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Regulatory chromatin rewiring promotes metabolic switching
during adaptation to oncogenic receptor tyrosine kinase
inhibition
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Oesophageal adenocarcinoma (OAC) patients show poor survival rates and there are few targeted molecular therapies available.
However, components of the receptor tyrosine kinase (RTK) driven pathways are commonly mutated in OAC, typified by high
frequency amplifications of the RTK ERBB2. ERBB2 can be therapeutically targeted, but this has limited clinical benefit due to the
acquisition of drug resistance. Here we examined how OAC cells adapt to ERBB2 inhibition as they transition to a drug resistant
state. ERBB2 inhibition triggers widespread remodelling of the accessible chromatin landscape and the underlying gene regulatory
networks. The transcriptional regulators HNF4A and PPARGC1A play a key role in this network rewiring. Initially, inhibition of cell
cycle associated gene expression programmes is observed, with compensatory increases in the programmes driving changes in
metabolic activity. Both PPARGC1A and HNF4A are required for the acquisition of resistance to ERBB2 inhibition and PPARGC1A is
instrumental in promoting a switch to dependency on oxidative phosphorylation. Our work therefore reveals the molecular
pathways that support the acquisition of a resistant state and points to potential new therapeutic strategies to combat cellular
adaptation and ensuing drug resistance.

Oncogene (2022) 41:4808–4822; https://doi.org/10.1038/s41388-022-02465-w

INTRODUCTION
Cancer is predominantly caused by DNA mutations and genomic
rearrangements. However, it is becoming increasingly clear that
rewiring of the epigenetic landscape also plays a pivotal role in
tumourigenesis [1–4]. This epigenetic rewiring leads to changes
in gene expression programmes and the molecular pathways
that are operational in the cell [5]. The molecular changes
manifested by a cancer cell provide the opportunity for
personalised treatment which is exemplified by the use of
inhibitors like trastuzumab and lapatinib to treat cancer patients
with amplifications of the RTK ERBB2 [6, 7]. However, drug
resistance often arises, limiting the effectiveness of treatment.
This is especially the case for OAC where trastuzumab and
lapatinib have been shown to have relatively limited effects on
patient survival [8, 9]. Drug resistance in OAC often arises due to
the selection of cells containing compensatory mutations [10–12].
However, it is becoming increasingly recognised that changes to
the epigenetic landscape can also play an important role in drug
resistance, particularly in enabling the survival of “persistor” cells,
which ultimately gather additional mutations to adopt a stable
resistant form [13–17].
The incidence of OAC is rapidly expanding in the Western world

while the survival rates remain poor [18]. A pre-malignant state
known as Barrett’s oesophagus (BO) is thought to be the precursor
to OAC [19]. Genome sequencing studies have revealed numerous
mutational changes in the transition from BO to OAC but there are

few high frequency recurrent oncogenic driver events [20–22].
However, at the pathway level, components of the receptor
tyrosine kinase (RTK) driven pathways are frequently mutated in
OAC (60–76%; [22, 23]), typified by relatively high frequency
amplifications and mutations of the RTK ERRB2 (ranging from
18–32% tumours; [22, 23]). At the epigenetic level, the accessible
chromatin landscape of BO is vastly different to the surrounding
normal oesophageal tissue and this landscape is further altered
during the transition to OAC [24, 25]. These chromatin changes are
accompanied by alterations to the transcriptional regulatory
networks, with many changes to transcription factor activity
being common to BO and OAC, including transcription factors like
HNF4A, GATA6, FOXA, HNF1B and PPARG [24, 26, 27]. Conversely,
other transcription factors appear more dominant in OAC such as
AP1 [28] or their regulatory activity is repurposed and directed to
alternative transcriptional programmes as exemplified by KLF5
[25]. However, it is unclear how the deregulated RTK pathways
impact on these gene regulatory networks.
Here, we have investigated how inhibition of the RTK ERBB2

influences gene regulatory networks as OAC cells acquire drug
resistance. We demonstrate rapid and widespread remodelling of
the accessible chromatin landscape in response to ERBB2
inhibition. This revealed changes in transcriptional regulatory
activities, which converged on HNF4A and PPARGC1A and their
influence on metabolic programmes. Both HNF4A and PPARGC1A
are required for the acquisition of a drug resistant state and their
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target gene networks represent potential therapeutic vulnerabil-
ities to prevent the emergence of drug resistance.

RESULTS
ERRB2 amplified OAC cells develop resistance to lapatinib
Previous studies indicated that several gastro-oesophageal
adenocarcinoma cancer cell lines harbour amplifications of the
gene encoding ERBB2. By using ATAC-seq data, we validated this
amplification event which encompasses the ERRB2 locus in all of
the cancer lines but is absent in the HET1A and CPA cell lines,
derived from normal and Barrett’s oesophageal tissue respectively
(Supplementary Fig. S1A). These amplifications lead to variable
levels of ERBB2 protein expression with the highest levels in the
OE19 and NCI-N87 cell lines (Fig. 1A). To select cell lines which
most closely resembled patient derived samples, we analysed the
open chromatin landscapes of the cell line panel compared to
three OAC patient biopsies which harbour ERBB2 amplifications.
Principal component analysis demonstrated tight clustering of
samples from normal or Barrett’s oesophagus, and a distinct looser
cluster of the OAC samples (Fig. 1B). The OE19, ESO26, KYAE1 and
OAC organoid WTSI-OESO_009 (CAM408; [29]) cluster together
with these tumour samples whereas OE33 and NCI-N87 are more
distantly associated. Furthermore, clustering based on Pearson’s
correlations of the same data gave the same broad conclusions
with OE33 cells being a clear outlier. Importantly, we also
examined the expression of a set of transcription factors we

previously associated with Barrett’s and OAC [24] and two markers
of squamous epithelium, TP63 and PAX9, in a range of patient
samples [30] and cell lines (Supplementary Fig. S1B). OE19, ESO26,
and KYAE1 again clustered with OAC patient samples and
exhibited expression of GATA6, FOXA2 and HNF4A. We therefore
took OE19, ESO26, and KYAE1 cells forward for further analysis as
representative examples of ERBB2-amplified OAC.
Next, we studied the response of OAC cells to treatment with

the ERBB2/EGFR inhibitor lapatinib [31]. In all cell lines, lapatinib
caused a reduction in the activating phosphorylation (Y1196) of
ERBB2 and downstream ERK1/2 (Supplementary Fig. S1C). In
addition to signalling via ERK, ERBB2 also signals via a parallel
pathway involving AKT and similar reductions in AKT phosphor-
ylation levels were observed with the exception of ESO26 cells
where co-treatment with an AKT inhibitor was required to gain
maximal inhibition due to the presence of activating mutations in
PIK3CA in this cell line [10]. Genetic depletion of ERBB2 caused
similar reductions in ERK and AKT phosphorylation in OE19 cells
(Supplementary Fig. S1D). Lapatinib treatment caused dose-
dependent reductions in growth of all the OAC lines (Fig. 1D;
Supplementary Fig. S1E). Part of this reduced growth was due to
increased levels of apoptosis as exemplified by OE19 cells (Fig. 1E).
Having established an optimal concentration of lapatinib, we
examined the response of OE19 cells over a 5 week period. ERBB2
phosphorylation remained inhibited for the duration of treatment
but both AKT and ERK phosphorylation levels partially recovered
after 5 weeks treatment (Fig. 1F). This recovery was accompanied
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Fig. 1 Resistance to ERBB2 inhibition in OAC cells arises after weeks of treatment. A Western blot for ERBB2 expression in the indicated cell
lines. B Principal component analysis of human tissue and cell line ATAC-seq data. A union peakset composed of the top 50 K peaks from BO
and OAC tissue was used. NO – normal oesophageal tissue, BO – Barrett’s oesophageal tissue, ERBB2 OAC – oesophageal adenocarcinoma
tissue harbouring ERBB2 amplification, organoid – CAM408/WTSI-OESO_009. C Pearson correlation of ATAC-seq data shown in B. D MTS
growth assay of OE19 cells treated with increasing concentrations of lapatinib for 72 h. E Apoptosis assay of OE19 cells treated with vehicle
control (DMSO) or 500 nM lapatinib for 70 h. ***P < 0.001, 2-way ANOVA. 95% confidence intervals are shown, n= 3. F Western blot of OE19
cells treated with 500 nM lapatinib for the indicated timepoints: d0 – 24 h DMSO, d1/7/35 – 1/7/35 days lapatinib. Quantification is shown,
n= 3, error bars depict standard error of the mean (SEM). G Cell cycle analysis of OE19 cells treated with DMSO for 24 h (d0) or 500 nM
lapatinib for the indicated number of days. *P < 0.05, ***P < 0.001, ****P < 0.0001, unpaired t-test, error bars depict SEM, n= 3.
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by a resumption of proliferation as exemplified by the numbers of
cells in S phase (Fig. 1G; Supplementary Fig. S1F) and increased
cell numbers following an initial decrease following lapatnib
treatment (Supplementary Fig. S1G). Thus by 5 weeks, the OE19
cells can be considered as resistant to ERBB2 inhibition with
lapatinib and represent a good model for further investigation of
the underlying resistance mechanisms.

ERBB2 inhibition causes widespread changes to the
transcriptional regulatory landscape in OAC cells
To understand how ERRB2 inhibition rewires OAC cells along the
path to resistance, we focussed on OE19 cells and examined
changes to their gene expression profile and associated open
chromatin landscape following treatment with lapatinib for 1, 7
and 35 days (Fig. 2A). RNA-seq analysis revealed over a thousand
genes changing expression (>2 fold change, FDR < 0.05) after 1 day
and 7 days (roughly equally split as up- and down-regulated), with
a slightly lower number at 35 days (Fig. 2B; Supplementary Fig. 2A;
Supplementary Table 1). Clustering based on PCA analysis and
Pearson’s correlations indicated that by day 35, the transcriptome
had begun to resemble the starting population (Supplementary
Fig. S2B, C) which is also reflected in the recovery in expression
levels of the differentially expressed genes (Fig. 2C, D; Supple-
mentary Fig. S2D). Importantly, there is a substantial overlap in
gene expression changes observed after 1 day of lapatinib
treatment and RNAi-mediated ERBB2 depletion, which demon-
strates the specificity of response to the inhibitor (Supplementary
Fig. S2E). Gene ontology analysis of gene expression changes
between sequential timepoints revealed a decrease in cell cycle
gene expression which was further reduced at 7 days but reversed
at 35 days as cells become resistant to ERBB2 inhibition (Fig. 2E) as
exemplified by FOXM1, MYBL2 and MYC expression (Fig. 2F).
These genes are generally typical of cluster 5 (Fig. 2C, D).
Conversely, different processes are upregulated at day 1, including
metabolic and signalling categories (Fig. 2E) which tend to be
maintained in day 35 resistant cells (Fig. 2G) and is emphasised by
the expression profiles of genes like DGAT2, EPHX2, IDH1 and
PRKAB2 (Supplementary Fig. S2F). The changes in gene expression
categories as cells become resistant are further emphasised by
comparing GO terms relative to the parental OE19 cells, although
this comparison demonstrates that the cell cycle is still suppressed
at day 35 whereas various lipid metabolic processes are rapidly
altered and maintained at higher levels throughout the time
course (Supplementary Fig. S2G). Ingenuity pathway analysis (IPA)
revealed the expected inhibition of the upstream regulator
ERBB2 but also other cell cycle regulators like MYC and FOXM1
in resistant cells (Supplementary Fig. S2H). Collectively these data
reveal that a substantial rewiring of the transcriptome occurs as
cells progress to becoming resistant with initial decreases in cell
cycle gene expression, accompanied by the sustained activation of
metabolic processes.
To further probe the gene regulatory changes and uncover

potential regulatory pathways, we next performed ATAC-seq to
assess changes to the accessible chromatin landscape across the
same time points towards a lapatinib resistant sate. Widespread
changes were observed in the accessible chromatin landscape,
which are initiated after 1 day and result in thousands of
differentially accessible regions after 7 and 35 days (Fig. 2H;
Supplementary Fig. S2I, J; Supplementary Table 2). The majority of
the differentially accessible regions are found in intra and
intergenic regions that represent potential enhancers (Supple-
mentary Fig. S2K, L). There is a notable increase in promoter
accessibility after 7 days whereas there is a tendency for putative
enhancer regions to close (Supplementary Fig. S2L). Two broad
groups of chromatin regions can be identified, which show
general opening or closing across the time course (Fig. 2I) as
exemplified by the MYC and the EPHX2 loci which mirrors changes
in their gene expression (Fig. 2J). Indeed, more broadly, both

promoters and enhancer regions show correlations between
changes in accessibility and associated putative target gene
expression (Supplementary Fig. S2M). Consistent with transcrip-
tional changes, each set of regions is associated with genes linked
to different biological processes, chiefly lipid metabolism and
other metabolic processes for regions with increased accessibility
and regulation of apoptosis and MAPK cascades for those closing
(Fig. 2I; Supplementary S2N). The latter observation is consistent
with the expected effects of ERBB2 inhibition.
Collectively, these data demonstrate widespread dynamic

changes to the accessible chromatin landscape and associated
transcriptome as cells adapt to inhibition of ERBB2 signalling
through lapatinib treatment.

The remodelling of the accessible chromatin state is reversible
Having established the accessible chromatin landscape in
lapatinib resistant cells, we next asked whether this is a stable
state potentially promoted through the selection of rare
mutational events or through the establishment of fixed
epigenetic states in the cell population. We therefore profiled
the open chromatin landscape of OE19 cells which had been
cultured in lapatinib for 35 days (hence adopting a resistant state)
followed by drug withdrawal at several timepoints between 1 and
14 days (Fig. 3A). Phosphorylation levels of ERBB2 and down-
stream ERK and AKT were re-established after 1–2 days of drug
withdrawal, demonstrating reinstatement of ERBB2 signalling
activity (Fig. 3B). Consistent with this, after 14 days drug
withdrawal, the cells again became sensitive to lapatinib re-
addition (Fig. 3C). PCA analysis showed a gradual drift of the open
chromatin state of resistant cells back towards the parental OE19
cells (Fig. 3D; Supplementary Fig. S3A) which was further
supported by Pearson’s correlation analysis which clustered the
parental OE19 cells with the resistant cells which have been
released from drug treatment for 14 days (Fig. S3B). Furthermore,
when we examined the fate of the peaks which changed
accessibility in the resistant cells, there was a rapid decay in
number after drug withdrawal until barely any differences were
detected between the parental cells and the resistant cells after
14 days (Fig. 3E, F). This is exemplified at the locus-specific level
where closed chromatin is re-established around the CEBPA and
PPARA loci whereas chromatin reopening is reinstated at the
CCND3 and DUSP6 loci (Fig. 3G). A number of transcription factor
motifs are enriched in peaks showing differentially increased or
decreased accessibility after 35 days of drug treatment (see
Fig. 4B, C). Interrogation of these enriched transcription factor
motifs showed a gradual loss of binding sites for HNF4, GATA and
CEBP factors in peaks exhibiting increased accessibility relative to
parental cells following drug withdrawal from d35 cells (Fig. 3H,
left). Conversely, there was reduced enrichment of the motifs for
SOX, AP1 and ETS (ELF3 and ETV1) transcription factors in regions
exhibiting decreased accessibility relative to parental cells
following drug withdrawal (Fig. 3H, right). Thus, the underlying
transcriptional regulatory networks of OE19 cells are also rapidly
re-established following cessation of drug treatment.
Taken together these data show a rapid reactivation of the

ERBB2 signalling pathway and almost complete reversion of the
accessible chromatin landscape to the parental form following drug
withdrawal. This argues against selection of a cellular subclone with
a unique chromatin landscape and instead demonstrates that the
underlying chromatin landscape is reprogrammed based on the
intrinsic regulatory pathways available to the OAC cells, and that
this is fully reversible upon re-activation of ERBB2 signalling.

Different transcriptional regulatory pathways are associated
with chromatin opening and closing events
Having established the changes in chromatin accessibility during
acquisition of resistance to ERBB2 inhibition, we next harnessed
this data to uncover the transcription factor networks affected.
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To focus on the resistance mechanisms, we concentrated on
putative enhancer elements (i.e., non-promoter regions) which
showed increased or decreased accessibility in cells treated
with lapatinib for 35 days (a time point at which cells are
proliferating again and hence fully resistant to growth inhibition).

More accessible regions already showed evidence of opening after
1 day of treatment whereas less accessible regions only closed
substantially after 7 days (Fig. 4A; Supplementary Fig. S4A).
Opening regions showed enrichment of motifs for a range of
transcription factors which drive a gastro-intestinal programme in
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OAC including HNF4, GATA, FOXA, KLF and CEBP factors after
35 days (Fig. 4B; Supplementary Table 2; [24–27, 32]). These events
were already initiated after 1 day treatment (Supplementary Fig.
S4F). In contrast, closing regions contained over represented
motifs for SOX transcription factors and members of the AP1 and
ETS transcription factor families that we previously linked to OAC
(Fig. 4C; Supplementary Table 2; [28, 33]). Closer examination of
chromatin accessibility at HNF4A and AP1 motifs further

emphasised the dynamic nature of the accessibility around these
transcription factor binding sites (Fig. 4D). To examine whether
any transcription factors that bind to these motifs exhibit changes
in expression, we examined our RNA-seq data and found
congruency between directionality of expression and motif
presence (Fig. 4E, F). HNF4A, PPARA and several other nuclear
hormone receptors show upregulation following lapatinib treat-
ment, alongside CEBPA and several FOX family members (Fig. 4E).
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Similar increases in expression of the majority of these genes were
observed upon depletion of ERBB2 (Supplementary Fig. S4B).
Conversely, several SOX and ETS transcription factors (including
ETV4/5), and AP1 proteins from the FOS subfamily are down-
regulated (Fig. 4F). PPARA upregulation is associated with the
opening of multiple potential regulatory regions throughout its
locus (Fig. 4G) whereas SOX13 downregulation coincides with the
closing of several regions (Supplementary Fig. S4C).
We also asked whether these transcription factor networks

were similarly affected in other OAC/GAC cell lines containing
ERBB2 amplifications and focussed on the initial responses to
lapatinib treatment for 1 day because an increase in accessibility
centred on the TF motifs like HNF4 was already apparent after
1 day of treatment (Fig. 4D; Supplementary Fig. S4F). There was
a moderate overlap in their overall accessibility profiles
(Supplementary Fig. S4D) and in the identities of the specific
peaks showing differential accessibility following lapatinib
treatment (Supplementary Fig. S4E). In all cell lines, opening
regions showed enrichment of binding motifs for HNF4A and
FOX transcription factors whereas closing regions exhibited
enrichment of AP1 motifs (Supplementary Fig. S4F). Thus, the
changes to the transcriptional regulatory pathways that we
observe in response to drug treatment are generally detected in
a range of OAC cell lines.
To further examine which upstream pathways are operational in

resistant cells, we performed IPA analysis on genes which were
differentially activated after 35 days of lapatinib treatment.
Consistent with our transcription factor motif analysis, HNF4A
was identified as the most significant upstream regulator along-
side a range of other nuclear hormone receptors and the co-
activator PPARGC1A/PGC1α (Fig. 4H). Due to its known role as a
co-activator for HNF4A [34–36] and other nuclear hormone
receptors like ESRRA and PPARA/G [37, 38], we further investi-
gated PPARGC1A and found that its expression was rapidly
induced upon ERRB2 inhibition in OE19 cells and was subse-
quently maintained well above basal levels in resistant cells (Fig.
4I, J). We also detected a lapatinib-induced decrease in PPARGC1A
phosphorylation at S571 (an inhibitory phosphorylation event;
[39]), providing further activation potential. Similarly, lapatinib
treatment caused increased PPARGC1A expression in a range of
other OAC/GAC lines (Fig. 4K), consistent with increases we
observed in PPARGC1A expression following ERBB2 depletion in
OE19 cells (Supplementary Fig. S4B). Moreover, PPARGC1A levels
are already elevated in samples from patient OAC tumours
containing high ERBB2 levels compared to the precursor Barrett’s
oesophagus (Fig. 4L). Several nuclear hormone receptors showed
changed expression in tumours with high levels of ERBB2 with
some being elevated (ESRRA) whereas others were either
unchanged (HNF4A) or showed reduced levels (PPARA) (Supple-
mentary Fig. S4G). There is therefore no uniform response to
ERBB2 amplification in patients. Thus, a simple model whereby
ERBB2 signalling directly suppresses nuclear hormone receptor

expression and activity relative to the precursor Barrett’s state
does not appear to be operational.
Collectively these data demonstrate that the lapatinib resistant

state is characterised by the activation of a transcription factor
network that comprises a set of gastro-intestinal transcription
factors including HNF4A, and additional nuclear hormone receptors
alongside the coactivator protein PPARGC1A.

HNF4A activity is enhanced and required for lapatinib
resistance
To provide further mechanistic insights into how transcriptional
regulatory networks influence the lapatinib resistant cell state, we
first focussed on the nuclear hormone receptor HNF4A due to the
enrichment of its binding motifs in accessible regions appearing in
resistant cells after 5 weeks lapatinib treatment (Fig. 4B). We
performed ChIP-seq analysis to ask whether HNF4A gained
additional activities through changing its targets following
lapatinib treatment (Supplementary Fig. S5A, B; Supplementary
Table 3). This analysis was performed after 2 days lapatinib
treatment as HNF4A motif enrichment in accessible chromatin
(Supplementary Fig. S4D) and increased HNF4A expression (Fig. 4E)
was already apparent after 1 day lapatinib treatment. We first
examined the HNF4A signal at chromatin loci that increased in
accessibility one day after lapatinib treatment and found a general
increase in HNF4A binding occurred after lapatinib treatment
(Fig. 5A, top; Supplementary Fig. S5C). This is consistent with the
increases in HNF4A expression we observe (Fig. 4E). Furthermore,
this increased binding was accompanied by increased levels of the
active histone mark H3K27ac, consistent with an activating event.
In contrast, closing regions showed only low levels of HNF4A
binding in parental cells with little change in binding triggered by
lapatinib treatment, although inactivation was suggested by the
decreases in H3K27ac (Fig. 5A, bottom; Supplementary Fig. S5C).
We also partitioned the HNF4A binding regions into those with
increased (ERBB2 suppressed) or decreased (ERBB2 activated)
occupancy in lapatinib treated cells (Supplementary Table 3).
HNF4A peaks which show increased occupancy also exhibited
increases in both H3K27ac levels and chromatin opening following
lapatinib treatment (Fig. 5B; top) whereas HNF4A peaks showing
reduced occupancy also demonstrated reduced levels of acetyla-
tion but little change in chromatin opening (Fig. 5B; bottom). These
results indicate that elevated levels of HNF4A binding in response
to lapatinib treatment are associated with chromatin activation
events and these accompany gene expression changes as
exemplified by the IMPA1 (Fig. 5C), KDM5B (Supplementary Fig.
S5D), loci. Indeed, there is a more widespread strong correlation
between the changes in HNF4A binding activity and the changes of
H3K27ac observed following lapatinib treatment (Supplementary
Fig. S5E). Further analysis of genes neighbouring HNF4A binding
regions that exhibit increased occupancy in response to lapatinib
treatment, showed that these activation events correlate with
increased gene expression under the same conditions (Fig. 5D).

Fig. 4 A gastro-intestinal transcription factor programme is activated after ERBB2 inhibition in OAC cells. A Heatmap of differentially
accessible chromatin regions after 35 days lapatinib treatment (d35) relative to control (d0) cells. Data is also shown for day 1 (d1) and day 7
(d7). (B and C) De novo motif enrichment in differentially open (B) or closed (C) non-promoter regions. Motif match score to called
transcription factor is shown in brackets. Note that FRA2 is an AP1 family member. D Tag density plot of ATAC-seq data across the lapatinib
treatment timecourse (d0-d35). Differentially accessible peaks were centred on the HNF4 or AP1 motif. E, F Heatmap showing gene expression
of up- (E) or down- (F) regulated transcription factors that may bind to motifs enriched in differentially accessible chromatin shown in B and C.
Days (d) of lapatinib treatment are shown. Transcription factors are grouped according to their families. G Genome browser view of the PPARA
locus in OE19 cells showing ATAC-seq, HNF4A ChIP-seq [24] and H3K27ac ChIP-seq [26] data. Differentially open peaks are highlighted using
red rectangles. Bar chart depicts PPARA mRNA expression over the lapatinib treatment timecourse. H Ingenuity pathway analysis predicting
activated upstream regulators from DEGs in resistant OE19 cells (d35) relative to control (d0) cells. I Expression of PPARGC1A (PGC1α) over the
lapatinib treatment timecourse in OE19 cells. J Western blot analysis of PPARGC1A expression and phosphorylation at S571 in OE19 cells
treated with the indicated concentrations of lapatinib for 24 h. K RT-qPCR analysis of PPARGC1A expression after 24 h of 500 nM lapatinib
treatment. *P < 0.05, **P < 0.01, paired t-test, n= 3. L RNA-seq data showing the expression of PPARGC1A in BO [30] and OAC (OCCAMS and
ref. 30, as indicated) tissue. **P < 0.01, ***P < 0.001.
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These HNF4A binding regions are rich in HNF4A binding motifs
(70% of regions), consistent with direct binding but we also
observed enrichment for GATA motifs suggesting combinatorial
control at a subset of sites (Fig. 5E). In contrast, in regions showing
decreased HNF4A occupancy, HNF4A binding is less associated
with HNF4A motifs (25% of regions) and instead, AP1 is the highest
ranked motif, suggesting potential indirect recruitment of HNF4A
to these regions (Fig. 5F). Functionally, regions which both opened
(d1), and harboured HNF4A binding regions (d2) following
lapatinib treatment are close to genes associated with GO terms
encompassing a variety of mitochondrial related and metabolic
processes, consistent with a potential role in metabolic reprogram-
ming (Supplementary Fig. S5F). To establish the relevance of these
regulatory events in drug resistance, we depleted HNF4A
(Supplementary Fig. S5G) and monitored the re-emergence of cell
proliferation following lapatinib treatment. Loss of HNF4A blunted
the re-establishment of cell growth and resistance in OE19 (Fig. 5G;
Supplementary Fig. S5H) cells. In contrast, HNF4A loss did not cause

reduced growth of parental OE19 cells over a 5 day period in the
absence of lapatinib treatment (Supplementary Fig. S5I) although
we have not studied the longer term consequences of this.
These results therefore demonstrate that ERBB2 inhibition

triggers enhanced HNF4A binding to chromatin which is
associated with chromatin and gene activation events. These
events are important for the emergence of resistance, poten-
tially through metabolic reprogramming.

PPARGC1A promotes metabolic changes during acquisition of
the resistant state
To further understand the transcription factor networks driving
the resistant state, we turned to PPARGC1A, which has previously
been shown to act as a potential coactivator protein for HNF4A
[34–36]. Our results have implicated PPARGC1A in driving the
chromatin changes in the resistant state (Fig. 4H), therefore we
performed ChIP-seq in OE19 cells to identify the binding sites for
PPARGC1A (Supplementary Fig. S6A; Supplementary Table 4).
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Fig. 5 HNF4A regulatory activity is enhanced following ERBB2 inhibition. A Heatmap of differentially open or closed ATAC-seq peaks in
OE19 cells after 1 day 500 nM lapatinib treatment (d1) relative to control cells (d0)(right). HNF4A and H3K27ac ChIP-seq data are shown in
control (d0) cells or after 2 days 500 nM lapatinib treatment (d2)(left and centre). B Heatmap showing HNF4A binding sites with increased
(ERBB2 suppressed) or decreased (ERBB2 enhanced) HNF4A binding after 2 days lapatinib treatment (d2) relative to control cells (d0).
C Genome browser view of the IMPA1 locus in OE19 cells. Red box highlights a putative enhancer in which HNF4A binding increases after
2 days lapatinib treatment. IMPA1 mRNA expression over the lapatinib time course is shown on the right. D Fold change in expression of
genes relative to control cells (d0) of genes annotated to differentially bound HNF4A sites using the basal plus extension model (GREAT).
****P < 0.0001, NS not significant; Wilcoxon matched pairs signed rank test for each timepoint relative to d0. E, F De novo motif enrichment in
differentially bound HNF4A binding sites after 2 days lapatinib treatment. HNF4A binding sites exhibiting enhanced (E) or decreased (F)
occupancy following lapatinib treatment are shown. Motif match score to called transcription factor is shown in brackets. Sites included both
promoter and non-promoter peaks. G Crystal violet growth assay of OE19 cells treated with control shRNA (shSCR) or shRNA targeting HNF4A
(shHNF4A). Cells were treated with 500 nM for 30 days and data are shown relative to shSCR control, ***P < 0.001, unpaired T-test, n= 3, error
bars depict SEM.
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Unexpectedly, we found that PPARGC1A and HNF4A exhibited
virtually mutually exclusive binding locations (Fig. 6A; Supple-
mentary Fig. S6B, C). These two proteins therefore likely
contribute to lapatinib resistance through different regulatory
activities and target genes.
Next, we analysed PPARGC1A in more detail to uncover its

regulatory activities. PPARGC1A binding was detected at
1,438 sites in OE19 cells that are largely associated with
promoter regions (Fig. 6B). These regions exhibited a general
increase in accessibility upon lapatinib treatment, which was
most apparent at day 35 (Fig. 6A, C; Supplementary Fig. S6D). In
addition, the PPARGC1A binding regions are associated with the
active histone mark H3K27ac, in both parental and lapatinib
treated cells (Fig. 6A) and exhibit slight increases in acetylation
after drug treatment (Supplementary Fig. S6D). We tested a
panel of these binding sites in lapatinib treated cells and found
little change in PPARGC1A occupancy, although significant
increases were found at the ACO2 and ESRRA loci (Fig. 6D).
Furthermore, we examined genome-wide binding of PPARGC1A
following lapatinib treatment and found very little change in
PPARGC1A occupancy, with little evidence for new binding
events following ERBB2 inhibition (Supplementary Fig. S6E, F).
This suggested that lapatinib induces a change in PPARGC1A
activity rather than promoting de novo binding. Indeed,
reductions in inhibitory phosphorylation events on PPARGC1A
were observed indicating a likely increase in pre-bound
PPARGC1A activity (Fig. 4J). To gain insights into the potential
transcription factors that might recruit PPARGC1A, we searched
for enriched DNA motifs and uncovered the NRF1 motif in both
promoters and potential distal regulatory regions in the vast
majority of binding regions (Fig. 6E, F). In keeping with the lack
of overlap with the HNF4A ChIP-seq data, we did not observe co-
occurrence of the HNF4A binding motif. We took advantage of
ChIP-seq data for NRF1 from other cell lines and observed a large
overlap with PPARGC1A binding regions (Supplementary Fig.
S6B). NRF1 has previously been implicated in controlling
mitochondrial function and its metabolic activities [40–42] and
consistent with this, two of the top GO terms for genes
associated with PPARGC1A binding regions are “mitochondrial
organisation” and “TCA cycle and respiratory electron transport”
(Supplementary Fig. S6G).
To uncover the regulatory consequences of PPARGC1A binding,

we next depleted PPARGC1A (Supplementary Fig. S7A and 7B)
and performed RNA-seq on OE19 cells after lapatinib treatment
for 24 h (Supplementary Fig. S7C). PPARGC1A depletion mainly led
to downregulation of gene expression with 86 genes exhibiting
significantly reduced levels (Fig. 6G; 1.4 fold change, FDR < 0.05;
Supplementary Table 4). By analysing all significantly down-
regulated genes, we observed a large number of direct targets for
PPARGC1A that are associated with PPARGC1A binding peaks
(Supplementary Fig. S7D; left; Supplementary Table 4) including
ESRRA and ACO2 (Fig. 6H). The number of direct target genes
increased following lapatinib treatment (Supplementary Fig. S7D;
right; Supplementary Table 4). Many of these directly activated
targets (36.6%) show upregulation in response to lapatinib
treatment as exemplified by ESRRA and ACO2 (Fig. 6H; Supple-
mentary Fig. S7E). GO term analysis of the directly activated
PPARGC1A target genes uncovered several terms associated with
mitochondrial function and aerobic respiration (Fig. 6I) and many
of these genes are key components of the TCA cycle or the
electron transport chain (Fig. 6J). We therefore examined
mitochondrial activity by measuring the oxygen consumption
rate in parental OE19 cells and cells treated with lapatinib in the
presence and absence of PPARGC1A depletion (Fig. 6K). Basal and
maximal respiration rates were dampened by lapatinib treatment
and maximal respiration was further reduced by PPARGC1A
depletion. In contrast, the glycolytic rate as assessed by the
extracellular acidification rate, was unaffected by PPARGC1A

depletion (Supplementary Fig. S7F). However, a lapatinib-
mediated decrease in glycolytic rate was observed, suggesting a
general decrease in metabolic activity.
Having established that the PPARGC1A-driven pathway is one

of the predominant transcriptional pathways activated in OAC
cells following lapatinib treatment, we asked whether this
transcriptional regulator plays a role in acquired resistance. We
created two different shRNA constructs to deplete PPARGC1A
(Supplementary Figs. S5G, S7G) and tested the re-emergence of
cell growth following extended treatment with lapatinib. Control
OE19 cells transduced with scrambled shRNA constructs restarted
proliferation after 30 days lapatinib treatment, but cells depleted
of PPARGC1A failed to resume growth (Fig. 6L). This reduced
growth was also apparent at earlier times of lapatinib treatment
(Supplementary Fig. S5H). In contrast, OE19 cells grown in the
absence of lapatinib showed no reductions in growth following
PPARGC1A depletion (Supplementary Fig. S5H). Reciprocally, we
performed a gain of function experiment in the gastric
adenocarcinoma cell line NCI-N87 which harbours an ERBB2
amplification. This cell line is sensitive to ERBB2 inhibition
(Supplementary Fig. S1E) and has a similar open chromatin profile
to several OAC cell lines and patient samples (Fig. 1C) but has
relatively low levels of PPARGC1A expression (Supplementary Fig.
S7H). We inserted a doxycycline inducible PPARGC1A transgene
(Fig. 6M) and tested growth in the presence of lapatinib. High
levels of PPARGC1A promoted enhanced cell growth in the
presence of lapatinib (Fig. 6N). To see if we could prevent the
emergence of resistance by targeting the metabolic pathways
regulated by PPARGC1A, we treated OAC cells with lapatinib plus
the IDH2 inhibitor enasidenib. IDH2 is an important enzymatic
component of the citric acid cycle and enasidenib has been
previously suggested as a mechanism to target PPARGC1A-driven
mitochondrial respiration [43], and whilst enasidenib is more
specific to mutant IDH2, it can still inhibit WT IDH2 [44] that is
present in parental OE19 cells [45]. Treatment of OAC cells with
enasidenib in the absence of lapatinib only had a slight, generally
insignificant effect on cell growth over a two week period
(Supplementary Fig. S7I, J). In contrast, co-treatment of OE19,
ESO26 and KYAE1 cells with lapatinib and enasidenib impaired the
emergence of resistance after 5 weeks of treatment (Fig. 6O), and
this inhibitory effect of enasidinib on the growth of OE19 cells was
observed consistently throughout a timecourse of lapatinib
treatment (Supplementary Fig. S7K). Thus, re-purposing of
clinically used mitochondrial inhibitors could potentially prevent
the emergence of resistance to RTK inhibitors in OAC.
Collectively, our data demonstrate that a PPARGC1A-driven

pathway becomes activated by ERBB2 inhibition with lapatinib.
Regions bound by this coactivator protein become more
accessible and associated target genes are activated following
lapatinib treatment, leading to changes in mitochondrial activity
and oxidative phosphorylation. This regulatory activity is
essential for the resumption of proliferative activity during the
acquisition of resistance.

DISCUSSION
Drug resistance is a major clinical problem for cancer treatment,
especially when targeting signalling pathways [46]. This applies
to OAC where compensatory mutational changes have been
shown to be acquired to permit resistance to the ERBB2 inhibitor
trastuzumab [10–12]. However, there are many ways for tumours
to acquire resistance, and recently it has been shown that
changes to the regulatory chromatin landscape can permit
resistance in several scenarios, including endocrine resistance in
breast cancer [13], BET inhibitor resistance in acute myeloid
leukaemia [47], and PDGFRA inhibitor resistance in glioblastoma
[48]. Here we have focussed on RTK pathways driven by ERBB2
amplifications in OAC and demonstrate that widespread rewiring
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of the regulatory chromatin landscape is a major driver towards
acquiring drug resistance.
The integration of chromatin changes with transcriptomic

changes enabled us to uncover transcriptional regulatory net-
works that are rewired as cells respond to drug treatment and

develop resistance. Shortly after treatment, chromatin closing is
instigated which corresponds to transcriptional programmes
driven by AP1 and ETS family transcription factors. These families
of transcription factors have previously been shown to play
important roles in OAC [26, 28, 33], and lapatinib acts to shut these
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down. Conversely, chromatin opening causes these programmes
to be replaced with a network driven by a set of transcription
factors that are usually associated with early intestinal develop-
ment, typified by HNF4, KLF5, FOXA and GATA factors (Fig. 6P).
This set of transcription factors has previously been shown to be
operational in both Barrett’s and OAC [24–27, 32] and suggests
that ERBB2 activation leads to at least partial suppression of their
activity in OAC cells. Alternatively, additional compensatory
pathways may be activated in response to drug treatment which
further enhance the activity of this set of transcription factors.
Further analysis also implicated the transcriptional co-activator
PPARGC1A in regulating the gene expression programmes that
arise as cells acquire resistance (Fig. 6P). These transcription
factors are associated with changes in gene expression changes
linked to various metabolic programmes, suggesting that meta-
bolic reprogramming allows cells to persist in the presence of
ongoing lapatinib treatment. Although we only measured switch-
ing to oxidative phosphorylation after short term lapatinib
treatment, it appears likely that this effect persists after longer
term treatment as several OXPHOS pathway genes remain
upregulated after 5 weeks lapatinib treatment (e.g., ACO2, OGDH,
COX15 and UQCRC2; Supplementary Fig. S7E). Our findings in OAC
are consistent with work in ERBB2-amplified breast cancer cells
where metabolic adaptations to lapatinib treatment occur which
shift the cells towards mitochondrial energy metabolism [49].
However, in breast cancer these changes are driven by the
transcription factor, ERRα, demonstrating that resistance to the
same inhibitor can occur in two different cancers through
reprogamming of different pre-existing gene regulatory networks.
By focussing on HNF4A and PPARGC1A, we provide more

detailed analysis of their downstream regulatory activities.
PPARGC1A has previously been shown to be a co-activator for
several nuclear hormone receptors, including HNF4A [34–36].
However, unexpectedly we found little evidence for chromatin
co-occupancy. This is reflected in the metabolic programmes they
are implicated in, with PPARGC1A primarily associated with
oxidative phosphorylation whereas HNF4A controls various lipid
metabolic processes. Interestingly, both converge on pro-
grammes controlling mitochondrial functions, suggesting that
mitochondrial changes may be key in promoting resistance. Both
HNF4A and PPARGC1A activity is required for acquiring resis-
tance, underlying the importance of their downstream regulatory
programmes. Indeed, when we inhibit oxidative phosphorylation
by targeting IDH2, resistance is impaired, providing more direct

evidence that this metabolic switch is important for cancer
development. These findings are consistent with studies in other
cancer types where PPARGC1A-driven programmes play an
important role in drug resistance in melanomas [50] and
glioblastoma [51]. In both cases, PPARGC1A-dependent metabolic
reprogramming is elicited following inhibition of either a RTK
(MET) or a downstream pathway component (BRaf), demonstrat-
ing a common response to RTK pathway inhibition in rewiring
metabolic programmes in OAC and these cancers. Furthermore,
HNF4A loss in pancreatic cancer also drives metabolic repro-
gramming and correlates with a metabolic switch to dependence
on glycolytic activity [52], suggesting a more widespread role for
HNF4A in this context.
After 5 weeks of lapatinib treatment, OAC cells begin to

proliferate again despite ERBB2 being inactive (as defined by lack
of Y1196 phosphorylation), suggesting that other compensatory
signalling pathways must be activated which is reflected by the
re-activation of ERK. This may be due to other RTKs being
activated, potentially through remodelling their gene regulatory
regions. However, this is not a stable state and is fully reversible
after drug withdrawal and the open chromatin landscape reverts
to its initial state within days. This has important implications for
considering treatment regimes, as drug holidays could allow cells
to be re-sensitised to ERBB2 inhibition, thereby reducing the
selective pressure to select for additional mutational events. Our
work has additional therapeutic implications as selective target-
ing of the persistor cells may prevent transition to a resistant
state. One route would be through direct inhibition of HNF4A or
PPARGC1A, or alternatively through targeting their regulatory
programmes as exemplified by IDH2 inhibition with enasidenib, a
clinically approved drug [44, 53]. As depletion of HNF4A and
PPARGC1A in the presence of lapatinib reduces cell growth and
metabolic reprogramming occurs early in the treatment time
course, early intervention appears feasible and leads to a
persistent change in cell viability.
In summary, we have demonstrated that OAC cells undergo

dramatic remodelling of their accessible chromatin landscape
following ERBB2 inhibition. This chromatin remodelling revealed
that the HNF4A and PPARGC1A regulated transcriptional regula-
tory networks play a pivotal role in promoting the emergence of
drug resistant cancer cells and represent potential therapeutic
targets to enhance the efficacy of ERBB2 inhibition strategies.
However prior to embarking on clinical trials, further pre-clinical
investigation of the efficacy of combinatorial drug treatment

Fig. 6 PPARGC1A regulates mitochondrial processes and supports the emergence of resistance. A Heatmap of PPARGC1A binding sites in
OE19 cells and HNF4A binding, H3K27ac and ATAC-seq signal in control (d0) cells or after lapatinib treatment for the indicated number of days
(d1-d35). B Genomic distribution of PPARGC1A binding sites in OE19 cells. C Tag density plot of chromatin accessibility over the lapatinib
timecourse at PPARGC1A binding sites. D PPARGC1A ChIP-qPCR in OE19 cells treated with DMSO (d0) or with 500 nM lapatinib (d2) for 2 days
(d0 or d2). Statistical significance was determined using a paired T-test; ***P < 0.001, *P < 0.05, NS non-significant, n= 3. E, F De novo motif
enrichment at PPARGC1A-bound promoters (E) or non-promoter regions (F). Motif match score to called transcription factor is shown in
brackets. G Volcano plot highlighting DEGs after OE19 cells were transfected with siPPARGC1A and treated with 500 nM lapatinib for 24 h.
Significantly down- or up-regulated genes are indicated in blue and red, respectively, and were defined by log2fold change >0.5 and
FDR < 0.05. H Genome browser view of the ESRRA and ACO2 loci and surrounding genomic region in OE19 cells. ATAC-seq, PPARGC1A binding
and H3K27ac signal is shown. Gene expression from RNA-seq data is shown on the right. Duration of lapatinib treatment in days (d) is shown.
I GO analysis using Metascape of PPARGC1A direct target genes (n= 123) in OE19 cells treated with lapatinib for 24 h. Direct target genes were
defined as genes down-regulated (FDR < 0.05) by siPPARGC1A that were also annotated to a PPARGC1A ChIP-seq peak using the basal plus
extension model (GREAT). J PPARGC1A activated direct target genes (blue, underlined) are shown on the TCA cycle and the associated
electron transport chain. K Mitochondrial stress test in OE19 cells treated with siPPARGC1A and DMSO or 500 nM lapatinib for 24 h. OCR –
oxygen consumption rate. Statistical significance was determined using a paired t-test; *P < 0.05, **P < 0.01, n= 3. L Crystal violet growth assay
of OE19 cells treated with control shRNA (shSCR) or shRNA targeting PPARGC1A (shPPARGC1A). Cells were treated with 500 nM lapatinib for
30 days and data are shown relative to shSCR control. ***P < 0.001, unpaired T-test, n= 3. M Western blot of PPARGC1A levels in parental NCI-
N87 or stable NCI-N87 expressing inducible PPARGC1A (NCI-N87-PPARGC1A). Cells were treated with the indicated amounts of doxycycline for
48 h. N Crystal violet growth assay of NCI-N87-PPARGC1A cells treated with 250 nM lapatinib and the indicated doses of doxycycline for 72 h.
O Crystal violet growth assay of the indicated cell lines treated with lapatinib or lapatinib plus 5 μM enasidenib. OE19 cells were treated with
500 nM lapatinib for 35 days, ESO26 cells (PIK3CA activating mutation) were treated with 100 nM lapatinib and 250 nM MK-2206 (AKTi) for
18 days and KYAE1 cells were treated with 100 nM lapatinib for 28 days. *P < 0.05, **P < 0.01, paired T-test, n= 3. PModel showing the changes
in transcription factor activity elicited by ERBB2 inhibition on top of the programme driving the BO/OAC phenotype.
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should be undertaken in animal models. More generally, such an
approach could be combined with inhibitors of other RTK pathway
components given the high frequency of mutational events in this
pathway in OAC [22, 23].

METHODS
Cell culture and treatments
OE19, CP-A, HET1A, NCI-N87 and HEK293T cells were purchased from ATCC
and were authenticated by STR profiling. KYAE1 and ESO26 cells were
purchased from ECACC. Cell lines were routinely tested for mycoplasma.
OE19, ESO26 and NCI-N87 cells were cultured in RPMI 1640 (ThermoFisher
Scientific, 52400) supplemented with 10% foetal bovine serum (Thermo-
Fisher Scientific, 10270) and 1% penicillin/streptomycin (ThermoFisher
Scientific, 15140122). KYAE1 cells were cultured in 1:1 RPMI 1640:F12
(Thermo Fisher, 11765054) supplemented with 10% foetal bovine serum
and 1% penicillin/streptomycin. HEK293T and HET1A cells were cultured in
DMEM (ThermoFisher Scientific, 22320-022) supplemented with 10% foetal
bovine serum. CP-A cells were cultured in keratinocyte serum free media
(ThermoFisher Scientific, 17005042) supplemented with 10% foetal bovine
serum, 5 ng/mL EGF (ThermoFisher Scientific, 17005042), 50 μg/mL bovine
pituitary extract (ThermoFisher Scientific, 17005042) and 1% penicillin/
streptomycin. Cell lines were cultured at 37 °C, 5% CO2 in a humidified
incubator. For inhibitor treatment, cells were seeded at a density of 2 × 104

cells/cm2. 24 h after seeding, cells were treated with inhibitors [ERBB2/
EGFR, Lapatinib (Selleckchem, S1028); AKT, MK-2206 (Selleckchem, S1078);
IDH2, Enasidenib (Selleckchem, S8205) were reconstituted in dimethyl
sulfoxide (DMSO)] or vehicle control. For long term treatments, inhibitor
and media was replenished every 72 h. To ensure all timepoints were
treated equally, 24 h prior to the endpoint fresh media/inhibitor was
added to cells. For drug withdrawal experiments lapatinib resistant cells
were first generated by treatment with lapatinib for 35 days. After 35 days
of drug treatment cells were trypsinised, counted and seeded at a density
of 2 × 104 cells/cm2 in the continued presence of lapatinib. 24 h after
seeding, media containing lapatinib was removed, cells were washed 3X
with PBS to wash out inhibitor before adding fresh media to the cells.

Organoid culture
WTSI_OESO-009 (CAM408; [29]) was a gift from Rebecca Fitzgerald.
Organoids were cultured based on protocols described previously [29],
except organoids were cultured in IntestiCult™ Organoid Growth Medium
(STEMCELL Technologies, 06010). Organoids were cultured in 6-well
plates. To passage organoids, media was removed and organoids were
washed with PBS. 1 mL PBS was added and organoids were dissociated
from BME-2 (Cultrex, 3533-005-02) by pipetting. The organoid suspension
was centrifuged at 1000 RCF for 5 min and the supernatant was
discarded. A single cell suspension was then form by the addition of
1 mL TrypLE™ Express (Gibco, 12609-013), and cells were transferred to a
1.5 mL tube and incubated for 15 min, 1000 rpm, 37 °C. Single cells were
centrifuged at 1800 RCF for 5 min and the supernatant was removed by
pipetting. Single cells were re-suspended in 200 μL 10 mg / mL BME-2
and 20 μL cells / BME-2 suspension were then pipetted into a 6-well plate,
before incubating for 15 min at 37 °C, 5% CO2 to enable BME-2 to
polymerise. 1.5 mL IntestiCult™ Organoid Growth Medium was then
added to culture the cells.
For MTS growth assays, organoids were formed in 3D culture as described

and then dissociated from BME-2 by pipetting. Organoids were then counted
using a haemocytometer and 5 × 103 organoids were seeded into 96-well
plates. For ATAC-seq, organoids were dissociated from BME-2 into single cells
using TrypLE. ATAC-seq libraries were then generated.

Cell growth, cell cycle and apoptosis assays
MTS growth assays (Promega, G3580) were performed in 96-well plate format
according to the manufacturer’s protocol. Absorbance readings were taken at
490 nm on a SPECTROstar Nano Micoplate Reader (BMG LABTECH).
Crystal violet assays were performed by fixing cells with 4% paraformal-

dehyde for 10min. Cells were stained using 0.1% crystal violet (Sigma-
Aldrich, HT90132) for 30min at room temperature. Plates were rinsed with
water and left to dry before solubilising dye in 10% acetic acid for 10min at
room temperature with gentle shaking. Absorbance readings were taken at
570 nm on a SPECTROstar Nano Micoplate Reader (BMG LABTECH). Data
was uniformly transformed so that the mean of the control sample was
represented as 100%.

For cell cycle analysis, media was collected from cells and cells were
dissociated using trypsin, using the collected media to quench trypsin.
Cells were collected by centrifugation, washed with PBS and then fixed by
the addition of 70% ethanol, pre-cooled to −20 °C. Fixed cells were then
stored at −20 °C until required. Cells were then pelleted and washed with
PBS before the addition of 400 μL 50 μg/mL propidium iodide (Sigma,
P4864). Cells were then analysed by the University of Manchester Flow
Cytometry Core Facility on a BD Biosciences LSRFortessaTM. Data was
analysed using ModFit LTTM software to determine the percentage of
cells in G0/G1, S or G2/M phase.
For apoptosis assays, 2 × 105 cells were seeded into 6-well plates. 24 h

later, fresh culture media was added, and cells were treated with 500 nM
lapatinib or vehicle control. 30 μM propidium iodide (Sigma, P4864) was
added to culture medium to measure apoptosis. Cells were imaged every
20 min for 72 h using an Incucyte ZOOM (ESSEN Bioscience), maintained
at 37 °C, 5% CO2. The number of apoptotic cells was determined by the
number of red fluorescent cells and the data was exported to Prism 8
(GraphPad).

siRNA transfection
4 × 105 cells were reverse transfected with 25 pmol siRNA using
LipofectamineTM RNAiMAX transfection reagent (ThermoFisher Scientific,
13778150) according to the manufacturer’s instructions. Cells were seeded
into 6-well plates. SMART-pool siRNAs for control non-targeting siRNA
(Dharmacon, D-001810-10-0020), siERBB2 (Dharmacon, L-003126-00-0005)
and siPPARGC1A (Dharmacon, L-005111-00-0005) were used.

Lentiviral vectors, production and transduction
The PPARGC1A (PGC1α) gene was amplified from the vector pcDNA myc
PGC-1 alpha (Addgene, 10974) using primers containing BamHI and EcoRI
cloning sites (PPARGC1A_BamHI_F, PPARGC1A_EcoRI_R, see Supplemen-
tary Table 5) and sub-cloned into pENTR1A (Invitrogen, A10462). A 3’ 3x
FLAG tag was then inserted by site directed mutagenesis using a Q5® Site-
Directed Mutagenesis Kit (NEB, E0554S) and the primers PPARGC1A_-
FLAG_SDM_F and PPARGC1A_FLAG_SDM_R (see Supplementary Table 5).
PPARGC1A-3xFLAG was then cloned into pINDUCER20 (Addgene, 44012)
using Gateway™ LR Clonase™ II Enzyme mix (Invitrogen, 11791-020),
forming the vector pINDUCER20-PPARGC1A-3xFLAG.
shRNA vectors were created by annealing shRNA overlapping oligonu-

cleotides and then cloned into pLKO.1 (Addgene, 10878). shRNA oligonu-
cleotides sequences are detailed in Supplementary Table 5. Scramble shRNA
pLKO.1 vector (Addgene, 1864) was used as a control.
Lentivirus was produced as described previously [54]. Briefly, 3 × 106

HEK293T cells were seeded in T75 flasks. The following day, HEK293T cells
were transfected with 2.25 μg psPAX2 (Addgene, 12260), 1.5 pMD2.G
(Addgene, 12259) and 3 μg target vector using PolyFect transfection
reagent (Qiagen, 301107). Media containing virus was collected both 48
and 72 h post-transfection and viral particles were precipitated using PEG-
itTM Virus Precipitation Solution (System Biosciences, LV810A-1). To
transduce cells with virus cells were treated with both virus (MOI
0.5–1.0) and 5 μg / mL Polybrene infection reaction (EMD Millipore, TR-
1003). For pLKO.1 vectors, polyclonal cells were selected using 500 ng/mL
puromycin (Sigma P7255) for 2 weeks; for pINDUCER20 vectors, polyclonal
cells were selected using 250 μg/mL G418 (ThermoFisher Scientific,
10131027) for 2 weeks.

Western blots
Cells were lysed in RIPA buffer (150mM NaCl, 1% IGEPAL CA-630, 0.5%
sodium deoxycholate, 0.1% SDS, 50mM Tris pH 8.0, 1 mM EDTA)
supplemented with protease inhibitors (Roche, 11836170001). Protein
concentration was determined by BCA assay (Pierce, 23227). 5x SDS loading
buffer (235mM SDS, 50% glycerol, 0.005% bromophenol blue, 10%
β-mercaptoethanol, 210mM Tris-HCl pH 6.8) was then added to protein
lysates to a 1x concentration and then incubated at 90 °C for 10min.
Samples were then analysed by SDS-PAGE on 8% polyacrylamide gels using
a PageRuler™ Prestained Protein Ladder (Thermo Scientific, 26616). Proteins
where then transferred onto a nitrocellulose membrane (GE Healthcare,
10600002) and blocked using Odyssey® Blocking Buffer (LI-COR Biosciences,
P/N 927-40000). Primary antibodies used: anti-ERBB2 (Thermo Fisher, MA5-
14057, 1:1,000), anti-phospho-ERBB2 (Cell Signalling Technologies, 6942,
1:5000), anti-ERK (Cell Signalling Technologies, 4695 S, 1:1,000), anti-
phospho-ERK (Cell Signalling Technologies, 9106 S, 1:2,000), anti-AKT (Cell
Signalling Technologies, 2920 S, 1:2,000), anti-phospho-AKT (Cell Signalling
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Technologies, 4060 S, 1:2,000), anti-HNF4A (R&D Systems, PP-H1415-00,
1:1,000), anti-PPARGC1A (Novus Biologicals, NBP1-04676, 1:1,000), anti-
phospho-PPARGC1A (Novus Biologicals, AF6650, 1:1,000), anti-GFP (Santa
Cruz, sc-8334, 1:2,000). For the anti-PPARGC1A antibody, membranes were
blocked and the primary antibody was diluted in 5% (w/v) milk powder in
PBS. Secondary antibodies used: anti-rabbit (LI-COR Biosciences, 926-32213,
1:10,000) and anti-mouse (LI-COR Biosciences, 926-32210, 1:10,000). The
membranes were visualised using a LI-COR Odyssey® CLx Infrared Imager.
Western blots were quantified using Empiria studio v1.1.

RNA extraction and RT-qPCR
Total RNA was extracted from cells using a RNeasy Plus RNA extraction kit
(Qiagen, 74136) according to the manufacturer’s protocol. RT-qPCR
reactions were run using a QuantiTect SYBR Green RT-qPCR kit (Qiagen,
204243) on a Qiagen Rotorgene Q. Relative copy number of transcripts was
determined from a standard curve and then normalised by the expression
of RPLP0 control gene. Primer pairs are listed in Supplementary Table 5.

Seahorse metabolism assays
1 × 104 OE19 cells were reverse transfected with siRNAs and seeded into
96-well plates (Agilent, 102601-100). 24 h post-transfection cells were
treated with 500 nM lapatinib or vehicle control. 24 h after drug
treatment normal culture medium (RPMI 1640) was changed to Seahorse
XF RPMI assay medium (Agilent, 103681-100) and a mitochondrial stress
test (Agilent, 103015-100) was carried out according to the manufac-
turer’s protocols using a Seahorse XFe96 analyser (Agilent) to measure
oxygen consumption and extracellular acidification rates. Following
completion of the mitochondrial stress test, a crystal violet assay was
performed and oxygen consumption and extracellular acidification
results were normalised by crystal violet 570 nm absorbance readings.
Concentrations of inhibitors used: 1.5 μM oligomycin, 1 μM FCCP and
0.5 μM rotenone/antimycin A.

ATAC-seq processing and analysis
Two biological replicates were sequenced per condition. Omni-ATAC-seq
was performed following published protocols [55]. Cells were dissociated
from plates using trypsin (Gibco, 25300-054) and 2 × 105 cells were collected
and centrifuged at 500 RCF for 5min. Cells were then washed with PBS and
centrifugation repeated. The omni-ATAC-seq protocol [55] was then
followed until the isolation of nuclei. Nuclei were centrifuged at 500 RCF,
4 °C for 10min and re-suspended in 10 μL nuclease free water (Ambion,
AM9937). Nuclei were then counted using a haemocytometer, and 5 × 104

nuclei were used for the transposition reaction. Libraries were size selected
using Ampure XP beads (Beckman Coulter Agencourt, A63881) using a two-
sided selection (0.5x reaction volume and 1.25x reacton volume) and eluted
in 12 μL nuclease free water. ATAC-seq libraries were then sequenced by the
University of Manchester Genomic Technologies Core Facility on a HiSeq
4000 System (Illumina).
Initial processing of ATAC-seq was performed as described previously

[28]. Reads were trimmed using Trimmomatic v0.32 [56] and aligned to the
human genome (GRCh37, hg19) using Bowtie2 v2.3.0 [57] with the
following options: -X 2000 -dovetail. Using SAMtools v1.9 [58], only
mapped reads(>q30) were retained. Reads mapping to blacklisted regions
were removed using BEDtools v2.27.1 [59]. Duplicates were then marked
using Picard (https://broadinstitute.github.io/picard/). Peaks were called
using MACS2 v2.1.1 [60] with the following parameters: -q 0.01, -nomodel-
shift -75 -extsize 150 -B -SPMR. For the drug withdrawal timecourse all
samples were processed as described above but the -SPMR option was not
used when calling peaks with MACS2.
To create a union peakset for each experiment, biological replicates

were checked for concordance (r > 0.90) and then merged into a single
alignment file. Peaks were then re-called using MACS2 and the top
50,000 most significant peaks from each condition were retained. Peak
summits were extended+ /− 250 bp using BEDtools slop and then a
union peakset of all conditions was created using HOMER v4.9 [61]
mergePeaks.pl using the -d 250 parameter. This union peakset was then
used to identify differentially accessible regions by counting reads
mapping to peaks (i.e., accessible regions) in individual replicates using
featureCounts v1.6.2 [62]. Read counts were then used in DESeq2 v1.14.1
[63] to call differentially accessible regions. Typically, an FDR (adjusted
p-value) < 0.05 and 2 fold linear fold change cut off was used to define
differential regions. To identify transcription factor binding motifs
enriched in differentially accessible regions, peaks were separated into

promoter or non-promoter associated peaks based on whether the
peaks were −2.5 kb / + 0.5 kb from the TSS using BEDtools intersectBed.
De novo or known motif enrichment was then performed in non-
promoter peaks using HOMER v4.9 [61].

ChIP-qPCR and ChIP-seq processing and analysis
ChIP-qPCR and ChIP-seq was performed as described previously [25].
Primers for ChIP-qPCR are listed in Supplementary Table 5. 5 × 106 nuclei
and 2.5 μg antibody were used for transcription factor/co-activator
immunoprecipitation, and 2 × 106 nuclei and 2 μg antibody were used
for histone marks. 50 μL of protein A or G Dynabeads were used for
immunoprecipitation (Invitrogen, 10002D and 10004D). Antibodies used:
anti-H3K27ac (abcam, ab4729), anti-HNF4A (R&D Systems, PP-H1415-00),
anti-PPARGC1A (Novus Biologicals, NBP1-04676). For ChIP-seq, two
biological replicates were sequenced per condition and replicates were
checked for concordance (r > 0.80). Whilst spike in control chromatin was
supplemented to chromatin, analysis of results showed that ‘reads in
peaks’ normalisation of HNF4A and H3K27ac ChIP-seq data was more
appropriate because global changes to the levels of HNF4A and H3K27ac
were not observed.
Reads were trimmed using Trimmomatic v0.32 [56] and aligned to the

human genome (GRCh37, hg19) using Bowtie2 v2.3.0 [57]. Mapped reads
(>q30) were retained using SAMtools v1.9 [58]. Reads mapping to
blacklisted regions were removed using BEDtools v2.27.1 [59]. Duplicates
were then marked using Picard (https://broadinstitute.github.io/picard/).
Peaks were called using MACS2 v2.1.1, using input DNA as control [60]. For
differential binding analysis peak summits were extended+ /- 250 bp
using BEDtools slop and a union peakset was created by merging peaks
from each sample using HOMER mergePeaks.pl (-d 250). Reads mapping to
peaks in the union peakset were then counted using featureCounts v1.6.2
and analysed in DESeq2 v1.14.1 to call differentially bound sites (FDR < 0.1).
Note that for PPARGC1A ChIP-seq, one of the day 2 lapatinib treatment
replicates showed significantly lower quality, so we used a single replicate
for comparing to day 0 merged data to maximise the chances of detecting
new binding events. Day 2 replicate 1 showed high overall correlation with
day 0 merged data (r= 0.8) demonstrating the quality of the data.

RNA-seq processing and analysis
Three biological replicates were sequenced per condition. Total RNA was
extracted from cells using a RNeasy Plus RNA extraction kit (Qiagen, 74136).
An on-column DNase digest (Qiagen, 79254) was performed according to
the manufacturer’s protocol. RNA-seq libraries were generated using a
TruSeq stranded mRNA library kit (Illumina, RS-122-2001) and sequenced by
the University of Manchester Genomic Technologies Core Facility on a HiSeq
4000 System (Illumina).
Reads were trimmed using Trimmomatic v0.32 [56] and aligned to the

human genome (GRCh37, hg19, RefSeq transcript annotation) using STAR
v2.3.0 [64]. Gene expression counts were obtained using featureCounts
v1.6.2 [62] and differentially expressed genes were identified using DESeq2
v1.14.1 using FDR < 0.05 [63]. For results from the lapatinib treatment
timecourse, differentially expressed genes were filtered to remove genes in
which no timepoint had an FPKM value > 1. Metascape [65] was used for
gene ontology analysis of differentially expressed genes. Ingenuity
Pathway Analysis [66] was used to predict upstream regulators.
Patient tumour samples in the OCCAMS dataset expressing ERBB2 at

high levels (ERBB2HIGH) were defined by ERBB2 expression levels greater
than the median +2 SD.

Bioinformatics and data visualisation
To visualise data, the bigwig files from an experiment were normalised
using the reciprocal of scale factors obtained in DESeq2. The bigwigCom-
pare tool from deepTools v3.1.1 [67] was then used to scale individual
replicate bigwigs. Bigwigs for each condition were then merged using
UCSC bigwigmerge and the resulting bedgraph files were converted to
bigwigs for visualisation in IGV v2.7.2 [68]. Heatmaps of epigenomic data
were generated using deepTools. Tag density plots were generated in
deepTools and the data was then plotted in Microsoft Excel. Heatmaps of
expression data and Pearson correlations were generated using Morpheus
(https://software.broadinstitute.org/morpheus/). Peaks were annotated to
genes using HOMER for the nearest gene model or GREAT [69] for the
basal plus extension model. Principal component analysis was performing
using the prcomp function in R v3.6.0. Euler diagrams were generated
using the R Eulerr library.
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Statistical tests
To determine whether an overlap of genes or peaks is statistically
significant a hypergeometric test was used, using the dhyper function in R
v3.6.0. Other statistical tests were performed using GraphPad Prism v8. All
T-tests were two-tailed.

Datasets
All data was obtained from ArrayExpress, unless stated otherwise. Cell line
RNA-seq data was obtained from: EBI, EGAD00001001357 (Cancer Genome
Project, cancer.sanger.ac.uk[45]); NCI-N87 RNA-seq data, Sequence Read
Archive SRP091839[70]; OE33 RNA-seq data, E-MTAB-5175 [28]. HET1A
ATAC-seq data, E-MTAB-6931 [24]. CP-A ATAC-seq data, E-MTAB-8994 [25].
Patient tissue RNA-seq data was obtained from: E-MTAB-4054 [30] and

the OCCAMS consortium (EGAD00001007496). Human tissue ATAC-seq
data was obtained from: E-MTAB-5169 [28], E-MTAB-6751 [24], E-MTAB-
8447 [25] and The Cancer Genome Atlas OAC ATAC-seq data were
obtained from the GDC data portal (portal.gdc.cancer.gov; [71]).
OE19 HNF4A ChIP-seq data was obtained from E-MTAB-6858 [24].

OE19 siERBB2 RNA-seq data was obtained from E-MTAB-8579 [25]. OE19
H3K27ac ChIP-seq data was obtained from NCBI SRA SRP201335 [26]. NRF1
ChIP-seq data was obtained from ENCODE: HepG2, ENCSR853ADA; K562,
ENCSR837EYC; MCF7, ENCSR135ANT [72].

DATA AVAILABILITY
Sequencing data have been deposited in ArrayExpress. OE19 lapatinib treatment
timecourse ATAC- and RNA-seq: E-MTAB-10302, E-MTAB-10304. Lapatinib treatment
of WTSI-OESO_009, ESO26, KYAE1 and NCI-N87 cells ATAC-seq: E-MTAB-10306, E-
MTAB-10307, E-MTAB-10310, E-MTAB-10313. Lapatinib withdrawal timecourse ATAC-
seq: E-MTAB-10314. OE19 siPPARGC1A RNA-seq: E-MTAB-10317. OE19 HNF4A,
PPARGC1A and H3K27ac ChIP-seq data: E-MTAB-10319. OE19 PPARGC1A lapatinib
treated ChIP-seq data: E-MTAB-11300.
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