cell state, characteristics, Experiment Acc.
ID, Run Acc. ID, library layout and PMID. In total, we
curated 1415 high-throughput sequencing datasets for
mammalian embryonic development from GEO, and 283
888 DNMs in developmental disorders from denovo-db
(16). In terms of embryonic epigenomes, our database
contained 875 RNA-seq (Supplementary Table S1), 181
ChIP-seq (Supplementary Table S2), 43 ATAC-seq (Sup-
plementary Table S3), 19 DNase-seq (Supplementary Table
S4) and 297 Hi-C (Supplementary Table S5) datasets. In
terms of DNMs, we curated 283 888 DNMs, including
228,925 DNMs in autism (ASD), 17 717 DNMs in de-
velopmental disorders (DD), 3903 DNMs in congenital
heart disease (CHD), 2575 DNMs in intellectual disability
(ID), 1654 DNMs in schizophrenia (SCZ), 1035 DNMs in
epilepsy (EE), 78 DNMs in neural tube defects (NTD) as
well as DNMs in other diseases. The distribution of DNMs
in different gene elements is listed in Supplementary Table
S6. We found that 82 385 (35.98%) and 142 572 (62.28%)
of DNMs were located in the intergenic and intron regions,
respectively, indicating that, in developmental disorders,
the vast majority (98.26%) of DNMs occur in non-coding
regions.
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Figure 2. Web-interface of EpiDenovo. The snapshot of searching result for epilepsy related gene KCNMA in EpiDenovo database.

Data downloading and preparation

All raw data deposited in SRA format were downloaded
from GEO using Aspera and converted into the FASTQ
format using the fastq-dump of SRAToolkit t from NCBI.
Sequencing adapters and low quality sequences were
trimmed using the Trim Galore program of Babraham
Bioinformatics (https://www.bioinformatics.babraham.ac.
uk/projects/trim galore/), with default parameters.

Reads mapping and coverage

All RNA-seq data were mapped to the mm10 genome
for mouse, and hg38 genome for human, using STAR
(v2.5.3a) (18), which was shown to be highly effective in
mapping RNA-seq reads containing SNPs (19). Then,
duplicated reads for pair-end data were removed by SAM-
tools (v1.5) (20). All ChIP-seq, ATAC-seq and Dnase-seq
(Mnase-seq or FAIRE-seq) data were mapped to the
mm10 genome for mouse, and hg38 genome for humans,
by using SpeedSeq (v0.1.2) (21), which is an open-source
genome analysis platform that achieves alignment, variant
detection and function with a low memory requirement.
Then, we removed any duplicated reads for both pair-end
and single-end data using SAMtools. For all sequenc-

ing datasets, the bigwig files for JBrowse visualization
were generated from BAM files by using ‘bamCoverage’
from deepTools (22) with parameters ‘–ignoreDuplicates
–normalizeUsingRPKM –skipNonCoveredRegions –
binSize 25 –ignoreForNormalization chrX chrM’. Samples
with too low coverage (mapped data < 1M) were filtered.

Peak calling and annotation

BAM files of mapping results were merged for the same
sample using SAMtools and converted to BED format by
using BEDTools (23). Peaks of regulatory regions were
called for each sample by using MACS2 (24) from datasets
of ChIP-seq, ATAC-seq and DNase-seq with parameters ‘-f
BED -B -q 0.01 –fix-bimodal –extsize 147 –keep-dup auto’.
In particular, the input signal was used as the control to call
peaks for the ChIP-seq dataset which has a corresponding
control (input) experiment (Supplementary Table S7). Peak
annotation was performed by using HOMER (25) with de-
fault parameters. Motif analysis on peak regions was per-
formed with HOMER function findMotifsGenome.pl with
parameters ‘-size 50 -mask’. In addition, 74,060,441 peaks
regions were curated from GTRD (26) to expand the an-
notation of transcription binding sites from other tissues or
cells.

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Hi-C data analysis and curation

Paired-end raw reads of Hi-C libraries were aligned, pro-
cessed and corrected iteratively using HiCPro (v2.8.1) (27).
A 40- or 200-kb bin size was chosen for the examination of
the global interaction patterns of the genome. The binned
interaction matrices were then normalized using the itera-
tive correction method (27,28) to correct biases such as the
GC content, mappability and effective fragment length in
Hi-C data. In addition, we also curated 3 095 881 chromatin
contact pairs from the 4DGeneome (29) in order to expand
the annotation of chromatin interactions from other tissues
or cells.

Gene expression and stage-specific genes

BAM files of RNA-seq data were merged for the same sam-
ple using SAMtools (20), and transcript reconstruction was
performed by StringTie (version v1.3.3b) (30), based on the
gene annotation from Ensembl GRCh38 (release 89). The
Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) value of gene expression was also deter-
mined and normalized by Cufflinks (31,32). An ANOVA-
like test was applied in order to screen for genes that were
differentially expressed among all groups by using edgeR
(33,34).

Gene co-expression and function enrichment analysis

Co-expression analysis represents a powerful tool for the
identification of genes involved in the same molecular
process. Weighted gene co-expression network analysis
(WGCNA) (35) was performed to understand the co-
expression relationships between genes at a transcriptome-
wide level (35,36). One-step network construction workflow
was employed with a soft-thresholding power value of six
for human and eight for mouse, respectively. Genes with null
expression <98% in all samples (n = 51 247 for humans; n =
45 008 for mice) were selected to perform WGCNA analy-
sis; a kME > 0.3 was assigned to an eigengene module (36).
Finally, these co-expression genes in certain networks were
selected to perform function enrichment analysis, including
Gene Ontology and the KEGG pathway by using R pack-
age clusterProfiler (37).

Scoring system to identify regulatory DNMs

Each mutation was scored, based on its annotated records
in five regulatory categories: conservation score, histone
modification state, transcription factor binding sites, chro-
matin interacting regions and chromatin accessible regions.
In contrast to the scoring scheme of RBP-Var (38), which
classified variants into classes with a heuristic scoring sys-
tem, EpiDenovo employed a quantitative scoring system to
evaluate the regulatory significance of a DNM in different
categories.

For the conservation category (C), we used PhyloP scores
in 100 vertebrate genomes to assign conservation scores to
DNMs. PhyloP scores of all DNMs in a chromosome fol-
lowed a Gaussian distribution. Considering that a DNM
has a conservation score of c, � and �, as these are the fit-
ted parameters of the corresponding Gaussian model, then

the score of the DNM in the conservation category is de-
fined as follows:

ScoreC = −log10

(
∫+∞

c
1√

2σ 2π
e− (x−μ)2

2σ2

)

For the other four regulatory categories, we used the
number of annotated hits (records) to assign a score to a
DNM in the corresponding category. Specifically, the num-
bers of hits of all DNMs in each chromosome were fitted
to a Poisson distribution model. Taking a DNM to have k
hits in one regulatory category (F), � is the fitted parameter
of the corresponding Poisson model, and the score of the
DNM in this category is defined as follows:

ScoreF = −log10

(
∫+∞

k
λke−λ

k!

)

The total score of a DNM is the sum of scores of the five
regulatory categories. The calculation of the scoring system
was implemented by R and Perl.

Database architecture

All metadata in EpiDenovo were stored in a MySQL
database while the network data, including the co-
expression network and the regulatory network with do
novo mutation, were deposited in neo4j, which is a high-
performance graph database management system. The
web interface of EpiDenovo was implemented in Cascad-
ing Style Sheets (CSS), Hyper Text Markup Language
(HTML) and a Hypertext Preprocessor (PHP). The web
design was derived from the free templates of Bootstrap
(http://getbootstrap.com). Signal data visualization was im-
plemented by using the JBrowse Genome Browser. The
liftOver routine was employed, with a corresponding chain
file from UCSC to convert genomic coordinates between
different genome versions of humans.

DATABASE FEATURES AND APPLICATIONS

Database organization and web interface

As the EpiDenovo database contains embryonic epigenetic
data from both humans and mice, these two species were
both chosen as candidate species. Two reference versions
were also provided for humans: hg19 and hg38. The ra-
tionale here being that hg19 is the most popular and hg38
is the most recent. Data retrieving in EpiDenovo could be
achieved in three ways: ‘Gene symbols’, ‘Denovo mutations’
(only for humans) and ‘Regulatory regions’. A ‘Gene sym-
bols’ search is very useful in terms of searching for gene ex-
pression and epigenetic regulation of genes of interest dur-
ing embryonic development, and candidate regulatory re-
gions or DNMs that are based on genes. ‘Denovo muta-
tion’ retrieval is appropriate for analyzing the results of ge-
netic studies into developmental disorders, and especially
the results of high-throughput studies. This then gives sup-
port for further functional studies to identify the causal
DNMs, and sheds light on the underlying molecular mech-
anisms of developmental disorders. In addition, EpiDen-
ovo allows ‘Regulatory region’ retrieval, which could elu-
cidate the potential roles of regulatory regions in provid-
ing genomic regions and locations of DNMs that were not

http://getbootstrap.com
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Figure 3. Circos plot of chr5–8 to show the relationship between DNMs and epigenetic regulation. The regions covered by a transparent sector is an
example of DNMs hotspots occurred simultaneously with active genetic markers in non-coding regions nearby gene cluster.

deposited in the curated database. Further, the JBrowse
Genome Browser (http://jbrowse.org) was applied in order
to establish a well-organized ‘JBrowse’ page for visualiz-
ing genome-wide signals of expression and epigenetic data
sets during embryonic development. Users could select and
browse sequencing signals of any epigenetic type and any
cell or tissue in the developmental stage across a genomic
region of specific interest. The searching results for epilepsy
related gene KCNMA1 in the EpiDenovo database were
used as an example of the web-interface (Figure 2). EpiDen-
ovo works well in all major web browsers including Google
Chrome, Mozilla Firefox and Internet Explorer. In addi-
tion, a regulatory network was constructed and visualized
based on regulatory information while the visualization in-
terface of the co-expression network was developed based
on netviewer in PoplarGene (39). In addition, a heatmap
plot and functional enrichment of GO and KEGG for co-
expressed genes, were shown in the sections that followed.
Motif enrichment for each dataset of epigenetic factor was
also provided. Finally, we built inner links between ‘Gene
symbols’, ‘Denovo mutations’ and ‘Regulatory regions’, ac-
cording to regulation information.

Implications and applications

We identified 86 109 DNMs (33.87% of all DNMs) that
were embedded in the regulatory elements involved in em-
bryonic development, and 9340 genes that were regulated
by these regulatory elements (Supplementary Table S8). We
found 25 390, 43 939 and 9513 DNMs located in potential

regulatory regions of chromatin states, from pachytene sper-
matocytes, round spermatids and mature sperm, respec-
tively, indicating that germline DNMs originate from errors
in DNA replication during gametogenesis, particularly in
sperm cells and their precursors (7). Among these DNMs,
538, 172, 27 164, 347, 55 735, 2153 DNMs are associated
with chromatin factors H3F3B, H3K27ac, H3K27me3,
H3K4me1, H3K4me3 and PolII. So, most of them were
associated with H3K4me3 and H3K27me3, indicating that
DNMs could primarily occur not only in active enhancers,
but also in poised enhancers (40,41). Interestingly, we also
observed de novo mutation hotspots occurred simultane-
ously with high density of active histone modifications, per-
missive state of chromatin accessibility and intense chro-
matin interaction in non-coding regions nearby gene cluster
(Figure 3).

To illuminate the applications of EpiDenovo, we enu-
merated six disease associated genes including NOTCH2,
LMX1A, CHD5, SCN3A, HDAC4 and BCL11A. All of
these genes were involved in the embryonic epigenetic regu-
lation which may be mediated by regulatory DNMs (Figure
4).

DISCUSSION AND PERSPECTIVES

To our knowledge, there are several ChIP-seq databases
(ENCODE (42), GTRD (26), ChIPBase (43), Cistrome DB
(44), Roadmap Epigenomics (45), Factorbook (46), ChIP-
Atlas (http://chip-atlas.org), GeneProf (47), NGS-QC (48)

http://jbrowse.org
http://chip-atlas.org
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Figure 4. To illuminate the applications of EpiDenovo, we enumerated six disease associated genes including NOTCH2, LMX1A, CHD5, SCN3A, HDAC4
and BCL11.

and DBTMEE (49)), but all of these have curated lit-
tle embryonic epigenetic datasets (except DBTMEE), and
were unlinked to genetic variants or human disease. Reg-
ulomeDB (50) and 3DSNP (51) are databases that under-
take attempts at decoding the roles of SNPs embedded in
DNA regulatory elements; however, RegulomeDB was not
sensitive enough to decipher the functions of DNMs in neu-
ropsychiatric disorders, although it has a high specificity,
according to our recent study which demonstrated that
DNMs involved in post-transcriptional dysregulation con-
tribute to six neuropsychiatric disorders (52). So, it remains
a challenge to investigate the roles of DNMs in DNA reg-
ulatory elements in developmental disorders, such as neu-
ropsychiatric disorders. This study represents the first at-
tempt at using the integrated analysis of both epigenetic reg-
ulation and gene expression during embryonic development
to interpret the formation and function of DNMs.

The principal advantages of EpiDenovo, compared to
other databases, for the annotation of regulatory variants
are as follows:

i. It contains the most comprehensive collection of ChIP-
seq, ATAC-seq, DNase-seq and Hi-C data with respect

to the chromatin state during embryonic development
for both humans and mice.

ii. It has the potential to contribute to research, not only
on developmental diseases, but also on embryonic de-
velopment, as it provides the association of DNMs with
the transcriptome and epigenome during embryonic
development in human developmental disorders.

iii. It allows ‘Regulatory region’ retrieval, which could elu-
cidate the potential roles of regulatory regions by pro-
viding genomic regions and locations of novel DNMs
as well as genetic variants that were not deposited in
the current database.

iv. It provides a well-organized visualization using
JBrowse to show the epigenetic signals of each sample
in user defined genomic regions.

v. It employs a statistical scoring system to annotate and
prioritize the DNMs involved in epigenetic regulation.

vi. It provides an in-depth annotation of the genes of inter-
est by performing weighted gene co-expression network
analysis and functional enrichment analysis.

vii. It provides motif enrichment in peaks of epigenetic fac-
tor for each experiment to predict the potential binding
of transcription factors by similarity of binding motif.
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EpiDenovo contains all currently available epigenetic
datasets, and we will continue to update the database with
new epigenetic datasets from early development, especially
from brain development. As more regulatory DNMs will be
validated, we aim to assess and improve the current scor-
ing system. We are fully dedicated to the maintenance and
improvement of EpiDenovo and making it to be a useful
database for the research on embryonic development and
developmental diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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